

1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.1.5

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

1.2.3

1.2.3.1

1.2.3.2

1.2.3.3

1.3

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

1.3.2

1.3.2.1

1.3.2.2

1.3.2.3

1.3.3

1.3.3.1

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.2

1.4.2.1

1.4.2.2

1.4.2.3

1.5

1.5.1

Table	of	Contents
Introduction

Unit	1.	Get	Started

Lesson	1:	Build	Your	First	App

1.1:	Install	Android	Studio	and	Run	Hello	World

1.2A:	Make	Your	First	Interactive	UI

1.2B:	Using	Layouts

1.3:	Working	with	TextView	Elements

1.4:	Learning	About	Available	Resources

Lesson	2:	Activities

2.1:	Create	and	Start	Activities

2.2:	Activity	Lifecycle	and	State

2.3:	Activities	and	Implicit	Intents

Lesson	3:	Testing,	Debugging,	and	Using	Support	Libraries

3.1:	Using	the	Debugger

3.2:	Testing	your	App

3.3:	Using	Support	Libraries

Unit	2.	User	Experience

Lesson	4:	User	Interaction

4.1:	Using	Keyboards,	Input	Controls,	Alerts,	and	Pickers

4.2:	Using	an	Options	Menu	and	Radio	Buttons

4.3:	Using	the	App	Bar	and	Tabs	for	Navigation

4.4:	Creating	a	Recycler	View

Lesson	5:	Delightful	User	Experience

5.1:	Drawables,	Styles,	and	Themes

5.2:	Material	Design:	Lists,	Cards,	and	Colors

5.3:	Supporting	Landscape,	Multiple	Screen	Sizes,	and	Localization

Lesson	6:	Testing	your	UI

6.1:	Using	Espresso	to	Test	Your	UI

Unit	3.	Working	in	the	Background

Lesson	7:	Background	Tasks

7.1:	Create	an	AsyncTask

7.2:	Connect	to	the	Internet	with	AsyncTask	and	AsyncTaskLoader

7.3:	Broadcast	Receivers

Lesson	8:	Triggering,	Scheduling,	and	Optimizing	Background	Tasks

8.1:	Notifications

8.2:	Alarm	Manager

8.3:	Job	Scheduler

Unit	4.	All	About	Data

Lesson	9:	Preferences	and	Settings

2

1.5.1.1

1.5.1.2

1.5.2

1.5.2.1

1.5.2.2

1.5.3

1.5.3.1

1.5.3.2

1.5.3.3

1.5.4

1.5.4.1

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.7

9.1:	Shared	Preferences

9.2:	Adding	Settings	to	an	App

Lesson	10:	Storing	Data	Using	SQLite

10.1A:	SQLite	Database

10.1B:	Searching	a	SQLite	Database

Lesson	11:	Sharing	Data	with	Content	Providers

11.1A:	Implementing	a	Minimalist	Content	Provider

11.1B:	Adding	a	Content	Provider	to	Your	Database

11.1C:	Sharing	Content	with	Other	Apps

Lesson	12:	Loading	Data	Using	Loaders

12.1:	Loading	and	Displaying	Fetched	Data

Appendix:	Homework

Homework	Lesson	1

Homework	Lesson	2

Homework	Lessons	3,	4

Homework	Lessons	5,	6

Homework	Lessons	7,	8

Homework	Lessons	9,	10,	11

Appendix:	Utilities

3

Android	Developer	Fundamentals	Course	–	Practicals
Android	Developer	Fundamentals	is	a	training	course	created	by	the	Google	Developer	Training	team.	You	learn	basic
Android	programming	concepts	and	build	a	variety	of	apps,	starting	with	Hello	World	and	working	your	way	up	to	apps	that
use	content	providers	and	loaders.

Android	Developer	Fundamentals	prepares	you	to	take	the	exam	for	the	Associate	Android	Developer	Certification.

This	course	is	intended	to	be	taught	in	a	classroom,	but	all	the	materials	are	online,	so	if	you	like	to	learn	by	yourself,	go
ahead!

Prerequisites
Android	Developer	Fundamentals	is	intended	for	new	and	experienced	developers	who	already	have	Java	programming
experience	and	now	want	to	learn	to	build	Android	apps.

Course	materials
The	course	materials	include:

This	practical	workbook,	which	guides	you	through	creating	Android	apps	to	practice	and	perfect	the	skills	you're
learning
A	concept	reference:	Android	Developer	Fundamentals	Course—Concepts
Slide	decks	(for	optional	use	by	instructors)
Videos	of	lectures	(for	reference	by	instructors	and	students)

What	topics	are	covered?

Android	Developer	Fundamentals	includes	five	teaching	units,	which	are	described	in	What	does	the	course	cover?

Developed	by	the	Google	Developer	Training	Team

Introduction

4

https://developers.google.com/training/courses/android-fundamentals
https://www.udacity.com/google-certifications
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://drive.google.com/drive/u/0/folders/0B5Kg0X0yIQ1Pbk5yVGdsSFFjR28
https://www.youtube.com/playlist?list=PLlyCyjh2pUe9wv-hU4my-Nen_SvXIzxGB
https://developers.google.com/training/courses/android-fundamentals#what_does_the_course_cover

Last	updated:	February	2017	

This	work	is	licensed	under	a	Creative	Commons	Attribution-Non	Commercial	4.0	International	License

Introduction

5

1.1:	Install	Android	Studio	and	Run	Hello	World
Contents:

What	you	should	already	KNOW
What	you	will	NEED
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Install	Android	Studio
Task	2:	Create	"Hello	World"	app
Task	3:	Explore	the	project	structure	and	layout
Task	4:	Create	a	virtual	device
Task	5:	Run	your	app	on	an	emulator
Task	6.	Add	log	statements	to	your	app
Task	7:	Explore	the	AndroidManifest.xml	file
Task	8.	Explore	the	build.gradle	file
Task	9.	Run	your	app	on	a	device
Coding	challenge
Summary
Related	concepts
Learn	more

Welcome	to	the	practical	exercises.	You	will	learn	to:

Install	Android	Studio,	the	Android	development	environment.
Learn	about	the	Android	development	process.
Create	and	run	your	first	Android	Hello	World	app	on	an	emulator	and	on	a	physical	device.
Add	logging	to	your	app	for	debugging	purposes.

What	you	should	already	KNOW
For	this	practical	you	should	be	able	to:

Understand	the	general	software	development	process	for	object-oriented	applications	using	an	IDE	(Integrated
Development	Environment).
Demonstrate	that	you	have	at	least	1-3	years	of	experience	in	object-oriented	programming,	with	some	of	it	focused	on
the	Java	programming	language.	(These	practicals	will	not	explain	object-oriented	programming	or	the	Java	language.)

What	you	will	NEED
For	these	practicals,	you	will	need:

A	Mac,	Windows,	or	Linux	computer.	See	the	bottom	of	the	Android	Studio	download	page	for	up-to-date	system
requirements.
Internet	access	or	an	alternative	way	of	loading	the	latest	Android	Studio	and	Java	installations	onto	your	computer.

What	you	will	LEARN
You	will	learn	to:

Install	and	use	the	Android	IDE.

Introduction

6

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

Understand	the	development	process	for	building	Android	apps.
Create	an	Android	project	from	a	basic	app	template.

What	you	will	DO
Install	the	Android	Studio	development	environment.
Create	a	an	emulator	(virtual	device)	to	run	your	app	on	your	computer.
Create	and	run	the	Hello	World	app	on	the	virtual	and	physical	devices.
Explore	the	project	layout.
Generate	and	view	log	statements	from	your	app.
Explore	the	AndroidManifest.xml	file.

App	Overview
After	you	successfully	install	the	Android	Studio	IDE,	you	will	create,	from	a	template,	a	new	Android	project	for	the	'Hello
World'	app.	This	simple	app	displays	the	string	"Hello	World"	on	the	screen	of	the	Android	virtual	or	physical	device.

Here's	what	the	finished	app	will	look	like:

Introduction

7

Introduction

8

Task	1.	Install	Android	Studio
Android	Studio	is	Google's	IDE	for	Android	apps.	Android	Studio	gives	you	an	advanced	code	editor	and	a	set	of	app
templates.	In	addition,	it	contains	tools	for	development,	debugging,	testing,	and	performance	that	make	it	faster	and	easier
to	develop	apps.	You	can	test	your	apps	with	a	large	range	of	preconfigured	emulators	or	on	your	own	mobile	device,	and
build	production	APKs	for	publication.

Note:	Android	Studio	is	continually	being	improved.	For	the	latest	information	on	system	requirements	and	installation
instructions,	refer	to	the	documentation	at	developer.android.com.
To	get	up	and	running	with	Android	Studio:

You	may	need	to	install	the	Java	Development	Kit	-	Java	7	or	better.
Install	Android	Studio

Android	Studio	is	available	for	Windows,	Mac,	and	Linux	computers.	The	installation	is	similar	for	all	platforms.	Any
differences	will	be	noted	in	the	sections	below.

1.1.	Installing	the	Java	Development	Kit

1.	 On	your	computer,	open	a	terminal	window.
2.	 Type		java	-version	

The	output	includes	a	line:

Java(™)	SE	Runtime	Environment	(build1.X.0_05-b13)

X	is	the	version	number	to	look	at.

If	this	is	7	or	greater,	you	can	move	on	to	installing	Android	Studio.
If	you	see	a	Java	SE	version	is	below	7	or	if	Java	is	not	installed,	you	need	to	install	the	latest	version	of	the	Java	SE
development	kit	before	installing	Android	Studio.

To	download	the	Java	Standard	Edition	()	Development	Kit	(JDK):

1.	 Go	to	the	Oracle	Java	SE	downloads	page.
2.	 Click	the	Java	SE	Downloads	icon	to	open	the	Java	SE	Development	Kit	8	Downloads	page.
3.	 In	the	box	for	the	latest	Java	SE	Development	kit,	you	need	to	accept	the	License	Agreement	in	order	to	proceed.

Then	download	the	version	appropriate	for	the	computer	you	are	developing	on.
Important:	Do	not	go	to	the	demos	and	samples	(the	menus	look	very	similar,	so	make	sure	to	read	the	heading	at	the
top).

4.	 Install	the	development	kit.	Once	the	installation	of	the	JDK	is	completed	—	it	should	only	take	a	few	minutes	—	you
can	confirm	it's	correct	by	checking	the	Java	version	from	the	command	line.

5.	 Open	a	terminal	window	and	enter	Type		java	-version	again	to	verify	that	installation	has	been	successful.
6.	 Set	the	JAVA_HOME	environment	variable	to	the	installation	directory	of	the	JDK.

Windows:

1.	 Set	JAVA_HOME	to	the	installation	location.
2.	 Start	>	Control	Panel	>	System	>	Advanced	System	Settings	>	Environment	Variables	System	Variables	>	New

Variable	name:	JAVA_HOME
Variable	value:	C:\Program	Files\Java\jdk1.7.0_80	(or	whatever	version	your	installation	is!)

3.	 If	the	variable	already	exists,	update	it	to	this	version	of	the	JDK.
4.	 Verify	your	JAVA_HOME	variable	from	a	cmd.exe	terminal:		echo	%JAVA_HOME%	

See	also:	https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/

Mac:

Introduction

9

http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/

1.	 Open	Terminal.
2.	 Confirm	you	have	JDK	by	typing	"which	java".
3.	 Check	that	you	have	the	needed	version	of	Java,	by	typing	"java	-version".
4.	 Set	JAVA_HOME	using	this	command	in	Terminal:		export	JAVA_HOME=`which	java`	
5.	 enter		echo	$JAVA_HOME		to	confirm	the	path.

Linux:

See:	https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/

Important:	Don't	install	Android	Studio	until	after	the	Java	JDK	is	installed.	Without	a	working	copy	of	Java,	the	rest	of	the
process	will	not	work.	If	you	can't	get	the	download	to	work,	look	for	error	messages,	and	search	online	to	find	a	solution.
Basic	Troubleshooting:

There	is	no	UI,	Control	Panel,	or	Startup	icon	associated	with	the	JDK.
Verify	that	you	have	correctly	installed	the	JDK	by	going	to	the	directory	where	you	installed	it.	To	identify	where	the
JDK	is,	,	look	at	your	PATH	variable	and/or	search	your	computer	for	the	"jdk"	directory	or	the	"java"	or	"javac"
executable.

1.2.	Installing	Android	Studio
1.	 Navigate	to	the	Android	developers	site	and	follow	the	instructions	to	download	and	install	Android	Studio.

Accept	the	default	configurations	for	all	steps.
Make	sure	that	all	components	are	selected	for	installation.

2.	 After	finishing	the	install,	the	Setup	Wizard	will	download	and	install	some	additional	components.	Be	patient,	this
might	take	some	time	depending	on	your	Internet	speed,	and	some	of	the	steps	may	seem	redundant.

3.	 When	the	download	completes,	Android	Studio	will	start,	and	you	are	ready	to	create	your	first	project.
Troubleshooting:	If	you	run	into	problems	with	your	installation,	check	the	latest	documentation,	programming	forums,
or	get	help	from	you	instructors.

Task	2:	Create	"Hello	World"	app
In	this	task,	you	will	implement	the	"Hello	World"	app	to	verify	that	Android	studio	is	correctly	installed	and	learn	the	basics
of	developing	with	Android	Studio.

2.1	Create	the	"Hello	World"	app
1.	 Launch	Android	Studio	if	it	is	not	already	opened.
2.	 In	the	main	Welcome	to	Android	Studio	window,	click	"Start	a	new	Android	Studio	project".
3.	 In	the	New	Project	window,	give	your	application	an	Application	Name,	such	as	"Hello	World".
4.	 Verify	the	Project	location,	or	choose	a	different	directory	for	storing	your	project.
5.	 Choose	a	unique	Company	Domain.

Apps	published	to	the	Google	Play	Store	must	have	a	unique	package	name.	Since	domains	are	unique,
prepending	your	app's	name	with	your	or	your	company's	domain	name	is	going	to	result	in	a	unique	package
name.
If	you	are	not	planning	to	publish	your	app,	you	can	accept	the	default	example	domain.	Be	aware	that	changing
the	package	name	of	your	app	later	is	extra	work.

6.	 Verify	that	the	default	Project	location	is	where	you	want	to	store	your	Hello	World	app	and	other	Android	Studio
projects,	or	change	it	to	your	preferred	directory.	Click	Next.

7.	 On	the	Target	Android	Devices	screen,	"Phone	and	Tablet"	should	be	selected.	And	you	should	ensure	that	API	15:
Android	4.0.3	IceCreamSandwich	is	set	as	the	Minimum	SDK.	(Fix	this	if	necessary.)

At	the	writing	of	this	book,	choosing	this	API	level	makes	your	"Hello	World"	app	compatible	with	97%	of	Android
devices	active	on	the	Google	Play	Store.
These	are	the	settings	used	by	the	examples	in	this	book.

8.	 Click	Next.

Introduction

10

https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://developer.android.com/sdk/index.html
https://developer.android.com/studio/install.html

9.	 If	your	project	requires	additional	components	for	your	chosen	target	SDK,	Android	Studio	will	install	them
automatically.	Click	Next.

10.	 Customize	the	Activity	window.	Every	app	needs	at	least	one	activity.	An	activity	represents	a	single	screen	with	a
user	interface	and	Android	Studio	provides	templates	to	help	you	get	started.	For	the	Hello	World	project,	choose	the
simplest	template	(as	of	this	writing,	the	"Empty	Activity"	project	template	is	the	simplest	template)	available.

11.	 It	is	a	common	practice	to	call	your	main	activity	MainActivity.	This	is	not	a	requirement.
12.	 Make	sure	the	Generate	Layout	file	box	is	checked	(if	visible).
13.	 Make	sure	the	Backwards	Compatibility	(App	Compat)	box	is	checked.
14.	 Leave	the	Layout	Name	as	activity_main.	It	is	customary	to	name	layouts	after	the	activity	they	belong	to.	Accept	the

defaults	and	click	Finish.

After	these	steps,	Android	Studio:

Creates	a	folder	for	your	Android	Studio	Projects.
Builds	your	project	with	Gradle	(this	may	take	a	few	moments).	Android	Studio	uses	Gradle	as	it's	build	system.	See
the	Configure	your	build	developer	page	for	more	information.
Opens	the	code	editor	with	your	project.
Displays	a	tip	of	the	day.

Android	Studio	offers	many	keyboard	shortcuts,	and	reading	the	tips	is	a	great	way	to	learn	them	over	time.

The	Android	Studio	window	should	look	similar	to	the	following	diagram:

You	can	look	at	the	hierarchy	of	the	files	for	your	app	in	multiple	ways.

1.	 Click	on	the	Hello	World	folder	to	expand	the	hierarchy	of	files	(1),
2.	 Click	on	Project	(2).
3.	 Click	on	the	Android	menu	(3).
4.	 Explore	the	different	view	options	for	your	project.

Note:	This	book	uses	the	Android	view	of	the	project	files,	unless	specified	otherwise.

Introduction

11

https://gradle.org/
https://developer.android.com/studio/build/index.html

Task	3:	Explore	the	project	structure
In	this	practical,	you	will	explore	how	the	project	files	are	organized	in	Android	Studio.

These	steps	assume	that	your	Hello	World	project	starts	out	as	shown	in	the	diagram	above.

3.1	Explore	the	project	structure	and	layout
In	the	Project	>	Android	view	of	your	previous	task,	there	are	three	top-level	folders	below	your	app	folder:	manifests,
java,	and	res.

1.	 Expand	the	manifests	folder.

This	folder	contains	AndroidManifest.xml.	This	file	describes	all	of	the	components	of	your	Android	app	and	is	read
by	the	Android	run-time	system	when	your	program	is	executed.

2.	 Expand	the	java	folder.	All	your	Java	language	files	are	organized	in	this	folder.	The	java	folder	contains	three
subfolders:

com.example.hello.helloworld	(or	the	domain	name	you	have	specified):	All	the	files	for	a	package	are	in	a
folder	named	after	the	package.	For	your	Hello	World	application,	there	is	one	package	and	it	only	contains
MainActivity.java	(the	file	extension	may	be	omitted	in	the	Project	view).
com.example.hello.helloworld(androidTest):	This	folder	is	for	your	instrumented	tests,	and	starts	out	with	a
skeleton	test	file.
com.example.hello.helloworld(test):	This	folder	is	for	your	unit	tests	and	starts	out	with	an	automatically	created
skeleton	unit	test	file.

3.	 Expand	the	res	folder.	This	folder	contains	all	the	resources	for	your	app,	including	images,	layout	files,	strings,	icons,
and	styling.	It	includes	these	subfolders:

drawable.	Store	all	your	app's	images	in	this	folder.
layout.	Every	activity	has	at	least	one	layout	file	that	describes	the	UI	in	XML.	For	Hello	World,	this	folder	contains
activity_main.xml.
mipmap.	Store	your	launcher	icons	in	this	folder.	There	is	a	sub-folder	for	each	supported	screen	density.	Android
uses	the	screen	density,	that	is,	the	number	of	pixels	per	inch	to	determine	the	required	image	resolution.	Android
groups	all	actual	screen	densities	into	generalized	densities,	such	as	medium	(mdpi),	high	(hdpi),	or	extra-extra-
extra-high	(xxxhdpi).	The	ic_launcher.png	folder	contains	the	default	launcher	icons	for	all	the	densities	supported
by	your	app.
values.	Instead	of	hardcoding	values	like	strings,	dimensions,	and	colors	in	your	XML	and	Java	files,	it	is	best
practice	to	define	them	in	their	respective	values	file.	This	makes	it	easier	to	change	and	be	consistent	across
your	app.

4.	 Expand	the	values	subfolder	within	the	res	folder.	It	includes	these	subfolders:
colors.xml.	Shows	the	default	colors	for	your	chosen	theme,	and	you	can	add	your	own	colors	or	change	them
based	on	your	app's	requirements.
dimens.xml.	Store	the	sizes	of	views	and	objects	for	different	resolutions.
strings.xml.	Create	resources	for	all	your	strings.	This	makes	it	easy	to	translate	them	to	other	languages.
styles.xml.	All	the	styles	for	your	app	and	theme	go	here.	Styles	help	give	your	app	a	consistent	look	for	all	UI
elements.

3.2	The	Gradle	build	system

Android	Studio	uses	Gradle	as	its	build	system.	As	you	progress	through	these	practicals,	you	will	learn	more	about	gradle
and	what	you	need	to	build	and	run	your	apps.

1.	 Expand	the	Gradle	Scripts	folder.	This	folder	contains	all	the	files	needed	by	the	build	system.
2.	 Look	for	the	build.gradle(Module:app)	file.	When	you	are	adding	app-specific	dependencies,	such	as	using	additional

libraries,	they	go	into	this	file.

Introduction

12

https://gradle.org/

Task	4:	Create	a	virtual	device	(emulator)
In	this	task,	you	will	use	the	Android	Virtual	Device	(AVD)	manager	to	create	a	virtual	device	or	emulator	that	simulates	the
configuration	for	a	particular	type	of	Android	device.

Using	the	AVD	Manager,	you	define	the	hardware	characteristics	of	a	device	and	its	API	level,	and	save	it	as	a	virtual
device	configuration.

When	you	start	the	Android	emulator,	it	reads	a	specified	configuration	and	creates	an	emulated	device	that	behaves
exactly	like	a	physical	version	of	that	device	,	but	it	resides	on	your	computer	.

Why:	With	virtual	devices,	you	can	test	your	apps	on	different	devices	(tablets,	phones)	with	different	API	levels	to	make
sure	it	looks	good	and	works	for	most	users.	You	do	not	need	to	depend	on	having	a	physical	device	available	for	app
development.

4.1	Create	a	virtual	device
In	order	to	run	an	emulator	on	your	computer,	you	have	to	create	a	configuration	that	describes	the	virtual	device.

1.	 In	Android	Studio,	select	Tools	>	Android	>	AVD	Manager,	or	click	the	AVD	Manager	icon	 	in	the	toolbar.
2.	 Click	the	+Create	Virtual	Device….	(If	you	have	created	a	virtual	device	before,	the	window	shows	all	of	your	existing

devices	and	the	button	is	at	the	bottom.)

The	Select	Hardware	screen	appears	showing	a	list	of	preconfigured	hardware	devices.	For	each	device,	the	table
shows	its	diagonal	display	size	(Size),	screen	resolution	in	pixels	(Resolution),	and	pixel	density	(Density).

For	the	Nexus	5	device,	the	pixel	density	is	xxhdpi,	which	means	your	app	uses	the	launcher	icons	in	the	xxhdpi	folder
of	the	mipmap	folder.	Likewise,	your	app	will	use	layouts	and	drawables	from	folders	defined	for	that	density	as	well.

3.	 Choose	the	Nexus	5	hardware	device	and	click	Next.
4.	 On	the	System	Image	screen,	from	the	Recommended	tab,	choose	which	version	of	the	Android	system	to	run	on	the

virtual	device.	You	can	select	the	latest	system	image.

There	are	many	more	versions	available	than	shown	in	the	Recommended	tab.	Look	at	the	x86	Images	and	Other
Images	tabs	to	see	them.

5.	 If	a	Download	link	is	visible	next	to	a	system	image	version,	it	is	not	installed	yet,	and	you	need	to	download	it.	If
necessary,	click	the	link	to	start	the	download,	and	click	Finish	when	it's	done.

6.	 On	System	Image	screen,	choose	a	system	image	and	click	Next.
7.	 Verify	your	configuration,	and	click	Finish.	(If	the	Your	Android	Devices	AVD	Manager	window	stays	open,	you	can

go	ahead	and	close	it.)

Task	5.	Run	your	app	on	an	emulator
In	this	task,	you	will	finally	run	your	Hello	World	app.

5.1	Run	your	app	on	an	emulator

1.	 In	Android	Studio,	select	Run	>	Run	app	or	click	the	Run	icon	 	in	the	toolbar.
2.	 In	the	Select	Deployment	Target	window,	under	Available	Emulators,	select	Nexus	5	API	23	and	click	OK.

The	emulator	starts	and	boots	just	like	a	physical	device.	Depending	on	the	speed	of	your	computer,	this	may	take	a	while.
Your	app	builds,	and	once	the	emulator	is	ready,	Android	Studio	will	upload	the	app	to	the	emulator	and	run	it.

You	should	see	the	Hello	World	app	as	shown	in	the	following	screenshot.

Introduction

13

http://developer.android.com/tools/devices/managing-avds.html

Introduction

14

Note:	When	testing	on	an	emulator,	it	is	a	good	practice	to	start	it	up	once,	at	the	very	beginning	of	your	session.	You
should	not	close	the	emulator	until	you	are	done	testing	your	app,	so	that	your	app	doesn't	have	to	go	through	the	boot
process	again.

Coding	challenge
Note:	All	coding	challenges	are	optional,	and	are	not	requirements	for	subsequent	practicals.	

Challenge:	You	can	fully	customize	your	virtual	devices.

Study	the	AVD	Manager	documentation.
Create	one	or	several	custom	virtual	devices.

You	may	notice	that	not	all	combinations	of	devices	and	system	versions	work	when	you	run	your	app.	This	is	because	not
all	system	images	can	run	on	all	hardware	devices.

Task	6.	Add	log	statements	to	your	app
In	this	practical,	you	will	add	log	statements	to	your	app,	which	are	displayed	in	the	logging	window	of	the	Android	Monitor.

Why:	Log	messages	are	a	powerful	debugging	tool	that	you	can	use	to	check	on	values,	execution	paths,	and	report
exceptions.

The	Android	Monitor	displays	information	about	your	app.

1.	 Click	the	Android	Monitor	button	at	the	bottom	of	Android	Studio	to	open	the	Android	Monitor.

By	default,	this	opens	to	the	logcat	tab,	which	displays	information	about	your	app	as	it	is	running.	If	you	add	log
statements	to	your	app,	they	are	printed	here	as	well.

You	can	also	monitor	the	Memory,	CPU,	GPU,	and	Network	performance	of	your	app	from	the	other	tabs	of	the
Android	Monitor.	This	can	be	helpful	for	debugging	and	performance	tuning	your	code.

2.	 The	default	log	level	is	Verbose.	In	the	drop-down	menu,	change	the	log	level	to	Debug.

Introduction

15

http://developer.android.com/tools/devices/managing-avds.html

Log	statements	that	you	add	to	your	app	code	print	a	message	specified	by	you	in	the	logcat	tab	of	the	Android	Monitor.
For	example:

Log.d("MainActivity",	"Hello	World");

The	parts	of	the	message	are:

Log	–	The	Log	class.	API	for	sending	log	messages.
d	–	The	Log	level.	Used	to	filter	log	message	display	in	logcat.	"d"	is	for	debug.	Other	log	levels	are	"e"	for	error,	"w"	for
warning,	and	"i"	for	info.
"MainActivity"	–	The	first	argument	is	a	tag	which	can	be	used	to	filter	messages	in	logcat.	This	is	commonly	the	name
of	the	activity	from	which	the	message	originates.	However,	you	can	make	this	anything	that	is	useful	to	you	for
debugging.

By	convention,	log	tags	are	defined	as	constants:

private	static	final	String	LOG_TAG	=	MainActivity.class.getSimpleName();

"Hello	world"	–	The	second	argument	is	the	actual	message.

6.1	Add	log	statements	to	your	app
1.	 Open	your	Hello	World	app	in	Android	studio,	and	open	MainActivity	file.
2.	 File	>	Settings	>	Editor	>	General	>Auto	Import	(Mac:	Android	Studio	>	Preferences	>	Editor	>	General	>Auto

Import).	Select	all	check	boxes	and	set	Insert	imports	on	paste	to	All.	Unambiguous	imports	are	now	added
automatically	to	your	files.	Note	the	"add	unambiguous	imports	on	the	fly"	option	is	important	for	some	Android	features
such	as	NumberFormat.	If	not	checked,	NumberFormat	shows	an	error.	Click	on	'Apply'	followed	by	clicking	on	the	'Ok'
button.

3.	 In	the	onCreate	method,	add	the	following	log	statement:

Log.d("MainActivity",	"Hello	World");

Introduction

16

http://developer.android.com/reference/android/util/Log.html

4.	 If	the	Android	Monitor	is	not	already	open,	click	the	Android	Monitor	tab	at	the	bottom	of	Android	Studio	to	open	it.	(See
screenshot.)

5.	 Make	sure	that	the	Log	level	in	the	Android	Monitor	logcat	is	set	to	Debug	or	Verbose	(default).
6.	 Run	your	app.

Solution	Code:

package	com.example.hello.helloworld;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.util.Log;

public	class	MainActivity	extends	AppCompatActivity	{

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							Log.d("MainActivity",	"Hello	World");

			}

}

Output	Log	Message

03-18	12:20:23.184	2983-2983/com.example.hello.helloworld	D/MainActivity:	Hello	World

Coding	challenge

Introduction

17

Note:	All	coding	challenges	are	optional	and	are	not	a	prerequisite	for	the	next	chapter.
Challenge:	A	common	use	of	the	Log	class	is	to	log	Java	exceptions	when	they	occur	in	your	program.	There	are	some
useful	methods	in	the	Log	class	that	you	can	use	for	this	purpose.	Use	the	Log	class	documentation	to	find	out	what
methods	you	can	use	to	include	an	exception	with	a	log	message.	Then,	write	code	in	the	MainActivity.java	file	to	trigger
and	log	an	exception.

Task	7:	Explore	the	AndroidManifest.xml	file
Every	app	includes	an	Android	Manifest	file	(AndroidManifest.xml).The	manifest	file	contains	essential	information	about
your	app	and	presents	this	information	to	the	Android	runtime	system.	Android	must	have	this	information	before	it	can	run
any	of	your	app's	code.

In	this	practical	you	will	find	and	read	the	AndroidManifest.xml	file	for	the	Hello	World	app.

Why:	As	your	apps	add	more	functionality	and	the	user	experience	becomes	more	engaging	and	interactive,	the
AndroidManifest.xml	file	contains	more	and	more	information.	In	later	lessons,	you	will	modify	this	file	to	add	features	and
feature	permissions.

7.1	Explore	the	AndroidManifest.xml	file
1.	 Open	your	Hello	World	app	in	Android	studio,	and	in	the	manifests	folder,	open	AndroidManifest.xml.
2.	 Read	the	file	and	consider	what	each	line	of	code	indicates.	The	code	below	is	annotated	to	give	you	some	hints.

Annotated	code:

Introduction

18

http://developer.android.com/reference/android/util/Log.html

<!--	XML	version	and	character	encoding	-->

<?xml	version="1.0"	encoding="utf-8"?>

<!--	Required	starting	tag	for	the	manifest	-->

<manifest

<!--	Defines	the	android	namespace.	Do	not	change.	-->

xmlns:android="http://schemas.android.com/apk/res/android"

<!--	Unique	package	name	of	your	app.	Do	not	change	once	app	is

					published.	-->

			package="com.example.hello.helloworld">

		<!--	Required	application	tag	-->

			<application

							<!--	Allow	the	application	to	be	backed	up	and	restored.	–>

							android:allowBackup="true"

						<!--	Icon	for	the	application	as	a	whole,

											and	default	icon	for	application	components.	–>

							android:icon="@mipmap/ic_launcher"

					<!--	User-readable	for	the	application	as	a	whole,

										and	default	icon	for	application	components.	Notice	that	Android

										Studio	first	shows	the	actual	label	"Hello	World".

										Click	on	it,	and	you	will	see	that	the	code	actually	refers	to	a	string

										resource.	Ctrl-click	@string/app_name	to	see	where	the	resource	is

										specified.	This	will	be	covered	in	a	later	practical	.			–>

							android:label="@string/app_name"

					<!--	Whether	the	app	is	willing	to	support	right-to-left	layouts.–>

							android:supportsRtl="true"

					<!--	Default	theme	for	styling	all	activities.	–>

							android:theme="@style/AppTheme">

						<!--	Declares	an	activity.	One	is	required.

											All	activities	must	be	declared,

											otherwise	the	system	cannot	see	and	run	them.	–>

							<activity

											<!--	Name	of	the	class	that	implements	the	activity;

																subclass	of	Activity.	–>

											android:name=".MainActivity">

											<!--	Specifies	the	intents	that	this	activity	can	respond	to.–>

											<intent-filter>

															<!--	The	action	and	category	together	determine	what

																				happens	when	the	activity	is	launched.			–>

															<!--	Start	activity	as	the	main	entry	point.

																				Does	not	receive	data.	–>

															<action	android:name="android.intent.action.MAIN"	/>

															<!--	Start	this	activity	as	a	top-level	activity	in

																				the	launcher	.	–>

															<category	android:name="android.intent.category.LAUNCHER"	/>

					<!--	Closing	tags	–>

											</intent-filter>

							</activity>

			</application>

</manifest>

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	There	are	many	other	elements	that	can	be	set	in	the	Android	Manifest.	Explore	the	Android	Manifest
documentation	and	learn	about	additional	elements	in	the	Android	Manifest.

Task	8.	Explore	the	build.gradle	file
Android	Studio	uses	a	build	system	called	Gradle.	Gradle	does	incremental	builds,	which	allows	for	shorter	edit-test	cycles.

To	learn	more	about	Gradle,	see:

Gradle	site
Configure	your	build	developer	documentation

Introduction

19

http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://gradle.org/
https://developer.android.com/studio/build/index.html

Search	the	internet	for	"gradle	tutorial".

In	this	task,	you	will	explore	the		build.gradle		file.

Why:	When	you	add	new	libraries	to	your	Android	project,	you	may	also	have	to	update	your	build.gradle	file.	It's	useful	to
know	where	it	is	and	its	basic	structure.

8.1	Explore	the	build.gradle(Module	app)	file
1.	 In	your	project	hierarchy,	find	Gradle	Scripts	and	expand	it.	There	several	build.gradle	files.	One	with	directives	for

your	whole	project,	and	one	for	each	app	module.	The	module	for	your	app	is	called	"app".	In	the	Project	view,	it	is
represented	by	the	app	folder	at	the	top-level	of	the	Project	view.

2.	 Open	build.gradle	(Module.app).
3.	 Read	the	file	and	learn	what	each	line	of	code	indicates.

Solution:

//	Add	Android-specific	build	tasks

apply	plugin:	'com.android.application'

//	Configure	Android	specific	build	options.

android	{

				//	Specify	the	target	SDK	version	for	the	build.

			compileSdkVersion	23

			//	The	version	of	the	build	tools	to	use.

			buildToolsVersion	"23.0.2"

			//	Core	settings	and	entries.	Overrides	manifest	settings!

			defaultConfig	{

							applicationId	"com.example.hello.helloworld"

							minSdkVersion	15

							targetSdkVersion	23

							versionCode	1

							versionName	"1.0"

			}

			//	Controls	how	app	is	built	and	packaged.

			buildTypes	{

							//	Another	common	option	is	debug,	which	is	not	signed	by	default.

							release	{

											//	Code	shrinker.	Turn	this	on	for	production	along	with

											//		shrinkResources.

											minifyEnabled	false

											//	Use	ProGuard,	a	Java	optimizer.

											proguardFiles	getDefaultProguardFile('proguard-android.txt'),	'proguard-rules.pro'

							}

			}

}

//	This	is	the	part	you	are	most	likely	to	change	as	you	start	using

//	other	libraries.

dependencies	{

			//	Local	binary	dependency.	Include	any	JAR	file	inside	app/libs.

			compile	fileTree(dir:	'libs',	include:	['*.jar'])

			//	Configuration	for	unit	tests.

			testCompile	'junit:junit:4.12'

			//	Remote	binary	dependency.	Specify	Maven	coordinates	of	the	Support

			//	Library	needed.	Use	the	SDK	Manager	to	download	and	install	such

			//	packages.

			compile	'com.android.support:appcompat-v7:23.2.1'

}

For	a	deeper	look	into	Gradle	check	out	the	Build	System	Overview	and	Configuring	Gradle	Builds	documentation.
There	are	tools	to	help	you	shrink	your	code,	remove	unnecessary	libraries/resource	and	even	obfuscate	your	program
to	prevent	unwanted	reverse-engineering.
Android	Studio	itself	provides	some	useful	features.	Learn	more	about	a	valuable	open-source	tool	called	ProGuard.

Task	9.	[Optional]	Run	your	app	on	a	device

Introduction

20

http://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/tools/building/configuring-gradle.html
http://tools.android.com/tech-docs/new-build-system/resource-shrinking
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html

In	this	final	task,	you	will	run	your	app	on	a	physical	mobile	device	such	as	a	phone	or	tablet.

Why:	Your	users	will	run	your	app	on	physical	devices.	You	should	always	test	your	apps	on	both	virtual	and	physical
devices.

What	you	need:

An	Android	device	such	as	a	phone	or	tablet.
A	data	cable	to	connect	your	Android	device	to	your	computer	via	the	USB	port.
If	you	are	using	a	Linux	or	Windows	OS,	you	may	need	to	perform	additional	steps	to	run	on	a	hardware	device.	Check
the	Using	Hardware	Devices	documentation.	On	Windows,	you	may	need	to	install	the	appropriate	USB	driver	for	your
device.	See	OEM	USB	Drivers.

9.1	[Optional]	Run	your	app	on	a	device

To	let	Android	Studio	communicate	with	your	device,	you	must	turn	on	USB	Debugging	on	your	Android	device.	This	is
enabled	in	the	Developer	options	settings	of	your	device.	Note	this	is	not	the	same	as	rooting	your	device.

On	Android	4.2	and	higher,	the	Developer	options	screen	is	hidden	by	default.	To	show	Developer	options	and	enable	USB
Debugging:

1.	 On	your	device,	open	Settings	>	About	phone	and	tap	Build	number	seven	times.
2.	 Return	to	the	previous	screen	(Settings).	Developer	options	appears	at	the	bottom	of	the	list.	Click	Developer

options.
3.	 Choose	USB	Debugging.

Now	you	can	connect	your	device	and	run	the	app	from	Android	Studio.

1.	 Connect	your	device	to	your	development	machine	with	a	USB	cable.
2.	 In	Android	Studio,	at	the	bottom	of	the	window,	click	the	Android	Monitor	tab.	You	should	see	your	device	listed	in	the

top-left	drop-down	menu.

3.	 Click	the	Run	button	 	in	the	toolbar.	The	Select	Deployment	Target	window	opens	with	the	list	of	available
emulators	and	connected	devices.

4.	 Select	your	device,	and	click	OK.

Android	Studio	should	install	and	runs	the	app	on	your	device.

Troubleshooting

If	you	Android	Studio	does	not	recognize	your	device,	try	the	following:

Unplug	and	replug	your	device.
Restart	Android	Studio.
If	your	computer	still	does	not	find	the	device	or	declares	it	"unauthorized":

1.	 Unplug	the	device.

2.	 On	the	device,	open	Settings->Developer	Options.

3.	 Tap	Revoke	USB	Debugging	authorizations.

4.	 Reconnect	the	device	to	your	computer.

5.	 When	prompted,	grant	authorizations.

You	may	need	to	install	the	appropriate	USB	driver	for	your	device.	See	the	Using	Hardware	Devices	documentation.
Check	the	latest	documentation,	programming	forums,	or	get	help	from	your	instructors.

Coding	challenge

Introduction

21

http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/device.html

Note:	All	coding	challenges	are	optional.	

Challenge:	Now	that	you	are	set	up	and	familiar	with	the	basic	development	workflow,	do	the	following:

1.	 Create	a	new	project	in	Android	Studio.
2.	 Change	the	greeting	to	"Happy	Birthday	to	"	and	someone	with	a	recent	birthday.
3.	 Change	the	background	of	the	app	using	a	birthday-themed	image.
4.	 Take	a	screenshot	of	your	finished	app	and	email	it	to	someone	whose	birthday	you	forgot.

Summary
In	this	chapter,	you	learned	to:

Install	Android	Studio
Obtain	a	basic	understanding	of	the	development	workflow	once	you	have	launched	in	Android	Studio.
Have	basic	comprehension	of	the	structure	of	an	Android	app	in	the	build	environment.
Have	a	basic	understanding	of	the	Android	Manifest,	and	what	it	is	used	for.
Add	log	statements	to	the	code	that	give	you	a	basic	tool	for	debugging.

Deploy	the	Hello	World	app	on	the	Android	emulator	and	[optionally]	on	a	mobile	device.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Create	Your	First	Android	App

Learn	more
Android	Studio	download	page
How	do	I	install	Java?
Android	Studio	documentation
Supporting	Multiple	Screens
Gradle	Wikipedia	page
Reading	and	Writing	Logs

Introduction

22

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/11_c_create_your_first_android_app.html
http://developer.android.com/sdk/index.html
https://java.com/en/download/help/download_options.xml
http://developer.android.com/tools/studio/index.html
https://developer.android.com/guide/practices/screens_support.html
https://en.wikipedia.org/wiki/Gradle
http://developer.android.com/tools/debugging/debugging-log.html

1.2A:	Make	Your	First	Interactive	UI
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	the	"Hello	Toast"	project
Task	2:	Add	views	to	"Hello	Toast"	in	the	Layout	Editor
Task	3:	Edit	the	"Hello	Toast"	Layout	in	XML
Task	4:	Add	on-click	handlers	for	the	buttons
Coding	challenge
Summary
Related	concept
Learn	more

The	user	interface	displayed	on	the	screen	of	a	mobile	Android	device	consists	of	a	hierarchy	of	"views".	Views	are
Android's	basic	user	interface	building	blocks.	You	specify	the	views	in	XML	layout	files.	For	example,	views	can	be
components	that:

display	text	(TextView	class)
allow	you	to	edit	text	(EditText	class)
represent	clickable	buttons	(Button	class)	and	other	interactive	components
contain	scrollable	text	(ScrollView)	and	scrollable	items	(RecyclerView)
show	images	(ImageView)
contain	other	views	and	position	them	(LinearLayout).
pop	up	menus	and	other	interactive	components.

You	can	explore	the	view	hierarchy	of	your	app	in	the	Layout	Editor's	Component	Tree	pane.

The	Java	code	that	displays	and	drives	the	user	interface	is	contained	in	a	class	that	extends	Activity	and	contains	methods
to	inflate	views,	that	is,	take	the	XML	layout	of	views	and	display	it	on	the	screen.	For	example,	the	MainActivity	in	the	Hello
World	app	inflates	a	text	view	and	prints	Hello	World.	In	more	complex	apps,	an	activity	might	implement	click	and	other
event	handlers,	request	data	from	a	database	or	the	internet,	or	draw	graphical	content.

Android	makes	it	straightforward	to	clearly	separate	UI	elements	and	data	from	each	other,	and	use	the	activity	to	bring
them	back	together.	This	separation	is	an	implementation	of	an	MVP	(Model-View-Presenter)	pattern.

You	will	work	with	Activities	and	Views	throughout	this	book.

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with:

How	to	create	a	Hello	World	app	with	Android	Studio.

What	you	will	LEARN
You	will	learn:

How	to	create	interactive	user	interfaces	in	the	Layout	Editor,	in	XML,	and	programmatically.
A	lot	of	new	terminology.	Check	out	the	Vocabulary	words	and	concepts	glossary	for	friendly	definitions.

Introduction

23

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/guide/topics/ui/menus.html
https://developer.android.com/reference/android/app/Activity.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/topics/ui/overview.html
https://developers.google.com/android/for-all/vocab-words/

What	you	will	DO
In	this	practical,	you	will:

Create	an	app	and	add	user	interface	elements	such	as	buttons	in	the	Layout	Editor.
Edit	the	app's	layout	in	XML.
Add	a	button	to	the	app.	Use	a	string	resource	for	the	label.
Implement	a	click	handler	method	for	the	button	to	display	a	message	on	the	screen	when	the	user	clicks.
Change	the	click	handler	method	to	change	the	message	shown	on	the	screen.

App	Overview
The	"Hello	Toast"	app	will	consist	of	two	buttons	and	one	text	view.	When	you	click	on	the	first	button,	it	will	display	a	short
message,	or	toast,	on	the	screen.	Clicking	on	the	second	button	will	increase	a	click	counter;	the	total	count	of	mouse	clicks
will	be	displayed	in	the	text	view.

Here's	what	the	finished	app	will	look	like:

Introduction

24

Introduction

25

Task	1.	Create	a	new	"Hello	Toast"	project
In	this	practical,	you	will	design	and	implement	a	project	for	the	"Hello	Toast"	app.

1.1.	Create	the	"Hello	Toast"	project

Start	Android	Studio	and	create	a	new	project	with	the	following	parameters:

Attribute Value

Application	Name Hello	Toast

Company	Name com.example.android	or	your	own	domain

Phone	and	Tablet	Minimum	SDK API15:	Android	4.0.3	IceCreamSandwich

Template Empty	Activity

Generate	Layout	file	box Checked

Backwards	Compatibility	box Checked

Select	Run	>	Run	app	or	click	the	Run	icon	 	in	the	toolbar	to	build	and	execute	the	app	on	the	emulator	or	your
device.

Task	2:	Add	views	to	"Hello	Toast"	in	the	Layout	Editor
In	this	task,	you	will	create	and	configure	a	user	interface	for	the	"Hello	Toast"	app	by	arranging	view	UI	components	on	the
screen.

Why:	Every	app	should	start	with	the	user	experience,	even	if	the	initial	implementation	is	very	basic.

Views	used	for	Hello	Toast	are:

TextView	-	A	view	that	displays	text.
Button	-	A	button	with	a	label	that	is	usually	associated	with	a	click	handler.
LinearLayout	-	A	view	that	acts	as	a	container	to	arrange	other	view.	This	type	of	view	extends	the	ViewGroup	class
and	is	also	called	a	view	group.	LinearLayout	is	a	basic	view	group	that	arranges	its	collection	of	views	in	a	horizontal
or	vertical	row.

Introduction

26

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/reference/android/view/ViewGroup.html

Here	is	a	rough	sketch	of	the	UI	you	will	build	in	this	exercise.	Simple	UI	sketches	can	be	very	useful	for	deciding	which
views	to	use	and	how	to	arrange	them,	especially	when	your	layouts	become	more	sophisticated.	

2.1	Explore	the	Layout	Editor

Use	the	Layout	Editor	to	create	the	layout	of	the	user	interface	elements,	and	to	preview	your	app	using	different	devices
and	app	themes,	resolutions,	and	orientations.

Refer	to	the	screenshot	below	to	match

1.	 In	the	app	>	res	>	layout	folder,	open	the	activiy_main.xml	file	(1).

The	Android	Studio	Screen	should	look	similar	to	the	screenshot	below.	If	you	see	the	XML	code	for	the	UI	layout,	click
the	Design	tab	below	the	Component	Tree	(8).

2.	 Using	the	annotated	screenshot	below	as	a	guideline,	explore	the	Layout	Editor.	

Introduction

27

3.	 Find	the	different	ways	in	which	the	"Hello	World"	string's	UI	element,	a	TextView,	is	represented.
In	the	Palette	of	UI	elements	(2)	developers	can	create	a	text	view	by	dragging	it	into	the	design	pane.
Visually,	in	the	Design	pane	(6).
In	the	Component	Tree	(7),	as	a	component	in	a	hierarchy	of	UI	elements	called	the	View	Hierarchy.	That	is,
views	are	organized	into	a	tree	hierarchy	of	parents	and	children,	where	children	inherit	properties	of	their	parents.
In	the	Properties	pane	(4),	as	a	list	of	its	properties,	where	"Hello	Toast"	is	the	value	of	the	text	property	of	the
TextView	(5).

4.	 Use	the	selectors	above	the	virtual	device	(3)	to	do	the	following:

Change	the	theme	for	your	app.
Change	the	rotation	to	landscape.
Use	a	different	version	of	the	SDK.
Preview	layout	variants	such	as	a	right-to-left	layout	direction.

Use	the	tooltips	on	the	icons	to	help	you	discover	their	function.

5.	 Switch	between	the	Design	and	Text	tabs	(8).	Some	UI	changes	can	only	be	made	in	code,	and	some	are	quicker	to
accomplish	in	the	virtual	device.

6.	 When	you're	done,	undo	the	changes	(for	UI	changes,	use	Edit	>	Undo	or	the	keyboard	shortcut	for	the	operating
system).

See	the	Android	Studio	User	Guide	for	the	full	Android	Studio	documentation.

Note:	If	you	get	an	error	about	a	missing	App	Theme,	try	File	>	Invalidate	Caches	/	Restart	or	choose	a	theme	that	does
not	generate	the	error.	Additional	help	can	be	found	in	this	stackoverflow	post.

2.2	Change	the	view	group	to	a	LinearLayout
The	root	of	the	view	hierarchy	is	a	view	group,	which	as	implied	by	the	name,	is	a	view	that	contains	other	views.

A	vertical	linear	layout	is	one	of	the	most	common	layouts.	It	is	simple,	fast,	and	always	a	good	starting	point.	Change	the
view	group	to	a	vertical,	LinearLayout	as	follows:

1.	 In	the	Component	Tree	pane	(7	in	the	previous	screenshot),	find	the	top	or	root	view	directly	below	the	Device
Screen.

Introduction

28

https://developer.android.com/studio/intro/index.html
http://stackoverflow.com/questions/13439486/missing-styles-is-the-correct-theme-chosen-for-this-layout/35818631

2.	 Click	the	Text	tab	(8)	to	switch	to	the	code	view	of	the	layout.
3.	 In	the	second	line	of	the	code,	change	the	root	view	group	to	LinearLayout.	The	second	line	of	code	now	looks

something	like	this:

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

4.	 Make	sure	the	closing	tag	at	the	end	of	the	code	has	changed	to		</LinearLayout>	.	If	it	hasn't	changed	automatically,
change	it	manually.

5.	 The		android:layout_height		is	defined	as	part	of	the	template.	The	default	layout	orientation	a	horizontal	row.	To
change	the	layout	to	be	vertical,	add	the	following	code	inside	LinearLayout,	below		android:layout_height	.

	android:orientation="vertical"	

6.	 From	the	menu	bar,	select:	Code	>	Reformat	Code…

It	may	say	"No	lines	changed:	code	is	already	properly	formatted".

7.	 Run	the	code	to	make	sure	it	still	works.
8.	 Switch	back	to	Design.
9.	 Verify	in	the	Component	Tree	pane	that	the	top	element	is	now	a	LinearLayout	with	its	orientation	attribute	set	to

"vertical".

Solution	Code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"

				tools:context="hellotoast.android.example.com.hellotoast.MainActivity">

				<TextView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="Hello	World!"	/>

</LinearLayout>

2.3	Add	views	to	the	Linear	Layout	in	the	Layout	Editor

In	this	task	you	will	delete	the	current	TextView	(for	practice),	and	add	a	new	TextView	and	two	buttons	to	the	LinearLayout
as	shown	in	the	UI	sketch	for	this	task.	Refer	to	the	UI	diagram	above,	if	necessary.

Add	UI	Elements

1.	 Click	the	Design	tab	(8)	to	show	the	virtual	device	layout.
2.	 Click	the	TextView	whose	text	value	is	"Hello	World"	in	the	virtual	device	layout	or	the	Component	Tree	pane	(7).
3.	 Press	the	Delete	key	to	remove	that	TextView.
4.	 From	the	Palette	pane	(2),	drag	and	drop	a	Button	element,	a	TextView,	and	another	Button	element,	in	that	order,	one

below	the	other	into	the	virtual	device	layout.

Adjust	the	UI	Elements

1.	 To	identify	each	view	uniquely	within	an	activity,	each	view	needs	a	unique	ID.	And	to	be	of	any	use,	the	buttons	need
labels	and	the	text	view	needs	to	show	some	text.	Double-click	each	element	in	the	Component	Tree	to	see	its
properties	and	change	the	text	and	ID	strings	as	follows:

Introduction

29

Element Text ID

Top	button Toast button_toast

Text	view 0 show_count

Bottom	button Count button_count

1.	 Run	your	app.

Solution	Layout:

There	should	be	three	Views	on	your	screen.	They	won't	match	the	image	below,	but	as	long	as	you	have	three	Views	in	a

vertical	layout,	you	are	doing	fine!	

Challenge:	Think	of	an	app	you	might	want	and	create	a	project	and	layout	for	it	using	Layout	Editor.	Explore	more	of	the
features	of	Layout	Editor.	As	mentioned	before,	the	Layout	Editor	has	a	rich	set	of	features	and	coding	shortcuts.	Check	the
Android	Studio	documentation	to	dive	deeper.

Task	3:	Edit	the	"Hello	Toast"	layout	in	XML
In	this	practical,	you	will	edit	the	XML	code	for	the	Hello	Toast	app	UI	layout.	You	will	also	edit	the	properties	of	the	views
you	have	created.	You	can	find	the	properties	common	to	all	views	in	the	View	class	documentation.

Why:	While	the	Layout	Editor	is	a	powerful	tool,	some	changes	are	easier	to	make	directly	in	the	XML	source	code.	It	is	a
personal	preference	to	use	either	the	graphical	LayoutEditor	or	edit	the	XML	file	directly.

1.	 Open	res/layout/activity_main.xml	in	Text	mode.
2.	 In	the	menu	bar	select	Code	>	Reformat	Code
3.	 Examine	the	code	created	by	the	Layout	Editor.

Note	that	your	code	may	not	be	an	exact	match,	depending	on	what	changes	you	made	in	the	Layout	Editor.	Use	the
sample	solutions	as	guidelines.

3.1	Examine	LinearLayout	properties
A	LinearLayout	is	required	to	have	these	properties:

layout_width
layout_height
orientation

Introduction

30

http://developer.android.com/tools/studio/index.html
http://developer.android.com/reference/android/view/View.html

The	layout_width	and	layout_height	can	take	one	of	three	values:

The	match_parent	attribute	expands	the	view	to	fill	its	parent	by	width	or	height.	When	the	LinearLayout	is	the	root
view,	it	expands	to	the	size	of	the	parent	view.
The	wrap_content	attribute	shrinks	the	view	dimensions	just	big	enough	to	enclose	its	content.	(If	there	is	no	content,
the	view	becomes	invisible.)
Use	a	fixed	number	of	dp	(device	independent	pixels)	to	specify	a	fixed	size,	adjusted	for	the	screen	size	of	the
device.	For	example,	"16dp"	means	16	device	independent	pixels.

The	orientation	can	be:

horizontal:	views	are	arranged	from	left	to	right.
vertical:	views	are	arranged	from	top	to	bottom.

Change	the	LinearLayout	of	"Hello	Toast"	as	follows:

Property Value

layout_width match_parent	(to	fill	the	screen)

layout_height match_parent	(to	fill	the	screen)

orientation vertical

3.2	Create	string	resources

Instead	of	hard-coding	strings	into	the	XML	code,	it	is	a	best	practice	to	use	string	resources,	which	represent	the	strings

Why:	Having	the	strings	in	a	separate	file	makes	it	easier	to	manage	them,	especially	if	you	use	these	strings	more	than
once.	Also,	string	resources	are	mandatory	for	translating	and	localizing	your	app	as	you	will	create	one	string	resource	file
for	each	language.

1.	 Place	the	cursor	on	the	word	"Toast"	.
2.	 Press	Alt-Enter	(Option-Enter	on	the	Mac).
3.	 Select	Extract	string	resources.
4.	 Set	the	Resource	name	to		button_label_toast		and	click	OK.	(If	you	make	a	mistake,	undo	the	change	with	Ctrl-Z.)

This	creates	a	string	resource	in	the	values/res/string.xml	file,	and	the	string	in	your	code	is	replaced	with	a	reference
to	the	resource,

@string/button_label_toast

5.	 Extract	and	name	the	remaining	strings	from	the	views	as	follows:

View Resource	Value	/	String Resource	name

Button Hello	Toast! button_label_toast

TextView 0 count_initial_value

Button Count button_label_count

6.	 In	the	Project	view,	navigate	to	values/strings.xml	to	find	your	strings.	Now,	you	can	edit	all	your	strings	in	one	place.

3.3	Resize
Similar	to	strings,	it	is	a	best	practice	to	extract	view	dimensions	from	the	main	layout	XML	file	into	a	dimensions	resource
located	in	a	file.

Introduction

31

https://developer.android.com/training/multiscreen/screendensities.html

Why:	This	makes	it	easier	to	manage	dimensions,	especially	if	you	need	to	adjust	your	layout	for	different	device
resolutions.	It	also	makes	it	easy	to	have	consistent	sizing,	and	change	the	size	of	multiple	objects	by	changing	one
property.

Do	the	following:

1.	 Look	at	the	dimens.xml	resource	file.	There	should	be	values	for	the	default	screen	margins	defined.	For	the
dimensions	of	views,	it	is	better	not	to	use	hard-coded	values,	because	that	prevents	views	from	adjusting	to	the
screen	size.

2.	 If	necessary,	change	the	layout_width	of	all	elements	inside	the	LinearLayout	to	"match_parent".

If	you	want	to	use	the	graphical	Layout	Editor,	click	on	the	Design	tab,	select	each	element	in	the	Component	Tree
pane	and	change	the	layout:width	property	in	the	Properties	pane.	If	you	want	to	directly	edit	the	XML	file,	click	on	the
Text	tab,	change	the	android:layout_width	for	the	first	Button,	the	TextView,	and	the	last	Button.

3.	 If	necessary,	change	the	layout_height	of	all	elements	inside	the	LinearLayout	to	"wrap_content".

3.4	Set	colors	and	backgrounds
Styles	and	colors	are	additional	properties	that	can	be	extracted	into	resources.	All	views	can	have	backgrounds	that	can
be	colors	or	images.

Why:	Extracting	styles	and	colors	makes	it	easy	to	use	them	consistently	throughout	the	app,	and	straightforward	to
change	across	all	UI	elements.

Experiment	with	the	following	changes:

1.	 Change	the	text	size	of	the	show_count	TextView.	"sp"	stands	for	scale-independent	pixel,	and	like	dp,	is	a	unit	that
scales	with	the	screen	density	and	user's	font	size	preference.	It	is	recommend	you	use	this	unit	when	specifying	font
sizes,	so	they	will	be	adjusted	for	both	the	screen	density	and	the	user's	preference.

android:textSize="160sp"

2.	 Extract	the	text	size	of	the	TextView	as	a	dimension	resource	named		count_text_size	,	as	follows:

i.	 Click	the	Text	tab	to	show	the	XML	code,	if	you	haven't	already	done	so.

ii.	 Place	the	cursor	on	"	160sp	".

iii.	 Press	Alt-Enter	(Option-Enter	on	the	Mac).

iv.	 Click	Extract	dimension	resource.

v.	 Set	the	Resource	name	to		count_text_size	,	and	click	OK.	(If	you	make	a	mistake,	you	can	undo	the	change	with
Ctrl-Z).

vi.	 In	the	Project	view,	navigate	to	values/dimens.xml	to	find	your	dimensions.	The	dimens.xml	file	applies	to	all
devices.	The	dimens.xml	file	for	w820dp	applies	only	to	devices	that	are	wider	than	820dp.

3.	 Change	the		textStyle		of	the		show_count		TextView	to	bold.

android:textStyle="bold"

4.	 Change	the	text	color	in	the		show_count		text	view	to	the	primary	color	of	the	theme.	Look	at	the	colors.xml	resource
file	to	see	how	they	are	defined.

The		colorPrimary		is	one	of	the	predefined	theme	base	colors	and	is	used	for	the	app	bar.	For	example,	In	a
production	app,	you	could	customize	this	to	fit	your	brand.	Using	the	base	colors	for	other	UI	elements	creates	a
uniform	UI.	See	Using	the	Material	Theme.	You	will	learn	more	about	app	themes	and	material	design	in	a	later
practical.

Introduction

32

https://developer.android.com/training/material/theme.html

	android:textColor="@color/colorPrimary"

5.	 Change	the	color	of	both	the	buttons	to	the	primary	color	of	the	theme.

android:background="@color/colorPrimary"

6.	 Change	the	color	of	the	text	in	both	buttons	to	white.	White	is	one	of	the	colors	provided	as	an	Android	Platform
Resource.	See	Accessing	Resources.

android:textColor="@android:color/white"

7.	 Add	a	background	color	to	the	TextView.

android:background="#FFFF00"

8.	 In	the	Layout	Editor	(Text	tab),	place	your	mouse	cursor	over	this	color	and	press	Alt-Enter	(Option-Enter	on	the
Mac).

9.	 Select	Choose	color,	which	brings	up	the	color	picker,	pick	a	color	you	like,	or	go	with	the	current	yellow,	then	click
Choose.

10.	 Open	values/colors.xml.	Notice	that	colorPrimary	that	you	used	earlier	is	defined	here.
11.	 Using	the	colors	in	values/colors.xml	as	an	example,	add	a	resource	named		myBackgroundColor		for	your	background

color,	and	then	use	it	to	set	the	background	of	the	text	view.

	<color	name="myBackgroundColor">#FFF043</color>	

3.5	Gravity	and	weight

Specifying	gravity	and	weight	properties	gives	you	additional	control	over	arranging	views	and	content	in	linear	layouts.	

1.	 The		android:layout_gravity		attribute	specifies	how	a	view	is	aligned	within	its	parent	View.	Because	the	views	match
their	parent	in	width,	it	is	not	necessary	to	set	this	explicitly.	You	can	center	a	view	that	is	narrow	horizontally	in	its
parent:		android:layout_gravity="center_horizontal"	

2.	 The		android:layout_weight		attribute	indicates	how	much	of	the	extra	space	in	the	LinearLayout	will	be	allocated	to	the
views	that	have	this	parameter	set.	If	only	one	view	has	this	attribute,	it	gets	all	the	extra	screen	estate.	For	multiple

Introduction

33

http://developer.android.com/guide/topics/resources/accessing-resources.html

views,	the	space	is	pro-rated.	For	example,	if	the	buttons	have	a	weight	of	1	and	the	text	view	2,	totalling	4,	the	buttons
get	¼	of	the	space	each,	and	the	textview	half.

3.	 The		android:gravity		attribute	specifies	the	alignment	of	the	content	of	a	View	within	the	View	itself.	The	counter	is
centered	in	its	view	with:		android:gravity="center"	

Do	the	following:

1.	 Center	the	text	in	a	the		show_count		TextView	horizontally	and	vertically:		android:gravity="center"	
2.	 Make	the		show_count		TextView	adjust	to	the	size	of	the	screen:

android:layout_weight="2"

Sample	Solution:	strings.xml

<resources>

				<string	name="app_name">Hello	Toast</string>

				<string	name="button_label_count">Count</string>

				<string	name="button_label_toast">Toast</string>

				<string	name="count_initial_value">0</string>

</resources>

Sample	Solution:	dimens.xml

<resources>

				<!--	Default	screen	margins,	per	the	Android	Design	guidelines.	-->

				<dimen	name="activity_horizontal_margin">16dp</dimen>

				<dimen	name="activity_vertical_margin">16dp</dimen>

				<dimen	name="count_text_size">160sp</dimen>

</resources>

Sample	Solution:	colors.xml

<resources>

				<color	name="colorPrimary">#3F51B5</color>

				<color	name="colorPrimaryDark">#303F9F</color>

				<color	name="colorAccent">#FF4081</color>

				<color	name="myBackgroundColor">#FFF043</color>

</resources>

Sample	Solution:	activity_main.xml

Introduction

34

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="hellotoast.android.example.com.hellotoast.MainActivity">

				<Button

								android:id="@+id/button_toast"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:text="@string/button_label_toast"

								android:background="@color/colorPrimary"

								android:textColor="@android:color/white"	/>

				<TextView

								android:id="@+id/show_count"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:gravity="center"

								android:text="@string/count_initial_value"

								android:textSize="@dimen/count_text_size"

								android:textStyle="bold"

								android:textColor="@color/colorPrimary"

								android:background="@color/myBackgroundColor"

								android:layout_weight="2"	/>

				<Button

								android:id="@+id/button_count"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:text="@string/button_label_count"

								android:background="@color/colorPrimary"

								android:textColor="@android:color/white"	/>

</LinearLayout>

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	chapters.

Create	a	new	project	with	5	views.	Have	one	view	use	the	top-half	of	the	screen,	and	the	other	4	views	share	the
bottom	half	of	the	screen.	Use	only	a	LinearLayout,	gravity,	and	weights	to	accomplish	this.
Use	an	image	as	the	background	of	the	Hello	Toast	app.	Add	an	image	to	the	drawable	folder,	then	set	it	as	the
background	of	the	root	view.	For	a	deep	dive	into	drawables,	see	the	Drawable	Resources	documentation.

Task	4:	Add	onClick	handlers	for	the	buttons
In	this	task,	you	will	add	methods	to	your	MainActivity	that	execute	when	the	user	clicks	on	each	button.

Why:	Interactive	apps	must	respond	to	user	input.

To	connect	a	user	action	in	a	view	to	application	code,	you	need	to	do	two	things:

Write	a	method	that	performs	a	specific	action	when	a	user	user	clicks	an	on-screen	button.
Associate	this	method	to	the	view,	so	this	method	is	called	when	the	user	interacts	with	the	view.

Introduction

35

http://developer.android.com/guide/topics/resources/drawable-resource.html

4.1	Add	an	onClick	property	to	a	button

A	click	handler	is	a	method	that	is	invoked	when	the	user	clicks	on	a	user	interface	element.	In	Android,	you	can	specify	the
name	of	the	click	handler	method	for	each	view	in	the	XML	layout	file	with	the		android:onClick		property.

1.	 Open	res/layout/activity_main.xml.
2.	 Add	the	following	property	to	the		button_toast		button.

android:onClick="showToast"

3.	 Add	the	following	attribute	to	the	button_count		button.

android:onClick="countUp"

4.	 Inside	of	activity_main.xml,	place	your	mouse	cursor	over	each	of	these	method	names.
5.	 Press	Alt-Enter	(Option-Enter	on	the	Mac),	and	select	Create	onClick	event	handler.
6.	 Choose	the	MainActivity	and	click	OK.

This	creates	placeholder	method	stubs	for	the	onClick	methods	in	MainActivity.java.

Note:	You	can	also	add	click	handlers	to	views	programmatically,	which	you	will	do	in	a	later	practical.	Whether	you	add
click	handlers	in	XML	or	programmatically	is	largely	a	personal	choice;	though,	there	are	situations	where	you	can	only	do	it
programmatically.
Solution	MainActivity.java:

package	hellotoast.android.example.com.hellotoast;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

public	class	MainActivity	extends	AppCompatActivity	{

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

			}

			public	void	countUp(View	view)	{

								//	What	happens	when	user	clicks	on	the	button_count	Button	goes	here.

			}

			public	void	showToast(View	view)	{

								//	What	happens	when	user	clicks	on	the	button_toast	Button	goes	here.

			}

}

4.2	Show	a	toast	when	the	Toast	button	is	clicked

A	toast	provides	simple	feedback	about	an	operation	in	a	small	popup.	It	only	fills	the	amount	of	space	required	for	the
message	and	the	current	activity	remains	visible	and	interactive.	Toasts	provide	another	way	for	you	to	test	the	interactivity
of	your	app.

In		MainActivity.java	,	add	code	to	the		showToast()		method	to	show	a	toast	message.

Introduction

36

https://developer.android.com/guide/topics/ui/notifiers/toasts.html

To	create	an	instance	of	a	Toast,	you	call	the		makeText()		factory	method	on	the	Toast	class,	supplying	a	context	(see
below),	the	message	to	display,	and	the	duration	of	display.	You	display	the	toast	calling		show()	.	This	is	a	common	pattern
that	you	can	reuse	the	code	you	are	going	to	write.

1.	 Get	the	context	of	the	application.

Displaying	a	Toast	message	requires	a	context.	The	context	of	an	application	contains	global	information	about	the
application	environment.	Since	a	toast	displays	on	top	of	the	visible	UI,	the	system	needs	information	about	the	current
activity.		Context	context	=	getApplicationContext();	

When	you	are	already	in	the	context	of	the	activity	whose	context	you	need,	you	can	also	use		this		as	the	shortcut	to
the	context.

2.	 The	length	of	a	toast	string	can	be	either	short	or	long,	and	you	specify	which	one	by	using	a	Toast	constant.

	Toast.LENGTH_LONG	

	Toast.LENGTH_SHORT	

The	actual	lengths	are	about	3.5s	for	the	long	toast	and	2s	for	the	short	toast.	The	values	are	specified	in	the	Android
source	code.	See	this	Stackoverflow	post	details.

3.	 Create	an	instance	of	the	Toast	class	with	the	context,	message,	and	duration.
The	context	is	the	application	context	we	got	earlier.
The	message	is	the	string	you	want	to	display
The	duration	is	one	of	the	predefined	constants		Toast.LENGTH_LONG		or	Toast.LENGTH_SHORT.	

Toast	toast	=	Toast.makeText(context,	"Hello	Toast",	Toast.LENGTH_LONG);

4.	 Extract	the	"Hello	Toast"	string	into	a	string	resource	and	call	it		toast_message	.

i.	 Place	the	cursor	on	the	string		"Hello	Toast!"	.

ii.	 Press	Alt-Enter	(Option-Enter	on	the	Mac).

iii.	 Select	Extract	string	resources.

iv.	 Set	the	Resource	name	to		toast_message		and	click	OK.

This	will	store	"Hello	World"	as	a	string	resource	name	toast_message	in	the	string	resources	file	res/values/string.xml.
The	string	parameter	in	your	method	call	is	replaced	with	a	reference	to	the	resource.

	R.		identifies	the	parameter	as	a	resource.
	string		references	the	name	of	the	XML	file	where	the	resources	is	defined.
	toast_message		is	the	name	of	the	resource.

Toast	toast	=	Toast.makeText(context,	R.string.toast_message,	duration);

5.	 Display	the	toast.

toast.show();

6.	 Run	your	app	and	verify	the	toast	shows	when	the	Toast	button	is	tapped.

Solution:

Introduction

37

https://developer.android.com/reference/android/widget/Toast.html
https://developer.android.com/reference/android/content/Context.html
http://stackoverflow.com/questions/7965135/what-is-the-duration-of-a-toast-length-long-and-length-short

/*

*	When	the	TOAST	button	is	clicked,	show	a	toast.

*

*	@param	view	The	view	that	triggers	this	onClick	handler.

*													Since	a	toast	always	shows	on	the	top,	view	is	not	used.

*	*/

public	void	showToast(View	view)	{

				//	Create	a	toast	show	it.

				Toast	toast	=	Toast.makeText(this,	R.string.toast_message,	Toast.LENGTH_LONG;);

				toast.show();

}

4.3	Increase	the	count	in	the	text	view	when	the	Count	button	is	clicked
To	display	the	current	count	in	the	text	view:

Keep	track	of	the	count	as	it	changes.
Send	the	updated	count	to	the	text	view	to	display	it	on	the	user	interface.

Implement	this	as	follows:

1.	 In	MainActivity.java,	add	a	private	member	variable		mCount		to	track	the	count	and	start	it	at	0.
2.	 In	MainActivity.java,	add	a	private	member	variable		mShowCount		to	get	the	reference	of	the		show_count		TextView.
3.	 In	the		countUp()		method,	increase	the	value	of	the	count	variable	each	time	the	button	is	clicked.
4.	 Get	a	reference	to	the	text	view	using	the	ID	you	set	in	the	layout	file.

Views,	like	strings	and	dimensions,	are	resources	that	can	have	an	id.	The	findViewById()	call	takes	the	ID	of	a	view	as
its	parameter	and	returns	the	view.	Because	the	method	returns	a	View,	you	have	to	cast	the	result	to	the	view	type
you	expect,	in	this	case		(TextView)	.

In	order	to	get	this	resource	only	once,	use	a	member	variable	and	set	it	in		onCreate()	.

mShowCount	=	(TextView)	findViewById(R.id.show_count);

5.	 Set	the	text	in	the	text	view	to	the	value	of	the	count	variable.

				if	(mShowCount	!=	null)

								mShowCount.setText(Integer.toString(mCount));

6.	 Run	your	app	to	verify	that	the	count	increases	when	the	Count	button	is	pressed.

Solution:

Class	definition	and	initializing	count	variable:

public	class	MainActivity	extends	AppCompatActivity	{

private	int	mCount	=	0;

private	TextView	mShowCount;

in	onCreate():

mShowCount	=	(TextView)	findViewById(R.id.show_count);

countUp	Method:

				public	void	countUp(View	view)	{

								mCount++;

								if	(mShowCount	!=	null)

												mShowCount.setText(Integer.toString(mCount));

				}

Introduction

38

https://developer.android.com/reference/android/view/View.html

Resources:

Learn	more	about	handling	Android	Input	Events.
Context	class	documentation

Solution	code
Android	Studio	project:	HelloToast

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	a	prerequisite	for	later	chapters.	

Challenge:	Even	a	simple	app	like	Hello	Toast	can	be	the	foundation	of	many	scoring	or	product	ordering	apps.	Write	one
app	that	would	be	of	use	to	you,	or	try	one	of	these	examples:

Create	a	coffee	ordering	app.	Add	buttons	to	change	the	number	of	coffees	ordered.	Calculate	and	display	the	total
price.
Create	a	scoring	app	for	your	favorite	team	sport.	Make	the	background	an	image	that	represents	that	sport.	Create
buttons	to	count	the	scores	for	each	team.

Summary
In	this	chapter,	you:

Added	UI	elements	to	an	app	in	the	Layout	Editor	and	using	XML.
Made	the	UI	interactive	with	buttons.	and	click	listeners
Add	click	listeners	that	update	a	text	view	in	response	to	user	input.
Displayed	information	to	users	using	a	toast.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Layouts,	Views,	and	Resources

Learn	more
All	Views	are	subclasses	of	the	View	class	and	therefore	inherit	many	properties	of	the	View	superclass.
You	can	find	information	on	all	Button	properties	in	the	Button	class	documentation,	and	all	the	TextView	properties	in
the	TextView	class	documentation.
You	can	find	information	on	all	the	LinearLayout	properties	in	the	LinearLayout	class	documentation.
The	Android	resources	documentation	will	describe	other	types	of	resources.
Android	color	constants:	Android	standard	R.color	resources
More	information	about	dp	and	sp	units	can	be	found	at	Supporting	Different	Densities

Developer	Documentation:

Android	Studio	documentation
Vocabulary	words	and	concepts	glossary
developer.android.com	Layouts
View	class	documentation

Introduction

39

http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/reference/android/content/Context.html
https://github.com/google-developer-training/android-fundamentals/tree/master/HelloToast
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/12_c_layouts,_views_and_resources.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/reference/android/R.color.html
http://developer.android.com/training/multiscreen/screendensities.html
http://developer.android.com/tools/studio/index.html
https://developers.google.com/android/for-all/vocab-words/
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/reference/android/view/View.html

device	independent	pixels
Button	class	documentation
TextView	class	documentation
Android	resources	documentation
Complete	code	for	the	Hello	Toast	app
Architectural	Patterns	(overview)

Introduction

40

https://en.wikipedia.org/wiki/Device_independent_pixel
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/guide/topics/resources/index.html
https://github.com/google-developer-training/android-fundamentals/tree/master/HelloToast
https://en.wikipedia.org/wiki/Architectural_pattern

1.2B:	Using	Layouts
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	Overview
Task	1:	Change	the	layout	to	RelativeLayout
Task	2:	Change	the	layout	to	ConstraintLayout
Task	3:	Create	layout	variants
Coding	Challenge
Summary
Related	concepts
Learn	more

When	you	start	an	Android	Studio	project,	the	template	you	choose	provides	a	basic	layout	with	views.	As	you	learned	in	a
previous	practical,	you	can	line	views	up	quickly	and	easily	in	a	layout	using	LinearLayout,	which	is	a	view	group	that	aligns
child	views	within	it	horizontally	or	vertically.

This	practical	explores	two	other	layout	view	groups:

RelativeLayout:	A	group	of	child	views	in	which	each	view	is	positioned	and	aligned	relative	to	other	views	within	the
view	group.	Positions	of	the	child	views	are	described	in	relation	to	each	other	or	to	the	parent	view	group.
ConstraintLayout:	A	layout	similar	to	RelativeLayout	but	more	flexible.	It	groups	child	views	using	anchor	points	(a
connection	to	another	view),	edges,	and	guidelines	to	control	how	views	are	positioned	relative	to	other	elements	in	the
layout.	ConstraintLayout	was	designed	to	make	it	easy	to	drag	and	drop	views	in	the	layout	editor	of	Android	Studio

What	you	should	already	KNOW
From	the	previous	practicals,	you	should	be	able	to:

Create	a	Hello	World	app	with	Android	Studio.
Run	an	app	on	the	emulator	or	a	device.
Implement	a	TextView	in	a	layout	for	an	app.
Create	and	using	string	resources.
Convert	layout	dimensions	to	resources.

What	you	will	LEARN
You	will	learn	to:

Use	the	layout	editor	in	Android	Studio
Position	views	within	a	RelativeLayout
Position	views	within	a	ConstraintLayout
Create	variants	of	the	layout	for	landscape	orientation	and	larger	displays

What	you	will	DO
In	this	practical	you	will:

Experiment	with	using	RelativeLayout	and	ConstraintLayout.

Introduction

41

https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
http://tools.android.com/tech-docs/layout-editor

Copy	and	refactor	the	Hello	Toast	app	to	create	the	Hello	Relative	app.
Change	the	root	view	group	in	the	main	layout	to	be	aRelativeLayout.
Rearrange	the	views	in	the	main	layout	to	be	relative	to	each	other.
Copy	and	refactor	the	Hello	Relative	app	to	create	Hello	Constraint.
Change	the	root	view	group	in	the	main	layout	to	be	ConstraintLayout.
Modify	the	layout	to	add	constraints	to	the	views.
Modify	the	views	for	layout	variants	for	landscape	orientation	and	larger	displays.

App	Overview
The	Hello	Toast	app	in	a	previous	practical	uses	a	LinearLayout	to	arrange	the	views	in	the	activity	layout,	as	shown	in	the
figure	below.

Introduction

42

Introduction

43

In	order	to	practice	using	the	layout	editor,	you	will	copy	the	Hello	Toast	app	and	call	the	new	copy	Hello	Relative,	in	order
to	experiment	with	a	RelativeLayout.	You	will	use	the	layout	editor	to	arrange	the	views	in	a	different	UI	layout	as	shown
below.	

Finally,	you	will	make	another	copy	of	the	app	and	call	it	Hello	Constraint,	and	replace	LinearLayout	with	ConstraintLayout.
ConstraintLayout	offers	more	visual	aids	and	positioning	features	in	the	layout	editor.	You	will	create	an	entirely	different	UI
layout,	and	also	layout	variants	for	landscape	orientation	and	larger	displays,	as	shown	below.	

Android	Studio	project:	HelloToast

Task	1:	Change	the	layout	to	RelativeLayout
A	RelativeLayout	is	a	view	grouping	in	which	each	view	is	positioned	and	aligned	relative	to	other	views	within	the	group.	In
this	task,	you	will	investigate	using	RelativeLayout.

Introduction

44

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloToast
https://developer.android.com/reference/android/widget/RelativeLayout.html

1.1	Copy	and	refactor	the	Hello	Toast	app

1.	 Copy	the	HelloToast	project	folder,	rename	it	to	HelloRelative,	and	refactor	it.	(See	the	Appendix	for	instructions	on
copying	a	project.)

2.	 After	refactoring,	change	the		<string	name="app_name">		value	in	the	strings.xml	file	(within	app	>	res	>	values)	to
Hello	Relative	(with	a	space)	as	the	app's	name.

1.2	Change	LinearLayout	to	RelativeLayout

1.	 Open	the	activity_main.xml	layout	file,	and	click	the	Text	tab	at	the	bottom	of	the	editing	pane	to	see	the	XML	code.
2.	 Change	the		<LinearLayout		at	the	top	to	<RelativeLayout	so	that	the	statement	looks	like	this:

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

3.	 Scroll	down	to	make	sure	that	the	ending	tag		</LinearLayout>		has	also	changed	to		</RelativeLayout>	;	if	it	hasn't,
change	it	manually.

1.3	Rearrange	views	with	the	Design	tab
1.	 Click	the	Design	tab	at	the	bottom	of	the	editing	pane.
2.	 The	editing	pane	should	now	look	like	the	figure	below,	with	the	layout	design	and	its	blueprint.	If	you	see	only	a	layout

design,	or	only	a	blueprint,	click	the	Show	Design	+	Blueprint	button	(#1	in	the	figure	below).	

3.	 With	the	change	to		RelativeLayout	,	the	layout	editor	also	changed	some	of	the	view	attributes.	For	example:

The		button_count		view	for	the		COUNT		button	is	overlaying	the		button_toast		view	for	the		TOAST		button,	which	is
why	you	can't	see	the		TOAST		button.	However,	in	the	blueprint,	you	can	see	that	the	two	buttons	are	occupying

Introduction

45

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project

the	same	space.
The	top	part	of	the		show_count		view	(showing		0)		is	also	overlaying	the		COUNT		and		TOAST		buttons.

4.	 Drag	the		button_count		view	(for	the		COUNT		button)	to	an	area	below	the		show_count		view	(showing		0)	,	and	then
drag	it	up	to	the	bottom	of	the		show_count		view	until	it	snaps	into	place	as	shown	below.	Also	drag	the		show_count	
view	so	that	the	top	of	the	view	snaps	to	the	bottom	of	the		button_toast		view	for	the		TOAST		button.

Tip:	When	selecting	a	view	in	the	layout,	its	properties	appear	in	the	Properties	pane	on	the	right	side	of	the	editing	pane.
These	properties	correspond	to	XML	attributes	in	the	XML	code	for	the	layout,	which	you	will	examine	in	the	next	step.

1.4	Examine	the	XML	code	in	the	Text	tab
Follow	these	steps	to	see	how	the	app	looks:

1.	 Run	the	app.	The	app	works	the	same	way	as	before.	The	only	difference	is	that	the	layout	uses	a	RelativeLayout	to
position	the	elements,	rather	than	a	LinearLayout.	In	the	next	task,	you	will	change	the	layout	of	the	UI.

2.	 Change	the	device	or	emulator	orientation	to	landscape.	Note	that	the		button_count		view	disappears	because	the
screen	layout	does	not	accommodate	the	landscape	orientation.	You	will	fix	this	problem	in	a	subsequent	task	in	this
practical.

3.	 Click	the	Text	tab	at	the	bottom	of	the	editing	pane.
4.	 Examine	the	changes	to	the	XML	code	in	the	editing	pane	as	a	result	of	changing		LinearLayout		to		RelativeLayout	.

Start	by	examining	the	second	Button	(button_count):

<Button

				android:id="@+id/button_count"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:layout_gravity="center_horizontal"

				android:background="@color/colorPrimary"

				android:onClick="countUp"

				android:text="@string/button_label_count"

				android:textColor="@android:color/white"

				android:layout_below="@+id/show_count"

				android:layout_centerHorizontal="true"	/>

Introduction

46

Two	new	XML	attributes	were	automatically	added	by	the	layout	editor	after	you	moved	the	Button	(button_count)	in	the
layout:

android:layout_below="@+id/show_count"

android:layout_centerHorizontal="true"

The		android:layout_below		attribute	places	the		button_count		view	directly	below	the		show_count		view.	This	attribute	is
one	of	several	attributes	for	positioning	views	within	a		RelativeLayout		—	you	place	views	in	relation	to	The	XML	code	for
	show_count		view,	which	you	also	moved	in	the	layout	editor,	is	now	in	a	position	below	the	two	buttons	in	the	Text	view.
This	is	due	to	the	change	from	LinearLayout	to	RelativeLayout.	The		show_count		view	also	now	includes	the	following
attributes,	as	a	result	of	moving	the	view	in	the	layout	editor:

android:layout_below="@+id/button_toast"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

The		android:layout_alignParentLeft		aligns	the	view	to	the	left	side	of	the		RelativeLayout		parent	view	group.	While	this
attribute	by	itself	is	enough	to	align	the	view	to	the	left	side,	you	may	want	the	view	to	align	to	the	right	side	if	the	app	is
running	on	a	device	that	is	using	a	right-to-left	language.	Thus,	the		android:layout_alignParentStart		attribute	makes	the
"start"	edge	of	this	view	match	the	start	edge	of	the	parent.	The	start	is	the	left	edge	of	the	screen	if	the	preference	is	left-to-
right,	or	it	is	the	right	edge	of	the	screen	if	the	preference	is	right-to-left.

1.5	Rearrange	elements	in	the	RelativeLayout

1.	 To	experiment	more	with		RelativeLayout	,	select	the	activity_main.xml	layout	again	for	editing	(if	it's	not	already
selected),	and	click	the	Design	tab	at	the	bottom	of	the	editing	pane.

Introduction

47

2.	 Select	the		show_count		view	in	the	layout	or	the	Component	Tree,	and	change	its		layout_width		in	the	Properties	pane
on	the	right	side	of	the	window	to	wrap_content	as	shown	in	the	figure	below.	

Introduction

48

The	layout	editor	displays	a	thinner		show_count		view	aligned	to	the	left	side	of	the	parent	view,	as	shown	in	the	figure
below.	

3.	 Drag	the		show_count		view	horizontally	to	the	center	of	the	layout.	As	you	drag	the	view,	a	center	guide	appears	—	the
view's	center	should	snap	into	place	with	the	guide	as	shown	below.	

Introduction

49

4.	 Select	the		button_toast		view	and	change	its		layout_width		to	wrap_content	in	the	Properties	pane,	and	then	change
the		layout_width		of	the		button_count		view	to	wrap_content.	The	layout	should	now	look	like	the	figure	below.	

5.	 Drag	the		button_count		view	up	to	just	below	the		button_toast		view	so	that	it	snaps	to	the	bottom	of	the

Introduction

50

	button_toast		view,	and	drag	the		show_count		view	up	next	to	the	right	edge	of	the		button_toast		view	so	that	it	snaps
to	the	right	edge	of	the	button.	The	layout	should	now	look	like	the	figure	below:	

6.	 Click	the	Text	tab	at	the	bottom	of	the	editing	pane,	and	examine	the	changes	to	the	XML	code	as	a	result	of	moving
the	views	in	the	layout:

The		show_count		view	now	uses	the	following	attributes	to	position	it	to	the	right	of	and	the	end	of	the
	button_toast		view:

android:layout_toRightOf="@+id/button_toast"

android:layout_toEndOf="@+id/button_toast"

The		button_count		view	now	uses	the	following	attributes	to	position	it	below	the		button_toast		view:

android:layout_below="@+id/button_toast"

7.	 Run	the	app.	The	app	works	the	same	way	as	before	(since	we	didn't	change	any	Java	code).	However,	the	layout	is
different,	as	shown	in	the	figure	below.	Change	the	device	or	emulator	orientation	to	landscape	to	see	that	the	new
layout	works	for	both	orientations.	

Introduction

51

Tip:	To	learn	more	about	how	to	position	views	in	a	RelativeLayout,	see	"Positioning	Views"	in	the	"Relative	Layout"	topic	of
the	API	Guide.

Solution	code:	Android	Studio	project:	HelloRelative

Task	2:	Change	the	layout	to	ConstraintLayout
ConstraintLayout	is	a	view	group	available	in	the	Constraint	Layout	library,	which	is	included	with	Android	Studio	2.2	and
higher.	The	constraint-based	layout	lets	a	developer	build	complex	layouts	without	having	to	nest	view	groups,	which	can
improve	the	performance	of	the	app.	It	is	built	into	the	layout	editor,	so	that	the	constraining	tools	are	accessible	from	the
Design	tab	without	having	to	edit	the	XML	by	hand.

In	this	task	you	will	copy	and	refactor	the	Hello	Toast	app	to	create	the	Hello	Constraint	app.	You	will	then	change	the	root
	LinearLayout		view	group	in	the	main	layout	to	be		ConstraintLayout	.	After	changing	the	root	view	group,	you	will	rearrange
the	views	in	the	main	layout	to	have	constraints	that	govern	their	appearance.

2.1	Copy	and	refactor	the	Hello	Toast	app

1.	 Copy	the	HelloToast	project	folder,	rename	it	to	HelloConstraint,	and	refactor	it.	(See	the	Appendix	for	instructions	on
copying	a	project.)

2.	 After	refactoring,	change	the		string	name="app_name"		value	in	the	strings.xml	file	(within	app	>	res	>	values)	to	Hello
Constraint	(with	a	space)	as	the	app's	name.

2.2	Add	ConstraintLayout	to	your	project

Check	to	be	sure	that	ConstraintLayout	is	available	in	your	project:

1.	 In	Android	Studio,	choose	Tools	>	Android	>	SDK	Manager.
2.	 In	the	left	pane,	click	Android	SDK.
3.	 In	the	right	pane,	click	the	SDK	Tools	tab	at	the	top	of	the	pane.
4.	 Expand	Support	Repository	and	see	if	ConstraintLayout	for	Android	and	Solver	for	ConstraintLayout	are	already

checked.

If	"Installed"	appears	in	the	Status	column,	you're	all	set.	Click	Cancel.
If	"Not	installed"	appears,	or	"Update"	appears:

Introduction

52

https://developer.android.com/guide/topics/ui/layout/relative.html#Position
https://github.com/google-developer-training/android-fundamentals/tree/master/HelloRelative
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project

i.	 Click	the	checkbox	next	to	ConstraintLayout	for	Android	and	Solver	for	ConstraintLayout.	A	download	icon
should	appear	next	to	each	checkbox.

ii.	 Click	one	of	the	following:

Apply	to	start	installing	the	components	and	remain	in	SDK	Manager	to	make	other	changes.
OK	to	install	the	components.

iii.	 After	installing	the	components	(and	making	other	changes	if	needed),	click	Finish	to	finish	using	the	SDK
Manager.

2.3	Convert	a	layout	to	ConstraintLayout
Android	Studio	has	a	built-in	converter	to	help	you	convert	a	layout	to		ConstraintLayout	.	Follow	these	steps:

1.	 Open	the	layout	file	(activity_main.xml)	in	Android	Studio	and	click	the	Design	tab	at	the	bottom	of	the	editor	window.
2.	 In	the	Component	Tree	window,	right-click	LinearLayout	and	then	choose	Convert	layout	to	ConstraintLayout	from

the	context	menu.
3.	 The	converter	displays	an	alert	with	two	checkboxes	already	checked.	Don't	uncheck	them—make	sure	both	options

remain	checked:

i.	 Flatten	Layout	Hierarchy:	This	option	removes	all	other	nested	layouts	in	the	hierarchy.	The	result	is	a	single,	flat
layout,	which	may	be	more	efficient	for	these	purposes.

ii.	 Don't	flatten	layouts	referenced	from	other	files:	If	a	particular	layout	defines	an		android:id	attribute		that	is
referenced	in	your	Java	code,	you	may	not	want	to	flatten	that	layout	because	your	code	may	no	longer	work.
However,	in	HelloConstraint,	you	don't	have	an		android:id	attribute		for	a	layout,	only	for	views.

4.	 In	the	Add	Project	Dependency	alert,	click	OK	to	add	the	constraint-layout	library.	Android	Studio	automatically	copies
the	appropriate	dependency	to	your	project's	build.gradle	(Module:	app)	file	and	syncs	the	change	for	you.	The
layout	editor	reappears	with		ConstraintLayout		as	the	root	view	group.

Note:	If	the	layout	editor	has	a	problem	with	the	change,	you	see	a	Rendering	Problems	warning.	Click	build	in	the
message		Tip:	Try	to	build	the	project.		This	will	re-sync	your	project's	build.gradle	(Module:	app)	file	with	the	new
dependency.

5.	 The	layout	editor's	Component	Tree	pane	now	shows		ConstraintLayout		as	the	root	view	group	for	the	layout	with	the
other	views	beneath	it,	as	shown	in	the	figure	below.	Click	the	show_count	view	in	the	Component	Tree	pane.	The
	show_count		view	is	also	selected	in	the	blueprint,	and	its	properties	appear	in	the	Properties	pane	on	the	right	side.	

Introduction

53

2.4	Explore	the	layout	editor

The	layout	editor	offers	more	features	in	the	Design	tab	when	you	use	a	ConstraintLayout,	including	more	visual	layout
tools	and	a	second	row	of	icons	for	more	tools.

The	visual	layout	and	blueprint	offer	handles	for	defining	constraints.	A	constraint	is	a	connection	or	alignment	to	another
view,	to	the	parent	layout,	or	to	an	invisible	guideline.	Follow	these	steps	to	explore	the	constraints	that	Android	Studio
created	when	you	converted	the		LinearLayout		to		ConstraintLayout	:

1.	 Click	the		show_count		view	in	the	Component	Tree	pane.
2.	 Hover	the	cursor	over	the		show_count		view	in	the	layout,	as	shown	in	the	figure	below.

Each	constraint	appears	as	a	line	extending	from	a	circular	handle.	Each	view	has	a	circular	constraint	handle	in	the	middle
of	each	side.	After	selecting	a	view	in	the	Component	Tree	pane	or	clicking	on	it	in	the	layout,	the	view	also	shows	resizing
handles	on	each	corner.	

Introduction

54

In	the	above	figure:

1.	 Resizing	handle.
2.	 Constraint	line	and	handle.	In	the	figure,	the	constraint	aligns	the	left	side	of	the		show_count		view	to	the	left	side	of

the		button_toast		button.
3.	 Baseline	handle.	The	baseline	handle	aligns	the	text	baseline	of	a	view	to	the	text	baseline	of	another	view.
4.	 Constraint	handle	without	a	constraint	line.

The	layout	editor	also	offers	a	row	of	buttons	that	let	you	configure	the	appearance	of	the	layout:	

In	the	figure	above:

1.	 Design,	Blueprint,	and	Both:	Click	the	Design	icon	(first	icon)	to	display	a	color	preview	of	your	layout.	Click	the
Blueprint	icon	(middle	icon)	to	show	only	outlines	for	each	view.	You	can	see	both	views	side	by	side	by	clicking	the
third	icon.

2.	 Screen	orientation:	Click	to	rotate	the	device	between	landscape	and	portrait.
3.	 Device	type	and	size:	Select	the	device	type	(phone/tablet,	Android	TV,	or	Android	Wear)	and	screen	configuration

(size	and	density).
4.	 API	version:	Select	the	version	of	Android	on	which	to	preview	the	layout.
5.	 App	theme:	Select	which	UI	theme	to	apply	to	the	preview.
6.	 Language:	Select	the	language	to	show	for	your	UI	strings.	This	list	displays	only	the	languages	available	in	the	string

resources.
7.	 Layout	Variants:	Switch	to	one	of	the	alternative	layouts	for	this	file,	or	create	a	new	one.

Tip:	To	learn	more	about	using	the	layout	editor,	see	Build	a	UI	with	Layout	Editor.	To	learn	more	about	how	to	build	a
layout	with	ConstraintLayout,	see	Build	a	Responsive	UI	with	ConstraintLayout.

Introduction

55

https://developer.android.com/studio/write/layout-editor.html
https://developer.android.com/training/constraint-layout/index.html

2.5	Clear	constraints

Android	Studio	automatically	infers	the	constraints	for	layout	elements	when	you	convert	a	layout	to	use		ConstraintLayout	.
However,	the	guesses	may	not	be	what	you	want.	Follow	these	steps	to	clear	the	constraints	in	order	to	freely	position	the
elements	in	the	layout:

1.	 Right-click	(or	Control-click)	ConstraintLayout	in	the	Component	Tree	pane,	and	choose	Clear	All	Constraints.

Tip:	You	can	also	delete	a	single	constraint	line	by	hovering	the	cursor	over	the	constraint	handle	until	a	red	circle
appears,	and	then	clicking	the	handle.	The	Clear	All	Constraints	command	is	faster	for	removing	all	constraints.

2.	 With	constraints	removed,	you	can	now	move	the	views	on	the	layout	freely.	Drag	the		button_toast		view	down	to	any
position	below	the		button_count		view,	so	that	the	yellow		show_count		view	is	at	the	top,	as	shown	in	the	figure	below.	

2.6	Resize	a	view
The	layout	editor	offers	resizing	handles	on	all	four	corners	of	a	view	to	resize	the	view	quickly.	You	can	drag	the	handles
on	each	corner	of	the	view	to	resize	it,	but	doing	so	hard-codes	the	width	and	height	dimensions,	which	you	should	avoid
for	most	views	because	hard-coded	view	dimensions	cannot	adapt	to	different	content	and	screen	sizes.

Introduction

56

Instead,	use	the	Properties	pane	on	the	right	side	of	the	layout	editor	to	select	a	sizing	mode	that	doesn't	use	hard-coded
dimensions.	The	Properties	pane	includes	a	square	sizing	panel	at	the	top.	The	symbols	inside	the	square	represent	the

height	and	width	settings	as	follows:	

In	the	above	figure:

1.	 Horizontal	view	size	control.	The	horizontal	size	control,	which	appears	in	two	segments	on	the	left	and	right	sides	of
the	square,	specifies	the		layout_width	.	The	straight	lines	indicate	that	the	dimension	is	fixed	and	set	in	the
	layout_width		property	below	the	square.

2.	 Vertical	view	size	control.	The	vertical	size	control,	which	appears	in	two	segments	on	the	top	and	bottom	sides	of
the	square,	specifies	the		layout_height		property.	The	angles	indicate	that	this	size	control	is	set	to		wrap_content	,
which	means	the	view	will	expand	exactly	as	needed	to	fit	its	contents.

Follow	these	steps	to	resize	the		show_count		view:

1.	 Click	the		show_count		view	in	the	Component	Tree	pane.
2.	 Click	the	horizontal	view	size	control	in	the	Properties	pane.	The	straight	lines	change	to	spring	coils,	as	shown	in	the

figure	below,	which	represents	"any	size".	The		layout_width		property	is	set	to	zero	because	there	is	no	set	dimension,
but	the	view	can	expand	as	much	as	possible	to	meet	constraints	and	margin	settings.

Introduction

57

You	will	use	this	setting	to	anchor	the	size	of	the	view	to	constraints,	but	first,	continue	to	experiment	with	settings.

3.	 Click	the	horizontal	view	size	control	again	(either	left	or	right	side),	just	to	see	what	other	choices	you	have.	The
spring	coils	change	to	angles,	as	shown	in	the	figure	below,	indicating	that	the		layout_width		is	set	to		wrap_content	.	

4.	 Click	the	horizontal	view	size	control	again,	and	it	toggles	back	to	the	straight	lines,	indicating	a	fixed	dimension.	Click
it	again	so	that	the	lines	change	to	spring	coils,	as	shown	in	the	figure	below,	which	represents	"any	size".	

2.7	Add	constraints	to	views
You	will	add	a	constraint	to	the		show_count		view	so	that	it	stretches	to	the	right	edge	of	the	layout,	and	another	constraint
so	that	the	view	is	positioned	just	below	the	top	edge	of	the	layout.	Since	the	view	was	set	to	"any	size"	in	the	previous
step,	the	view	will	expand	as	needed	to	match	the	constraints.

You	will	also	move	the	two	buttons	into	position	on	the	left	side	of	the		show_count		view,	constrain	the		button_toast		button
to	the	top	and	left	edges	of	the	layout,	and	constrain	the		button_count		button	so	that	its	text	baseline	matches	the	text
baseline	of	the		show_count		view.

Introduction

58

1.	 To	create	a	right-side	constraint	for	the		show_count		view,	click	the	view	in	the	layout,	and	then	hover	over	the	view	to
see	its	constraint	handles.	Click-and-hold	the	constraint	handle	on	the	right	side	of	the	view,	and	drag	the	constraint
line	that	appears	to	the	right	edge	of	the	layout,	as	shown	in	the	figure	below.	

As	you	release	from	the	click-and-hold,	the	constraint	is	made,	and	the	show_count	view	jumps	to	the	right	edge	of	the
layout.

Introduction

59

2.	 Click-and-hold	the	constraint	handle	on	the	top	side	of	the	view,	and	drag	the	constraint	line	that	appears	to	the	top
edge	of	the	layout	under	the	app	bar,	as	shown	in	the	figure	below.	

This	constrains	the	view	to	the	top	edge.	After	dragging	the	constraint,	the		show_count		view	jumps	to	the	top	right
edge	of	the	layout,	because	it	is	anchored	to	both	the	top	and	right	edges.

3.	 Click	the		button_toast		view,	and	use	the	Properties	panel	as	shown	previously	to	resize	the	view	to		wrap_content		for
both	the		layout_width		and		layout_height	.	Also	resize	the		button_count		view	to		wrap_content		for	both	the
	layout_width		and		layout_height	.

You	use		wrap_content		for	the	buttons	so	that	if	the	button	text	is	localized	into	a	different	language,	the	button	will
appear	wider	or	thinner	to	accommodate	the	word	in	the	different	language.

4.	 Drag	the		button_toast		view	into	position	on	the	left	side	of	the		show_count		view	as	shown	in	the	figure	below.	Guides
appear	so	that	you	can	snap	the	view	into	position	against	the	top	and	left	margins.	

Introduction

60

5.	 Select	the		button_toast		view	in	the	layout,	click	the	constraint	handle	that	appears	on	the	top	of	the	view,	and	drag	it
to	the	top	edge	of	the	layout	under	the	app	bar	as	shown	in	the	figure	below.	Then	click	the	constraint	handle	that
appears	on	the	left	side	of	the	view,	and	drag	it	to	the	left	edge	of	the	layout.	

6.	 Select	the		button_count		view,	click	the	constraint	handle	that	appears	on	the	left	side	of	the	view,	and	drag	it	to	the	left

Introduction

61

edge	of	the	layout.	
7.	 To	create	a	baseline	constraint	between	the		button_count		view's	text	baseline	and	the		show_count		view's	text

baseline,	select	the		button_count		view,	and	then	hover	over	the	view's	baseline	handle	for	two	seconds	until	the
handle	blinks	white.	Then	click	and	drag	the	constraint	line	that	appears	to	the	baseline	of	the		show_count		view,	as
shown	in	the	figure	below.	

You	now	have	a	layout	in	which	each	view	is	set	to	non-specific	dimensions	and	constrained	to	the	layout.	One
button's	text	is	aligned	to	a	TextView's	baseline,	so	that	if	you	move	the	TextView,	the	button	moves	with	it.

Introduction

62

Tip:	If	a	view	doesn't	have	at	least	two	constraints,	it	appears	at	the	top	of	the	layout.

8.	 Although	the		show_count		view	already	has	two	constraints,	you	can	add	another	constraint	to	it.	Drag	a	constraint	line
from	the	constraint	handle	on	the	left	side	of	the	view	to	the	right	side	of	the		button_count		view,	as	shown	in	the

figures	below.	 	

9.	 Run	the	app.	The	layout	conforms	to	its	constraints.

Introduction

63

Introduction

64

Solution	code:	Android	Studio	project:	HelloConstraint

Task	3:	Create	layout	variants
You	can	create	variants	of	your	layout	for	landscape	orientation	and	larger	displays.	You	will	create	an	alternative	version	of
the	previous	task's	layout	to	optimize	it	for	landscape	orientation:

1.	 Open	your	layout	file	for	the	HelloConstraint	app,	and	be	sure	you're	viewing	the	Design	editor	(click	the	Design	tab	at
the	bottom	of	the	window).

2.	 Click	the	Layout	Variants	icon	in	the	second	row	of	icons	(refer	to	the	figure	in	Task	2	Step	4)	and	choose	Create
Landscape	Variation.	The	"land/activity_main.xml"	tab	appears	showing	the	layout	for	the	landscape	(horizontal)

orientation,	as	shown	in	the	figure	below.	

You	can	change	the	layout	for	the	landscape	(horizontal)	version	without	changing	the	original	portrait	(vertical)
orientation,	thereby	taking	advantage	of	the	wider	screen.

3.	 In	Project:	Android	view	in	the	leftmost	pane	of	Android	Studio,	look	inside	the	res	>	layout	directory,	and	you	will	see
that	Android	Studio	automatically	created	the	variant	for	you,	called	activity_main.xml	(land).

4.	 The	"land/activity_main.xml"	tab	should	still	be	open	in	the	layout	editor;	if	not,	double-click	the	activity_main.xml
(land)	file	in	the	layout	directory.

5.	 Click	the	Text	tab	to	view	the	layout	in	XML.	Find	the	constraint	for	the		button_toast		view	that	aligns	its	top	edge	to
the	parent	view:

<Button

android:id="@+id/button_toast"

...

app:layout_constraintTop_toTopOf="parent"

...

6.	 Change	this	constraint	so	that	the		button_toast		view's	bottom	edge	is	aligned	to	the	top	edge	of	the		button_count	
view.

Introduction

65

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloConstraint

Hint:	If	the	constraint	to	align	the	top	of	a	view	to	another	view	is		app:layout_constraintTop_toTopOf	,	what	do	you	think
the	constraint	is	to	align	the	bottom	of	a	view	to	the	top	of	another	view?	Answer:

app:layout_constraintBottom_toTopOf="@id/button_count"

7.	 Run	the	app,	and	switch	to	landscape	mode	to	see	the	different	layout.	The	layouts	should	appear	as	shown	below.	

Solution	code
Android	Studio	project:	HelloToast

Android	Studio	project:	HelloRelative

Android	Studio	project:	HelloConstraint

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	chapters.	

Challenge:	Add	another	layout	variant	for	a	large	display.	The	layout	variant	should	take	advantage	of	the	larger	screen
size	to	show	larger	elements.

Hint:	Click	the	Layout	Variants	icon	in	the	toolbar	and	choose	Create	layout-xlarge	Variation.	Resize	and	position	the
elements	in	the	layout.

Summary
In	this	exercise	you	learned	how	to:

Rearrange	views	in	a	RelativeLayout	using	the	Design	tab	of	the	layout	editor.
View	the	layout	design	and	its	blueprint.
Change	a	view's	properties	(XML	attributes)	in	the	layout	editor.
Align	a	view	with	the	parent	RelativeLayout	using:

	android:layout_alignParentTop		to	align	the	view	to	the	top	of	the	parent.

Introduction

66

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloToast
https://github.com/google-developer-training/android-fundamentals/tree/master/HelloRelative
https://github.com/google-developer-training/android-fundamentals/tree/master/HelloConstraint

	android:layout_alignParentLeft		to	align	the	view	to	the	left	side	of	the	parent.
	android:layout_alignParentStart		to	make	the	start	edge	of	the	view	match	the	start	edge	of	the	parent.	This
attribute	is	useful	if	your	app	should	work	on	devices	in	which	the	language	or	locale	preference	may	be	different.
The	start	is	the	left	edge	of	the	screen	if	the	preference	is	left-to-right,	or	it	is	the	right	edge	of	the	screen	if	the
preference	is	right-to-left.

Use		android:layout_below		to	position	a	view	underneath	another	view	in	a	RelativeLayout.
Add	ConstraintLayout	to	your	project.
Convert	a	layout	to	ConstraintLayout	by	right-clicking	the	root	view	group	in	the	Component	Tree	pane,	and	then
clicking	Convert	layout	to	ConstraintLayout.
Clear	all	constraints	in	a	ConstraintLayout	by	right-clicking	(or	Control-clicking)	ConstraintLayout	in	the	Component
Tree	pane,	and	choosing	Clear	All	Constraints.
Add	constraints	to	views	in	the	ConstraintLayout	layout,	and	resizing	views.
Change	the	properties	of	views,	such	as		textAppearance		and		textSize	.
Create	variants	of	the	layout	for	landscape	orientation	and	for	larger	screen	sizes.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Layouts,	Views,	and	Resources

Learn	more
Developer	Documentation:

View
Relative	Layout
Build	a	UI	with	Layout	Editor
Build	a	Responsive	UI	with	ConstraintLayout

Other:

Codelabs:	Using	ConstraintLayout	to	design	your	views

Introduction

67

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/12_c_layouts,_views_and_resources.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/layout/relative.html
https://developer.android.com/studio/write/layout-editor.html
https://developer.android.com/training/constraint-layout/index.html
https://codelabs.developers.google.com/codelabs/constraint-layout/index.html

1.3:	Working	with	TextView	Elements
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Add	several	text	views
Task	2:	Add	active	web	links	and	a	ScrollView
Task	3:	Scroll	multiple	elements
Coding	challenge
Summary
Related	concept
Learn	more

The	TextView	class	is	a	subclass	of	the	View	class	that	displays	text	on	the	screen.	You	can	control	how	the	text	appears
with	TextView	attributes	in	the	XML	layout	file.	This	practical	shows	how	to	work	with	multiple	TextView	elements,	including
one	in	which	the	user	can	scroll	its	contents	vertically.

If	you	have	more	information	than	fits	on	the	device's	display,	you	can	create	a	scrolling	view	so	that	the	user	can	scroll
vertically	by	swiping	up	or	down,	or	horizontally	by	swiping	right	or	left.

You	would	typically	use	a	scrolling	view	for	news	stories,	articles,	or	any	lengthy	text	that	doesn't	completely	fit	on	the
device	display.	You	can	also	use	a	scrolling	view	to	enable	users	to	enter	multiple	lines	of	text,	or	to	combine	UI	elements
(such	as	a	text	field	and	a	button)	within	a	scrolling	view.

The	ScrollView	class	provides	the	layout	for	the	scrolling	view.	ScrollView	is	a	subclass	of	FrameLayout,	and	developers
should	place	only	one	view	as	a	child	within	it,	where	the	child	view	contains	the	entire	contents	to	scroll.	This	child	view
may	itself	be	a	view	group	(such	as	a	layout	manager	like	LinearLayout)	with	a	complex	hierarchy	of	objects.	Note	that
complex	layouts	may	suffer	performance	issues	with	child	views	such	as	images.	A	good	choice	for	a	view	within	a
ScrollView	is	a	LinearLayout	that	is	arranged	in	a	vertical	orientation,	presenting	top-level	items	that	the	user	can	scroll
through.

With	a	ScrollView,	all	of	the	views	are	in	memory	and	in	the	view	hierarchy	even	if	they	aren't	displayed	on	screen.	This
makes	ScrollView	ideal	for	scrolling	pages	of	free-form	text	smoothly,	because	the	text	is	already	in	memory.	However,
ScrollView	can	use	up	a	lot	of	memory,	which	can	affect	the	performance	of	the	rest	of	your	app.	To	display	long	lists	of
items	that	users	can	add	to,	delete	from,	or	edit,	consider	using	a	RecyclerView,	which	is	described	in	a	separate	practical.

What	you	should	already	KNOW
From	previous	practicals,	you	should	be	able	to:

Create	a	Hello	World	app	with	Android	Studio.
Run	an	app	on	an	emulator	or	a	device.
Implement	a	TextView	in	a	layout	for	an	app.
Create	and	use	string	resources.
Convert	layout	dimensions	to	resources.

What	you	will	LEARN
You	will	learn	to:

Use	XML	code	to	add	multiple	TextView	elements.

Introduction

68

https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

Use	XML	code	to	define	a	scrolling	view.
Display	free-form	text	with	some	HTML	formatting	tags.
Style	the	TextView	background	color	and	text	color.
Include	a	web	link	in	the	text.

What	you	will	DO
In	this	practical,	you	will:

Create	the	Scrolling	Text	app.
Add	two	TextView	elements	for	the	article	heading	and	subheading.
Use	TextAppearance	styles	and	colors	for	the	article	heading	and	subheading.
Use	HTML	tags	in	the	text	string	to	control	formatting.
Use	the	lineSpacingExtra	attribute	to	add	line	spacing	for	readability.
Add	a	ScrollView	to	the	layout	to	enable	scrolling	a	TextView	element.
Add	the	autoLink	attribute	to	enable	URLs	in	the	text	to	be	active	and	clickable.

App	overview
The	Scrolling	Text	app	demonstrates	the	ScrollView	UI	component.	ScrollView	is	a	view	group	that	in	this	example	contains
a	TextView.	It	shows	a	lengthy	page	of	text—in	this	case,	a	music	album	review—that	the	user	can	scroll	vertically	to	read
by	swiping	up	and	down.	A	scroll	bar	appears	in	the	right	margin.	The	app	shows	how	you	can	use	text	formatted	with
minimal	HTML	tags	for	setting	text	to	bold	or	italic,	and	with	new-line	characters	to	separate	paragraphs.	You	can	also
include	active	web	links	in	the	text.

In	the	above	figure,	the	following	appear:

Introduction

69

1.	 An	active	web	link	embedded	in	free-form	text
2.	 The	scroll	bar	that	appears	when	scrolling	the	text

Task	1:	Add	several	text	views
In	this	practical,	you	will	create	an	Android	project	for	the	Scrolling	Text	app,	add	TextViews	to	the	layout	for	an	article	title
and	subtitle,	and	change	the	existing	"Hello	World"	TextView	element	to	show	a	lengthy	article.	The	figure	below	is	a
diagram	of	the	layout.

You	will	make	all	these	changes	in	the	XML	code	and	in	the	strings.xml	file.	You	will	edit	the	XML	code	for	the	layout	in	the
Text	pane,	which	you	show	by	clicking	the	Text	tab,	rather	than	clicking	the	Design	tab	for	the	Design	pane.	Some	changes
to	UI	elements	and	attributes	are	easier	to	make	directly	in	the	Text	pane	using	XML	source	code.

1.1	Create	the	project	and	TextView	elements
1.	 In	Android	Studio	create	a	new	project	with	the	following	parameters:

Attribute Value

Application	Name Scrolling	Text

Company	Name android.example.com	(or	your	own	domain)

Phone	and	Tablet	Minimum	SDK API15:	Android	4.0.3	IceCreamSandwich

Template Empty	Activity

Generate	Layout	File	checkbox Checked

2.	 In	the	app	>	res	>	layout	folder,	open	the	activity_main.xml	file,	and	click	the	Text	tab	to	see	the	XML	code	if	it	is	not
already	selected.

Introduction

70

At	the	top,	or	root,	of	the	view	hierarchy	is	a	view	group	such	as	ConstraintLayout.	Change	this	view	group	to
RelativeLayout.	The	second	line	of	code	now	looks	something	like	this:

	<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"	

RelativeLayout	allows	you	to	position	its	child	Views	relative	to	each	other	or	relative	to	the	parent	RelativeLayout	itself.
The	default	"Hello	World"	TextView	element	that	is	created	by	the	Empty	Layout	template	is	a	child	View	within	the
RelativeLayout	view	group.	For	more	information	about	using	a	RelativeLayout,	see	the	Relative	Layout	API	Guide.

3.	 Add	a		TextView		element	above	the	"Hello	World"		TextView	.	Add	the	following	attributes	to	the	TextView:

TextView	#1	attribute Value

android:id "@+id/article_heading"

layout_width "match_parent"

layout_height "wrap_content"

android:background "@color/colorPrimary"

android:textColor "@android:color/white"

android:padding "10dp"

android:textAppearance "@android:style/TextAppearance.Large"

android:textStyle "bold"

android:text "Article	Title"

Tip:	The	attributes	for	styling	the	text	and	background	are	summarized	in	the	TextView	class	documentation.

4.	 Extract	the	string	resource	for	the		android:text		attribute's	hard-coded	string		"Article	Title"		in	the		TextView		to
create	an	entry	for	it	in	strings.xml.

Place	the	cursor	on	the	hard-coded	string,	press	Alt-Enter	(Option-Enter	on	the	Mac),	and	select	Extract	string
resource.	Then	edit	the	resource	name	for	the	string	value	to	article_title.

Tip:	String	resources	are	described	in	detail	in	the	String	Resources	documentation.

5.	 Extract	the	dimension	resource	for	the		android:padding		attribute's	hard-coded	string		"10dp"		in	the	TextView	to	create
an	entry	in	dimens.xml.

Place	the	cursor	on	the	hard-coded	string,	press	Alt-Enter	(Option-Enter	on	the	Mac),	and	select	Extract	dimension
resource.	Then	edit	the	Resource	name	to	padding_regular.

6.	 Add	another		TextView		element	above	the	"Hello	World"		TextView		and	below	the		TextView		you	created	in	the
previous	steps.	Add	the	following	attributes	to	the		TextView	:

TextView	#2	Attribute Value

android:id "@+id/article_subheading"

layout_width "match_parent"

layout_height "wrap_content"

android:layout_below "@id/article_heading"

android:padding "@dimen/padding_regular"

android:textAppearance "@android:style/TextAppearance"

android:text "Article	Subtitle"

Note	that	since	you	extracted	the	dimension	resource	for	the		"10dp"		string	to	padding_regular	in	the	previously
created		TextView	,	you	can	use		"@dimen/padding_regular"		for	the		android:padding		attribute	in	this		TextView	.

Introduction

71

https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/guide/topics/ui/layout/relative.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/guide/topics/resources/string-resource.html

7.	 Extract	the	string	resource	for	the		android:text		attribute's	hard-coded	string		"Article	Subtitle"		in	the		TextView		to
article_subtitle.

8.	 In	the	"Hello	World"		TextView		element,	remove	the		layout_constraint		attributes,	if	they	are	present.
9.	 Add	the	following		TextView		attributes	to	the	"Hello	World"		TextView		element,	and	change	the		android:text		attribute:

TextView	Attribute Value

android:id "@+id/article"

android:lineSpacingExtra "5sp"

android:layout_below "@id/article_subheading"

android:text Change	to	"Article	text"

10.	 Extract	the	string	resource	for		"Article	text"		to	article_text,	and	extract	the	dimension	resource	for		"5sp"		to
line_spacing.

11.	 Reformat	and	align	the	code	by	choosing	Code	>	Reformat	Code.	It	is	a	good	practice	to	reformat	and	align	your	code
so	that	it	is	easier	for	you	and	others	to	understand.

1.2	Add	the	text	of	the	article
In	a	real	app	that	accesses	magazine	or	newspaper	articles,	the	articles	that	appear	would	probably	come	from	an	online
source	through	a	content	provider,	or	might	be	saved	in	advance	in	a	database	on	the	device.

For	this	practical,	you	will	create	the	article	as	a	single	long	string	in	the	strings.xml	resource.

1.	 In	the	app	>	res	>	values	folder,	open	strings.xml.
2.	 Enter	the	values	for	the	strings		article_title		and		article_subtitle		with	a	made-up	title	and	a	subtitle	for	the	article

you	are	adding.	The	string	values	for	each	should	be	single-line	text	without	HTML	tags	or	multiple	lines.
3.	 Enter	or	copy	and	paste	text	for	the		article_text		string.

Use	the	text	provided	for	the		article_text		string	in	the	strings.xml	file	of	the	finished	ScrollingText	app,	or	use	your
own	generic	text.	You	can	copy	and	then	paste	the	same	sentence	over	and	over,	as	long	as	the	result	is	a	long
section	of	text	that	will	not	fit	entirely	on	the	screen.	Keep	in	mind	the	following	(refer	to	the	figure	below	for	an
example):

i.	 As	you	enter	or	paste	text	in	the	strings.xml	file,	the	text	lines	don't	wrap	around	to	the	next	line—they	extend
beyond	the	right	margin.	This	is	the	correct	behavior—each	new	line	of	text	starting	at	the	left	margin	represents
an	entire	paragraph.

ii.	 Enter	\n	to	represent	the	end	of	a	line,	and	another	\n	to	represent	a	blank	line.

Why?	You	need	to	add	end-of-line	characters	to	keep	paragraphs	from	running	into	each	other.

Tip:	If	you	want	to	see	the	text	wrapped	in	strings.xml,	you	can	press	Return	to	enter	hard	line	endings,	or	format
the	text	first	in	a	text	editor	with	hard	line	endings.

iii.	 If	you	have	an	apostrophe	(')	in	your	text,	you	must	escape	it	by	preceding	it	with	a	backslash	(\').	If	you	have	a
double-quote	in	your	text,	you	must	also	escape	it	(\").	You	must	also	escape	any	other	non-ASCII	characters.See
the	"Formatting	and	Styling"	section	of	String	Resources	for	more	details.

iv.	 Enter	the	HTML	and		tags	around	words	that	should	be	in	bold.

v.	 Enter	the	HTML	and	</i>	tags	around	words	that	should	be	in	italics.	Note,	however,	that	if	you	use	curled
apostrophes	within	an	italic	phrase,	you	should	replace	them	with	straight	apostrophes.

vi.	 You	can	combine	bold	and	italics	by	combining	the	tags,	as	in	...	words...</i>.	Other	HTML	tags	are	ignored.

vii.	 Enclose	The	entire	text	within		<string	name="article_text">	</string>		in	the	strings.xml	file.

Introduction

72

https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText
https://developer.android.com/guide/topics/resources/string-resource.html#FormattingAndStyling

viii.	 Include	a	web	link	to	test,	such	as	www.google.com	(the	example	below	uses		www.rockument.com).	Don't	use	an
HTML	tag—any	HTML	tags	except	the	bold	and	italic	tags	will	be	ignored	and	presented	as	text,	which	is	not	what
you	want.	

4.	 Run	the	app.

The	article	appears,	and	you	can	even	scroll	it,	but	the	scrolling	is	not	smooth	and	there	is	no	scroll	bar	because	you
haven't	yet	included	a	ScrollView	(which	you	will	do	in	the	next	task).	Note	also	that	tapping	a	web	link	does	not
currently	do	anything.	You	will	also	fix	that	in	the	next	task.

Solution	code
Depending	on	your	version	of	Android	Studio,	the	activity_main.xml	layout	file	will	look	something	like	the	following:

Introduction

73

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.android.scrollingtext.MainActivity">

				<TextView

								android:id="@+id/article_heading"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:background="@color/colorPrimary"

								android:textColor="@android:color/holo_orange_light"

								android:textColorHighlight="@color/colorAccent"

								android:padding="10dp"

								android:textAppearance="@android:style/TextAppearance.Large"

								android:textStyle="bold"

								android:text="@string/article_title"/>

				<TextView

								android:id="@+id/article_subheading"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_below="@id/article_heading"

								android:padding="10dp"

								android:textAppearance="@android:style/TextAppearance"

								android:text="@string/article_subtitle"/>

				<TextView

								android:id="@+id/article"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/article_subheading"

								android:lineSpacingExtra="5sp"

								android:text="@string/article_text"/>

</RelativeLayout>

Task	2:	Add	active	Web	links	and	a	ScrollView
In	the	previous	task	you	created	the	Scrolling	Text	app	with	TextViews	for	an	article	title,	subtitle,	and	lengthy	article	text.
You	also	included	a	web	link,	but	the	link	is	not	yet	active.	You	will	add	the	code	to	make	it	active.

Also,	the	TextView	by	itself	can't	enable	users	to	scroll	the	article	text	to	see	all	of	it.	You	will	add	a	new	view	group	called
	ScrollView		to	the	XML	layout	that	will	make	the	TextView	scrollable.

2.1	Add	the	autoLink	attribute	for	active	web	links

Add	the		android:autoLink="web"		attribute	to	the		article		TextView.	The	XML	code	for	this	TextView	should	now	look	like
this:

<TextView

			android:id="@+id/article"

			...

			android:autoLink="web"

			...	/>

2.2	Add	a	ScrollView	to	the	layout

To	make	a	view	(such	as	a	TextView)	scrollable,	embed	the	view	inside	a	ScrollView.

Introduction

74

1.	 Add	a	ScrollView	between	the	article_subheading	TextView	and	the	article	TextView.	As	you	enter	<ScrollView,
Android	Studio	automatically	adds		</ScrollView>		at	the	end,	and	presents	the		android:layout_width		and
	android:layout_height		attributes	with	suggestions.	Choose	wrap_content	from	the	suggestions	for	both	attributes.
The	code	should	now	look	like	this:

<TextView

			android:id="@+id/article_subheading"

			android:layout_width="match_parent"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_heading"

			android:padding="10dp"

			android:textAppearance="@android:style/TextAppearance"

			android:text="@string/article_subtitle"/>

<ScrollView

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_subheading"></ScrollView>

<TextView

			android:id="@+id/article"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_subheading"

			android:lineSpacingExtra="5sp"

			android:autoLink="web"

			android:text="@string/article_text"/>

2.	 Move	the	ending		</ScrollView>		code	after	the		article		TextView	so	that	the		article		TextView	attributes	are	inside
the	ScrollView	XML	element.

3.	 Remove	the	following	attribute	from	the		article		TextView,	because	the	ScrollView	itself	will	be	placed	below	the
	article_subheading		element,	and	this	attribute	for	TextView	would	conflict	with	the	ScrollView:

android:layout_below="@id/article_subheading"

Introduction

75

The	layout	should	now	look	like	this:	

4.	 Choose	Code	>	Reformat	Code	to	reformat	the	XML	code	so	that	the		article		TextView	now	appears	indented	inside
the		<Scrollview		code.

5.	 Run	the	app.

Swipe	up	and	down	to	scroll	the	article.	The	scroll	bar	appears	in	the	right	margin	as	you	scroll.

Tap	the	web	link	to	go	to	the	web	page.	The		android:autoLink		attribute	turns	any	recognizable	URL	in	the	TextView
(such	as	www.rockument.com)	into	a	web	link.

6.	 Rotate	your	device	or	emulator	while	running	the	app.	Notice	how	the	scrolling	view	widens	to	use	the	full	display	and
still	scrolls	properly.

7.	 Run	the	app	on	a	tablet	or	tablet	emulator.	Notice	how	the	scrolling	view	widens	to	use	the	full	display	and	still	scrolls
properly.	

Introduction

76

In	the	above	figure,	the	following	appear:

1.	 An	active	web	link	embedded	in	free-form	text
2.	 The	scroll	bar	that	appears	when	scrolling	the	text

Introduction

77

Depending	on	your	version	of	Android	Studio,	the	activity_main.xml	layout	file	will	now	look	something	like	the	following:

Introduction

78

				<?xml	version="1.0"	encoding="utf-8"?>

				<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

								xmlns:tools="http://schemas.android.com/tools"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:paddingBottom="@dimen/activity_vertical_margin"

								android:paddingLeft="@dimen/activity_horizontal_margin"

								android:paddingRight="@dimen/activity_horizontal_margin"

								android:paddingTop="@dimen/activity_vertical_margin"

								tools:context="com.example.android.scrollingtext.MainActivity">

								<TextView

												android:id="@+id/article_heading"

												android:layout_width="match_parent"

												android:layout_height="wrap_content"

												android:background="@color/colorPrimary"

												android:textColor="@android:color/white"

												android:paddingTop="10dp"

												android:paddingBottom="10dp"

												android:paddingLeft="10dp"

												android:paddingRight="10dp"

												android:textAppearance="@android:style/TextAppearance.Large"

												android:textStyle="bold"

												android:text="@string/article_title"/>

								<TextView

												android:id="@+id/article_subheading"

												android:layout_width="match_parent"

												android:layout_height="wrap_content"

												android:layout_below="@id/article_heading"

												android:paddingTop="10dp"

												android:paddingBottom="10dp"

												android:paddingLeft="10dp"

												android:paddingRight="10dp"

												android:textAppearance="@android:style/TextAppearance"

												android:text="@string/article_subtitle"/>

								<ScrollView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:layout_below="@id/article_subheading">

												<TextView

																android:id="@+id/article"

																android:layout_width="wrap_content"

																android:layout_height="wrap_content"

																android:lineSpacingExtra="5sp"

																android:autoLink="web"

																android:text="@string/article_text"/>

								</ScrollView>

				</RelativeLayout>

Solution	code
Android	Studio	project:	ScrollingText

Task	3:	Scroll	multiple	elements
As	noted	before,	the	ScrollView	view	group	can	contain	only	one	child	view	(such	as	the		article		TextView	you	created);
however,	that	View	can	be	another	view	group	that	contains	Views,	such	as	LinearLayout.	You	can	nest	a	view	group	such
as	LinearLayout	within	the	ScrollView	view	group,	thereby	scrolling	everything	that	is	inside	the	LinearLayout.

For	example,	if	you	want	the	subheading	of	the	article	to	scroll	along	with	the	article,	add	a	LinearLayout	within	the
ScrollView,	and	move	the	subheading,	along	with	the	article,	into	the	LinearLayout.	The	LinearLayout	view	group	becomes
the	single	child	View	in	the	ScrollView	as	shown	in	the	figure	below,	and	the	user	can	scroll	the	entire	view	group:	the

Introduction

79

https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText
https://developer.android.com/reference/android/widget/LinearLayout.html

subheading	and	the	article.	

3.1	Add	a	LinearLayout	to	the	ScrollView

1.	 On	your	computer,	make	a	copy	of	Android	Studio's	project	folder	for	ScrollingText,	and	rename	the	project	to	be
ScrollingText2.	To	copy	and	rename	a	project,	follow	the	"Copy	and	rename	a	project"	instructions	in	the	Appendix.

2.	 Open	ScrollingText2	in	Android	Studio,	and	open	the	activity_main.xml	file	to	change	the	XML	layout	code.
3.	 Add	a	LinearLayout	above	the		article		TextView	in	the	ScrollView.	As	you	enter	<LinearLayout,	Android	Studio

automatically	adds		</LinearLayout>		to	the	end,	and	presents	the		android:layout_width		and		android:layout_height	
attributes	with	suggestions.	Choose	match_parent	and	wrap_content	from	the	suggestions	for	its	width	and	height,
respectively.	The	code	should	now	look	like	this:

<LinearLayout

			android:layout_width="match_parent"

			android:layout_height="wrap_content"></LinearLayout>

You	use		match_parent		to	match	the	width	of	the	parent	view	group,	and		wrap_content		to	make	the	view	group	only
big	enough	to	enclose	its	contents	and	padding.

4.	 Move	the	ending		</LinearLayout>		code	after	the		article		TextView	but	before	the	closing		</ScrollView>		so	that	the
LinearLayout	includes	the		article		TextView	and	is	completely	inside	the	ScrollView.

5.	 Add	the		android:orientation="vertical"		attribute	to	the	LinearLayout	in	order	to	set	the	orientation	of	the
LinearLayout	to	vertical.	The	LinearLayout	within	the	ScrollView	should	now	look	like	this	(choose	Code	>	Reformat
Code	to	indent	the	view	groups	correctly):

Introduction

80

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

<ScrollView

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_below="@id/article_subheading">

			<LinearLayout

						android:layout_width="match_parent"

						android:layout_height="wrap_content"

						android:orientation="vertical">

						<TextView

									android:id="@+id/article"

									android:layout_width="wrap_content"

									android:layout_height="wrap_content"

									android:autoLink="web"

									android:lineSpacingExtra="5sp"

									android:text="@string/article_text"	/>

			</LinearLayout>

</ScrollView>

6.	 Move	the		article_subheading		TextView	to	a	position	inside	the	LinearLayout	above	the		article		TextView.
7.	 Remove	the		android:layout_below="@id/article_heading"		attribute	from	the		article_subheading		TextView.	Since	this

TextView	is	now	within	the	LinearLayout,	this	attribute	would	conflict	with	the	LinearLayout	attributes.
8.	 Change	the	ScrollView	layout	attribute	from		android:layout_below="@id/article_subheading"		to

	android:layout_below="@id/article_heading"	.	Now	that	the	subheading	is	part	of	the	LinearLayout,	the	ScrollView	must
be	placed	below	the	heading,	not	the	subheading.

9.	 Run	the	app.

Swipe	up	and	down	to	scroll	the	article,	and	notice	that	the	subheading	now	scrolls	along	with	the	article	while	the	heading
stays	in	place.

Solution	code
Android	Studio	project:	ScrollingText2

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	a	prerequisite	for	later	lessons.	

Challenge:	Add	another	UI	element—a	Button—to	the	LinearLayout	view	group	that	is	contained	within	the	ScrollView.
Make	the	Button	appear	below	the	article.	The	user	would	have	to	scroll	to	the	end	of	the	article	to	see	the	button.	Use	the
text	"Add	Comment"	for	the	Button,	for	users	to	click	to	add	a	comment	to	the	article.	For	this	challenge,	there	is	no	need	to
create	a	button-handling	method	to	actually	add	a	comment;	it	is	sufficient	to	just	place	the	Button	element	in	the	proper
place	in	the	layout.

Introduction

81

https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText2
https://developer.android.com/reference/android/widget/Button.html

Introduction

82

Challenge	Solution	code
Android	Studio	project:	ScrollingText3

Summary
In	this	practical,	you	learned	about	Android	Studio's	view	elements	and	how	to	scroll	and	nest	code.You	worked	to:

Add	multiple	TextView	elements	to	the	XML	layout.
Display	free-form	text	in	a	TextView	with	HTML	formatting	tags	for	bold	and	italics.
Use	\n	as	an	end-of-line	character	in	free-form	text	to	keep	a	paragraph	from	running	into	the	next	paragraph.
Use	the		android:autoLink="web"		attribute	to	make	web	links	in	the	text	clickable.

Add	a	ScrollView	view	group	to	the	layout	to	define	a	scrolling	view	with	one	of	the	TextView	elements.
Add	a	LinearLayout	view	group	within	a	ScrollView	in	order	to	scroll	several	TextView	elements	together.
Extract	string	values	into	string	names	in	the	strings.xml	file	for	easier	localization	of	string	resources.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Text	and	Scrolling	Views

Learn	more
Developer	Documentation:

TextView
ScrollView
String	Resources
View
Relative	Layout

Other:

Android	Developers	Blog:	Linkify	your	Text!
Codepath:	Working	with	a	TextView

Introduction

83

https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText3
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/reference/android/widget/LinearLayout.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/13_c_text_and_scrolling_views.html
http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/ScrollView.html
https://developer.android.com/guide/topics/resources/string-resource.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/layout/relative.html
http://android-developers.blogspot.com/2008/03/linkify-your-text.html
https://guides.codepath.com/android/Working-with-the-TextView

1.4:	Learning	About	Available	Resources
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Explore	the	official	Android	documentation
Task	2:	Use	project	templates
Task	3:	Learn	from	example	code
Task	4:	Many	more	resources
Summary
Related	concept
Learn	more

In	this	practical	you	will:

Explore	some	of	the	many	resources	available	to	Android	developers	of	all	levels.
Add	a	home	screen	icon	to	your	Word	List	app;	tapping	the	icon	will	launch	the	app.

What	you	should	already	KNOW
From	previous	practicals,	you	should	be	able	to:

Understand	the	basic	work	flow	of	Android	Studio.

What	you	will	LEARN
Where	to	find	developer	resources:

Within	Android	Studio.
In	the	official	Android	developer	documentation	on	the	web.
Elsewhere	on	the	Internet.

What	you	will	DO
In	this	practical	you	will:

Explore	and	use	Android	developer	resources.
Use	developer	resources	to	figure	out	how	to	add	an	icon	to	the	home	screen	of	your	device.
When	this	icon	is	clicked,	your	app	launches.

App	Overview
You	will	use	the	existing	HelloToast	app	and	add	a	launcher	icon	to	it.

Task	1.	Explore	the	official	Android	developer	documentation
You	can	find	the	official	Android	developer	documentation	at:

Introduction

84

http://developer.android.com/index.html

http://developer.android.com/index.html

This	documentation	contains	a	wealth	of	information	that	is	kept	current	by	Google.

1.1.	Explore	the	official	Android	documentation

1.	 Go	to	http://developer.android.com/index.html.
2.	 At	the	top	of	the	page,	look	for	the	Design,	Develop,	and	Distribute	links.	Follow	each	of	the	links	and	familiarize

yourself	with	the	navigation	structure.
Design	is	all	about	Material	Design,	which	is	a	conceptual	design	philosophy	that	outlines	how	apps	should	look
and	work	on	mobile	devices.	Scroll	to	the	bottom	of	the	landing	page	for	links	to	resources	such	as	sticker	sheets
and	color	palettes.
Develop	is	where	you	can	find	API	information,	reference	documentation,	tutorials,	tool	guides,	and	code
samples.	You	can	use	the	site	navigation	or	search	to	find	what	you	need.
Distribute	is	about	everything	that	happens	after	you've	written	your	app:	putting	it	on	the	Play	Store,	growing
your	user	base,	and	earning	money.

3.	 Use	search	or	navigate	the	documentation	to	complete	the	following	tasks:
Add	a	launcher	icon	to	the	Word	List	app.	See	the	API	Guide	to	Launcher	Icons	to	learn	more	about	how	to	design
effective	launcher	icons.
Learn	how	to	monitor	your	app's	resource	usage	in	Android	Studio.

Task	2.	Use	project	templates
Android	Studio	provides	templates	for	common	and	recommended	app	and	activity	designs.	Using	built-in	templates	saves
time,	and	helps	you	follow	design	best	practices.

Each	template	incorporates	an	skeleton	activity	and	user	interface.	You've	already	used	the	Empty	Activity	template.	The
Basic	Activity	template	has	more	features	and	incorporates	recommended	app	features,	such	as	the	options	menu.

2.1.	Explore	the	Basic	Activity	architecture
The	Basic	Activity	template	is	a	versatile	template	provided	by	Android	Studio	to	assist	you	in	jump-starting	your	app
development.

1.	 In	Android	Studio,	create	a	new	project	with	the	Basic	Activity	template.
2.	 Build	and	run	the	app.

Introduction

85

http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/design/index.html
https://www.google.com/design/spec/style/color.html#color-color-palette
http://developer.android.com/develop/index.html
http://developer.android.com/distribute/index.html
https://developer.android.com/distribute/monetize/index.html
https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

3.	 Identify	the	labelled	parts	on	the	screenshot	and	table	below.	Find	their	equivalents	on	your	device	or	emulator	screen.

	Architecture
of	the	Basic	Activity	template

Introduction

86

# UI	Description Code	reference

1
Status	bar
This	bar	is	provided	and	controlled	by	the	Android
system.

Not	visible	in	the	template	code.
It's	possible	to	access	it	from	your	activity.
For	example,	you	can	hide	the	status	bar,	if
necessary.

2

AppBarLayout	>	Toolbar
App	bar	(also	called	Action	bar)	provides	visual
structure,	standardized	visual	elements,	and	navigation.
For	backwards	compatibility,	the	AppBarLayout	in	the
template	embeds	a	Toolbar	widget	with	the	same
functionality.

ActionBar	class

Challenge:	App	Bar	Tutorial

activity_main.xml
Look	for		android.support.v7.widget.Toolbar	

inside
	android.support.design.widget.AppBarLayout	.

Change	the	toolbar	to	change	the
appearance	of	its	parent,	the	app	bar.

3
Application	name
This	is	derived	from	your	package	name,	but	can	be
anything	you	choose.

AndroidManifest.xml
	android:label="@string/app_name"	

4

Options	menu	overflow	button
Menu	items	for	the	activity,	as	well	as	global	options,
such	as	"Search"	and	"Settings"	for	the	settings	menu.
Your	app	menu	items	go	into	this	menu.

MainActivity.java
	onOptionsItemSelected()		implements	what
happens	when	a	menu	item	is	selected.

res	>	menu	>	menu_main.xml

Resource	that	specifies	the	menu	items	for
the	options	menu.

5

CoordinatorLayout
CoordinatorLayout	is	a	feature-rich	layout	that	provides
mechanisms	for	views	to	interact.	Your	app's	user
interface	goes	inside	this	view	group.

activity_main.xml
Notice	that	there	are	no	views	specified	in
this	layout;	rather,	it	includes	another	layout
with

	<include	layout="@layout/content_main"	/>	

where	the	views	are	specified.	This
separates	system	views	from	the	views
unique	to	your	app.

6
TextView
In	the	example,	used	to	display	"Hello	World".	Replace
this	with	the	views	for	your	app.

content_main.xml
All	your	app's	views	are	defined	in	this	file.

7 Floating	Action	button	(FAB)
activity_main.xml
MainActivity.java	>	onCreate	has	a	stub	that
sets	an	onClick	listener	on	the	FAB.

4.	 Also	inspect	the	corresponding	Java	code	and	XML	configuration	files.

Being	familiar	with	the	Java	source	code	and	XML	files	will	help	you	extend	and	customize	this	template	for	your	own
needs.

See	Accessing	Resources	for	details	on	the	XML	syntax	for	accessing	resources.

5.	 After	you	understand	the	template	code,	try	the	following:
Change	the	color	of	the	app	bar	(toolbar).
Look	at	the	styles	associated	with	the	app	bar	(toolbar).
Change	the	name	of	your	app	that's	displayed	in	the	app	bar	(toolbar).

2.2.	Explore	how	to	add	an	activity	using	templates

Introduction

87

http://developer.android.com/training/system-ui/status.html
http://developer.android.com/reference/android/support/design/widget/AppBarLayout.html
http://developer.android.com/reference/android/support/v7/widget/Toolbar.html
http://developer.android.com/reference/android/app/ActionBar.html
http://developer.android.com/training/appbar/index.html
http://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/guide/topics/resources/accessing-resources.html

For	the	practicals	so	far,	you've	used	the	Empty	Activity	and	Basic	Activity	templates.	In	later	lessons,	the	templates	use	will
vary,	depending	on	the	task.

These	activity	templates	are	also	available	from	inside	your	project,	so	that	you	can	add	more	activities	to	your	app	after
the	initial	project	setup.	(You	will	learn	more	about	this	this	in	a	later	chapter.)

1.	 Create	a	new	project	or	choose	an	existing	project.
2.	 In	your	project	directory,	in	the	Android	view,	right-click	the	folder	with	your	java	files.
3.	 Choose	New	>	Activity	>	Gallery.
4.	 Add	one	of	those	activities,	for	example,	the	Navigation	Drawer	Activity.	Find	the	layout	files	for	the	Navigation	Drawer

Activity	and	display	them	in	Design.

Task	3.	Learn	from	example	code
Android	Studio,	as	well	as	the	Android	documentation	provide	many	code	samples	that	you	can	study,	copy,	and
incorporate	with	your	projects.

3.1.	Android	code	samples
You	can	explore	hundreds	of	code	samples	directly	from	Android	Studio.

1.	 In	Android	Studio,	choose	File	>	New	>	Import	Sample.
2.	 Browse	the	samples.
3.	 Look	at	the	Description	and	Preview	tabs	to	learn	more	about	each	sample.
4.	 Choose	a	sample	and	click	Next.
5.	 Accept	the	defaults	and	click	Finish.

Note:	The	samples	contained	here	are	meant	as	a	starting	point	for	further	development.	We	encourage	you	to	design	and
build	your	own	ideas	into	them.

3.2.	Use	the	SDK	Manager	to	install	offline	documentation
Installing	Android	Studio	also	installs	essentials	of	the	Android	SDK	(Software	Development	Kit).	However,	additional
libraries	and	documentation	are	available,	and	you	can	install	them	using	the	SDK	Manager.

1.	 Choose	Tools	>	Android	>	SDK	Manager.	This	opens	the	Default	Preferences	settings.
2.	 In	the	left-hand	navigation,	find	and	open	the	settings	for	Android	SDK.
3.	 Click	SDK	Platforms	in	the	settings	window.	You	can	install	additional	versions	of	the	Android	system	from	here.
4.	 Click	on	SDK	Update	Sites.	Android	Studio	checks	the	listed	and	checked	sites	regularly	for	updates.
5.	 Click	on	the	SDK	Tools	tab.	Here	you	can	install	additional	SDK	Tools	that	are	not	installed	by	default,	as	well	as	an

offline	version	of	the	Android	developer	documentation.	This	gives	you	access	to	documentation	even	when	you	are
not	connected	to	the	internet.

6.	 Check	"Documentation	for	Android	SDK",	click	Apply,	and	follow	the	prompts.
7.	 Navigate	to	the	Android/sdk	directory	and	open	the	docs	folder.
8.	 Find	index.html	and	open	it.

Task	4.	Many	more	resources
The	Android	Developer	YouTube	channel	is	a	great	source	of	tutorials	and	tips.
The	Android	team	posts	news	and	and	tips	on	the	Official	Android	Blog.
Stack	Overflow	is	a	community	of	millions	of	programmers	helping	each	other.	If	you	run	into	a	problem,	chances	are,
someone	else	has	already	posted	an	answer	on	this	forum.	On	Stack	Overflow	,	you	can	even	ask,	"How	do	I	setup
and	use	ADB	over	WiFi?",	or	"What	are	the	most	common	memory	leaks	in	Android	development?"
And	last	but	not	least,	type	your	questions	into	Google	search,	and	the	Google	search	engine	will	collect	relevant

Introduction

88

https://www.youtube.com/user/androiddevelopers
http://officialandroid.blogspot.com/
http://stackoverflow.com/
http://stackoverflow.com/

results	from	all	of	these	resources.	For	example,	"What	is	the	most	popular	Android	OS	version	in	India?"

4.1.	Search	on	Stack	Overflow	using	tags

1.	 Go	to	Stack	Overflow
2.	 In	the	search	box,	type	[android].

The	[]	brackets	indicate	that	you	want	to	search	for	posts	that	have	been	tagged	as	being	about	Android.

3.	 You	can	combine	tags	and	search	terms	to	make	your	search	more	specific.	Search	for
[android]	and	[layout]
[android]	"hello	world"

4.	 Read	more	about	the	many	ways	in	which	you	can	search	on	Stackoverflow.

Summary
Official	Android	Developer	Documentation	-	http://developer.android.com
Material	Design	is	a	conceptual	design	philosophy	that	outlines	how	apps	should	look	and	work	on	mobile	devices.
The	Google	Play	store	is	Google's	digital	distribution	system	for	apps	developed	with	the	Android	SDK.
Android	Studio	provides	templates	for	common	and	recommended	app	and	activity	designs.	These	templates	offer
working	code	for	common	use	cases.
When	you	create	a	project,	you	can	choose	a	template	for	your	first	activity.
While	you	are	further	developing	your	app,	activities	and	other	app	components	can	be	created	from	built-in	templates.
Android	Studio	contains	many	code	samples	that	you	can	study,	copy,	and	incorporate	with	your	projects.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Resources	to	Help	You	Learn

Learn	more
Developer	Documentation:

Official	Android	documentation
Image	Asset	Studio
Android	Monitor	page
Official	Android	blog
Android	Developers	blog
Google	I/O	Codelabs
Stack	Overflow
Android	vocabulary
Google	Developer	Training	website

Code

Source	code	for	exercises	on	GitHub
Android	code	samples	for	developers

Videos

Android	Developer	YouTube	channel
Udacity	online	courses

Introduction

89

http://stackoverflow.com/
http://stackoverflow.com/help/searching
http://developer.android.com
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/14_c_resources_to_help_you_learn.html
http://developer.android.com/index.html
http://developer.android.com/tools/help/image-asset-studio.html
http://developer.android.com/tools/help/android-monitor.html
http://officialandroid.blogspot.com/
http://android-developers.blogspot.com
http://codelabs.developers.google.com
http://stackoverflow.com/
http://developers.google.com/android/for-all/vocab-words
http://developers.google.com/training
http://github.com/google-developer-training
http://developer.android.com/samples/index.html
https://www.youtube.com/user/androiddevelopers
http://www.udacity.com/courses/android

Introduction

90

2.1:	Create	and	Start	Activities
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	the	TwoActivities	project
Task	2.	Create	and	launch	the	second	activity
Task	3.	Send	data	from	the	main	activity	to	the	second	activity
Task	4.	Return	data	back	to	the	main	activity
Coding	challenge
Summary
Related	concept
Learn	more

An	activity	represents	a	single	screen	in	your	app	with	which	your	user	can	perform	a	single,	focussed	task	such	as	dial	the
phone,	take	a	photo,	send	an	email,	or	view	a	map.	Activities	are	usually	presented	to	the	user	as	full-screen	windows.

An	app	usually	consists	of	multiple	activities	that	are	loosely	bound	to	each	other.	Typically,	one	activity	in	an	application	is
specified	as	the	"main"	activity,	which	is	presented	to	the	user	when	the	app	is	launched.	Each	activity	can	then	start	other
activities	in	order	to	perform	different	actions.

Each	time	a	new	activity	starts,	the	previous	activity	is	stopped,	but	the	system	preserves	the	activity	in	a	stack	(the	"back
stack").	When	a	new	activity	starts,	that	new	activity	is	pushed	onto	the	back	stack	and	takes	user	focus.	The	back	stack
abides	to	the	basic	"last	in,	first	out"	stack	mechanism,	so,	when	the	user	is	done	with	the	current	activity	and	presses	the
Back	button,	that	current	activity	is	popped	from	the	stack	(and	destroyed)	and	the	previous	activity	resumes.

Android	activities	are	started	or	activated	with	an	intent.	Intents	are	asynchronous	messages	that	you	can	can	use	in	your
activity	to	request	an	action	from	another	activity	(or	other	app	component).	You	use	intents	to	start	one	activity	from
another	and	to	pass	data	between	activities.

There	are	two	kinds	of	intents:	explicit	and	implicit.	An	explicit	intent	is	one	in	which	you	know	the	target	of	that	intent,	that
is,	you	already	know	the	fully-qualified	class	name	of	that	specific	activity.	An	implicit	intent	is	one	in	which	you	do	not	have
the	name	of	the	target	component,	but	have	a	general	action	to	perform.	In	this	practical	you'll	learn	about	explicit	intents.
You'll	find	out	about	implicit	intents	in	a	later	practical.

What	you	should	already	KNOW
From	the	previous	practicals,	you	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Create	and	edit	UI	elements	with	the	graphical	Layout	Editor,	or	directly	in	an	XML	layout	file.
Add	onClick	functionality	to	a	button.

What	you	will	LEARN
You	will	learn	to:

Create	a	new	activity	in	Android	studio.
Define	parent	and	child	activities	for	"Up"	navigation.
Start	activities	with	explicit	intents.
Pass	data	between	activities	with	intent	extras.

Introduction

91

What	you	will	DO
In	this	practical,	you	will:

Create	a	new	Android	app	with	two	activities.
Pass	some	data	(a	string)	from	the	main	activity	to	the	second	using	an	intent,	and	display	that	data	in	the	second
activity.
Send	a	second	different	bit	of	data	back	to	the	main	activity,	also	using	intents.

App	Overview
In	this	chapter	you	will	create	and	build	an	app	called	TwoActivities	that,	unsurprisingly,	contains	two	activities.	This	app	will
be	built	in	three	stages.

In	the	first	stage,	create	an	app	whose	main	activity	contains	only	one	button	(Send).	When	the	user	clicks	this	button,	your
main	activity	uses	an	intent	to	start	the	second	activity.	

In	the	second	stage,	you'll	add	an	EditText	view	to	the	main	activity.	The	user	enters	a	message	and	clicks	Send.	The	main
activity	uses	an	intent	to	both	start	the	second	activity,	and	to	send	the	user's	message	to	the	that	activity.	The	second
activity	displays	the	message	it	received.	

Introduction

92

In	final	stage	of	the	TwoActivities	app,	add	an	EditText	view	and	a	Reply	button	to	the	second	activity.	The	user	can	now
type	a	reply	message	and	click	Reply,	and	the	reply	is	displayed	on	the	main	activity.	At	this	point,	use	an	intent	here	to
pass	the	reply	message	back	from	the	second	activity	to	the	main	activity.	

Introduction

93

Task	1.	Create	the	TwoActivities	project
In	this	task	you'll	set	up	the	initial	project	with	a	main	activity,	define	the	layout,	and	define	a	skeleton	method	for	the
	onClick		button	event.

1.1	Create	the	TwoActivities	project

1.	 Start	Android	Studio	and	create	a	new	Android	Studio	project.

Call	your	application	"Two	Activities"	and	change	the	company	domain	to	"android.example.com."	Choose	the	same
Minimum	SDK	that	you	used	in	the	previous	projects.

2.	 Choose	Empty	Activity	for	the	project	template.	Click	Next.
3.	 Accept	the	default	activity	name	(MainActivity).	Make	sure	the	Generate	Layout	file	box	is	checked.	Click	Finish.

1.2	Define	the	layout	for	the	main	activity

1.	 Open		res/layout/activity_main.xml	.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change
the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.

2.	 Click	the	Design	tab	at	the	bottom	of	the	screen	and	delete	the	TextView	that	says	"Hello	World."
3.	 Add	a	Button	to	the	layout	in	any	position.
4.	 Switch	to	the	XML	Editor	(click	the	Text	tab)	and	modify	these	attributes	in	the	Button:

Attribute Value

android:id "@+id/button_main"

android:layout_width wrap_content

android:layout_height wrap_content

android:layout_alignParentRight "true"

android:layout_alignParentBottom "true"

android:layout_alignParentEnd "true"

android:text "Send"

android:onClick "launchSecondActivity"

This	may	generate	an	error	that	"Method	launchSecondActivity	is	missing	in	MainActivity."	Please	ignore	this	error	for
now.	It	will	be	addressed	it	in	the	next	task.

5.	 Place	the	cursor	on	the	word	"Send"	.
6.	 Press	Alt-Enter	(Option-Enter	on	the	Mac)	and	select	Extract	string	resources.
7.	 Set	the	Resource	name	to		button_main		and	click	OK.

This	creates	a	string	resource	in	the	values/res/string.xml	file,	and	the	string	in	your	code	is	replaced	with	a	reference
to	that	string	resource.

8.	 Choose	Code	>	Reformat	Code	to	format	the	XML	code,	if	necessary.
9.	 Preview	the	layout	of	the	main	activity	using	the	Layout	Editor.	The	layout	should	look	like	this:

Introduction

94

Introduction

95

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.twoactivities.MainActivity">

				<Button

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/button_main"

							android:id="@+id/button_main"

							android:layout_alignParentBottom="true"

							android:layout_alignParentRight="true"

							android:layout_alignParentEnd="true"

							android:onClick="launchSecondActivity"/>

</RelativeLayout>

1.3	Define	the	button	action

In	this	task,you	will	implement	the	onClick	method	you	defined	in	the	layout.

1.	 In	the	XML	Editor,	place	the	cursor	on	the	word	"launchSecondActivity"	.
2.	 Press	Alt-Enter	(Option-Enter	on	the	Mac)	and	select	Create	'launchSecondActivity(View)'	in	'MainActivity.

The	MainActivity.java	files	opens,	and	Android	Studio	generates	a	skeleton	method	for	the	onClick	handler.

3.	 Inside		launchSecondActivity	,	add	a	log	statement	that	says	"Button	Clicked!"

Log.d(LOG_TAG,	"Button	clicked!");

LOG_TAG	will	show	as	red.	The	definitions	for	that	variable	will	be	added	in	a	later	step.

4.	 Place	the	cursor	on	the	word	"Log"	and	press	Alt-Enter	(Option-Enter	on	the	Mac).	Android	Studio	adds	an	import
statement	for	android.util.Log.

5.	 At	the	top	of	the	class,	add	a	constant	for	the	LOG_TAG	variable:

private	static	final	String	LOG_TAG	=

				MainActivity.class.getSimpleName();

This	constant	uses	the	name	of	the	class	itself	as	the	tag.

6.	 Run	your	app.	When	you	click	the	"Send"	button	you	will	see	the	"Button	Clicked!"	message	in	the	Android	Monitor
(logcat).	If	there's	too	much	output	in	the	monitor,	type	MainActivity	into	the	search	box	and	the	log	will	only	show	lines
that	match	that	tag.

Solution	code:

Introduction

96

package	com.example.android.twoactivities;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.util.Log;

import	android.view.View;

public	class	MainActivity	extends	AppCompatActivity	{

			private	static	final	String	LOG_TAG	=	MainActivity.class.getSimpleName();

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

			}

			public	void	launchSecondActivity(View	view)	{

							Log.d(LOG_TAG,	"Button	clicked!");

			}

}

Task	2.	Create	and	launch	the	second	activity
Each	new	activity	you	added	to	your	project	has	its	own	layout	and	Java	files,	separate	from	those	of	the	main	activity.	They
also	have	their	own		<activity>		elements	in	the	Android	manifest.	As	with	the	main	activity,	new	activities	you	create	in
Android	Studio	also	extend	from	the	AppCompatActivity	class.

All	the	activities	in	your	app	are	only	loosely	connected	with	each	other.	However,	you	can	define	an	activity	as	a	parent	of
another	activity	in	the	AndroidManifest.xml	file.	This	parent-child	relationship	enables	Android	to	add	navigation	hints	such
as	left-facing	arrows	in	the	title	bar	for	each	activity.

Activities	communicate	with	each	other	(both	in	the	same	app	and	across	different	apps)	with	intents.	There	are	two	types
of	intents,	explicit	and	implicit.	An	explicit	intent	is	one	in	which	the	target	of	that	intent	is	known,	that	is,	you	already	know
the	fully-qualified	class	name	of	that	specific	activity.	An	implicit	intent	is	one	in	which	you	do	not	have	the	name	of	the
target	component,	but	have	a	general	action	to	perform.	You'll	learn	about	implicit	intents	in	a	later	practical.

In	this	task	you'll	add	a	second	activity	to	our	app,	with	its	own	layout.	You'll	modify	the	Android	manifest	to	define	the	main
activity	as	the	parent	of	the	second	activity.	Then	you'll	modify	the		onClick		event	method	in	the	main	activity	to	include	an
intent	that	launches	the	second	activity	when	you	click	the	button.

2.1	Create	the	second	activity
1.	 Click	the	app	folder	for	your	project	and	choose	File	>	New	>	Activity	>	Empty	Activity.
2.	 Name	the	new	activity	"SecondActivity."	Make	sure	Generate	Layout	File	is	checked,	and	layout	name	will	be	filled	in

as	activity_second.
3.	 Click	Finish.	Android	Studio	adds	both	a	new	activity	layout	(activity_second)	and	a	new	Java	file	(SecondActivity)	to

your	project	for	the	new	activity.	It	also	updates	the	Android	manifest	to	include	the	new	activity.

2.2	Modify	the	Android	manifest
1.	 Open		manifests/AndroidManifest.xml	.
2.	 Find	the		<activity>		element	that	Android	Studio	created	for	the	second	activity.

<activity	android:name=".SecondActivity"></activity>

3.	 Add	these	attributes	to	the		<activity>		element:

Introduction

97

Attribute Value

android:label "Second	Activity"

android:parentActivityName ".MainActivity"

The		label		attribute	adds	the	title	of	the	activity	to	the	action	bar.

The		parentActivityName		attribute	indicates	that	the	main	activity	is	the	parent	of	the	second	activity.	This	parent
activity	relationship	is	used	for	"upward"	navigation	within	your	app.	By	defining	this	attribute,	the	action	bar	for	the
second	activity	will	appear	with	a	left-facing	arrow	to	enable	the	user	to	navigate	"upward"	to	the	main	activity.

4.	 Place	the	cursor	on	"Second	Activity"	and	press	Alt-Enter	(Option-Enter	on	the	Mac).
5.	 Choose	Extract	string	resource,	name	the	resource	"activity2_name",	and	click	OK.	Android	Studio	adds	a	string

resource	for	the	activity	label.
6.	 Add	a		<meta-data>		element	inside	the		<activity>		element	for	the	second	activity.	Use	these	attributes:

Attribute Value

android:name "android.support.PARENT_ACTIVITY"

android:value "com.example.android.twoactivities.MainActivity"

The		<meta-data>		element	provides	additional	arbitrary	information	about	the	activity	as	key-value	pairs.	In	this	case
these	attributes	accomplish	the	same	thing	as	the	android:parentActivityName	attribute	--	they	define	a	relationship
between	two	activities	for	the	purpose	of	upward	navigation.	These	attributes	are	required	for	older	versions	of
Android.	android:parentActivityName	is	only	available	for	API	levels	16	and	higher.

Solution	code:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

			package="com.example.android.twoactivities">

			<application

							android:allowBackup="true"

							android:icon="@mipmap/ic_launcher"

							android:label="@string/app_name"

							android:supportsRtl="true"

							android:theme="@style/AppTheme">

							<activity	android:name=".MainActivity">

											<intent-filter>

															<action	android:name="android.intent.action.MAIN"	/>

															<category	android:name="android.intent.category.LAUNCHER"	/>

											</intent-filter>

							</activity>

							<activity	android:name=".SecondActivity"

											android:label="@string/activity2_name"

											android:parentActivityName=".MainActivity">

											<meta-data

															android:name="android.support.PARENT_ACTIVITY"

															android:value="com.example.android.twoactivities.MainActivity"	/>

							</activity>

			</application>

</manifest>

2.3	Define	the	layout	for	the	second	activity

1.	 Open		res/layout/activity_second.xml		and	change	the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous
exercises.

2.	 Add	a	TextView	("Plain	Textview"	in	the	Layout	Editor).	Give	the	TextView	these	attributes:

Introduction

98

Attribute Value

android:id "@+id/text_header"

android:layout_width wrap_content

android:layout_height wrap_content

android:layout_marginBottom "@dimen/activity_vertical_margin"

android:text "Message	Received"

android:textAppearance "?android:attr/textAppearanceMedium"

android:textStyle "bold"

The	value	of	textAppearance	is	a	special	Android	theme	attribute	that	defines	basic	font	styles	for	small,	medium,	and
large	fonts.	You'll	learn	more	about	themes	in	a	later	lesson.

3.	 Extract	the	"Message	Received"	string	into	a	resource	named	text_header.
4.	 Preview	the	layout	in	the	Layout	Editor.	The	layout	should	look	like	this:

Introduction

99

Introduction

100

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context=".SecondActivity">

			<TextView

							android:id="@+id/text_header"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_marginBottom="@dimen/activity_vertical_margin"

							android:text="@string/text_header"

							android:textAppearance="?android:attr/textAppearanceMedium"

							android:textStyle="bold"	/>

</RelativeLayout>

2.4	Add	an	intent	to	the	main	activity

In	this	task	you'll	add	an	explicit	intent	to	the	main	activity.	This	intent	is	used	to	activate	the	second	activity	when	the	Send
button	is	clicked.

1.	 Open	the	Java	file	for		MainActivity		(java/com.example.android.twoactivities/MainActivity).
2.	 Create	a	new	intent	in	the		launchSecondActivity()		method.

The	Intent	constructor	takes	two	arguments	for	an	explicit	intent:	an	application	Context	and	the	specific	component
that	will	receive	that	intent.	Here	you	should	use		this		as	the	context,	and		SecondActivity.class		as	the	specific	class.

Intent	intent	=	new	Intent(this,	SecondActivity.class);

3.	 Place	the	cursor	on	Intent	and	press	Alt-Enter	(Option-Enter	on	the	Mac)	to	add	an	import	for	the	Intent	class.
4.	 Call	the	startActivity()	method	with	the	new	intent	as	the	argument.

startActivity(intent);

5.	 Run	the	app.

When	you	click	the	Send	button	the	main	activity	sends	the	intent	and	the	Android	system	launches	the	second
activity.	That	second	activity	appears	on	the	screen.	To	return	to	the	main	activity,	click	the	Android	Back	button	at	the
bottom	left	of	the	screen,	or	you	can	use	the	left	arrow	at	the	top	of	the	second	activity	to	return	to	the	main	activity.

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	What	happens	if	you	remove	the		android:parentActivityName		and	the		<meta-data>		elements	from	the
manifest?	Make	this	change	and	run	your	app.

Task	3.	Send	data	from	the	main	activity	to	the	second	activity
In	the	last	task,	you	added	an	explicit	intent	to	the	main	activity	that	activated	the	second	activity.	You	can	also	use	intents
to	send	data	from	one	activity	to	another.

Introduction

101

https://developer.android.com/reference/android/content/Context.html

In	this	task,	you'll	modify	the	explicit	intent	in	the	main	activity	to	include	additional	data	(in	this	case,	a	user-entered	string)
in	the	intent	extras.	You'll	then	modify	the	second	activity	to	get	that	data	back	out	of	the	intent	extras	and	display	it	on	the
screen.

3.1	Add	an	EditText	to	the	main	activity	layout

1.	 Open	res/layout/activity_main.xml.
2.	 Add	an	EditText	view	(Plain	Text	in	the	Layout	Editor.)	Give	the	EditText	these	attributes:

Attribute Value

android:id "@+id/editText_main"

android:layout_width match_parent

android:layout_height wrap_content

android:layout_toLeftOf "@+id/button_main"

android:layout_toStartOf "@+id/button_main"

android:layout_alignParentBottom "true"

android:hint "Enter	Your	Message	Here"

3.	 Delete	the	android:text	attribute.
4.	 Extract	the	"Enter	Your	Message	Here"	string	into	a	resource	named	editText_main.

The	new	layout	for	the	main	activity	looks	like	this:

Introduction

102

Introduction

103

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.twoactivities.MainActivity">

			<Button

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/button_main"

							android:id="@+id/button_main"

							android:layout_alignParentBottom="true"

							android:layout_alignParentRight="true"

							android:layout_alignParentEnd="true"

							android:onClick="launchSecondActivity"/>

			<EditText

							android:id="@+id/editText_main"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:layout_alignParentBottom="true"

							android:layout_toLeftOf="@+id/button_main"

							android:layout_toStartOf="@+id/button_main"

							android:hint="@string/editText_main"	/>

</RelativeLayout>

3.2	Add	a	string	to	the	main	activity's	intent	extras

Your	intent	object	can	pass	data	to	the	target	activity	in	two	ways:	in	the	data	field,	or	in	the	intent	extras.	The	intent's	data
is	a	URI	indicating	the	specific	data	to	be	acted	on.	If	the	information	you	want	to	pass	to	an	activity	through	an	intent	is	not
a	URI,	or	you	have	more	than	one	piece	of	information	you	want	to	send,	you	can	put	that	additional	information	into	the
intent	extras	instead.

The	intent	extras	are	key/value	pairs	in	a	Bundle.	A	bundle	is	a	collection	of	data,	stored	as	key/value	pairs.	To	pass
information	from	one	activity	to	another,	you	put	keys	and	values	into	the	intent	extra	bundle	from	the	sending	activity,	and
then	get	them	back	out	again	in	the	receiving	activity.

1.	 Open		java/com.example.android.twoactivities/MainActivity	.
2.	 Add	a	public	constant	at	the	top	of	the	class	to	define	the	key	for	the	intent	extra:

public	static	final	String	EXTRA_MESSAGE	=

				"com.example.android.twoactivities.extra.MESSAGE";

3.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	EditText	object.	Import	the	EditText	class.

private	EditText	mMessageEditText;

4.	 In	the	onCreate()	method,	use	findViewByID	to	get	a	reference	to	the	EditText	instance	and	assign	it	to	that	private
variable:

mMessageEditText	=	(EditText)	findViewById(R.id.editText_main);

5.	 In	the	launchSecondActivity()	method,	just	under	the	new	intent,	get	the	text	from	the	EditText	as	a	string:

String	message	=	mMessageEditText.getText().toString();

Introduction

104

https://developer.android.com/reference/android/os/Bundle.html

6.	 Add	that	string	to	the	intent	as	an	extra	with	the	EXTRA_MESSAGE	constant	as	the	key	and	the	string	as	the	value:

intent.putExtra(EXTRA_MESSAGE,	message);

Solution	code:

package	com.example.android.twoactivities;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.util.Log;

import	android.view.View;

import	android.widget.EditText;

public	class	MainActivity	extends	AppCompatActivity	{

			private	static	final	String	LOG_TAG	=	MainActivity.class.getSimpleName();

			public	static	final	String	EXTRA_MESSAGE	=

"com.example.android.twoactivities.extra.MESSAGE";

			private	EditText	mMessageEditText;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							mMessageEditText	=	(EditText)	findViewById(R.id.editText_main);

			}

			public	void	launchSecondActivity(View	view)	{

							Log.d(LOG_TAG,	"Button	clicked!");

							Intent	intent	=	new	Intent(this,	SecondActivity.class);

							String	message	=	mMessageEditText.getText().toString();

							intent.putExtra(EXTRA_MESSAGE,	message);

							startActivity(intent);

			}

}

3.3	Add	a	TextView	to	the	second	activity	for	the	message

1.	 Open		res/layout/activity_second.xml	.
2.	 Add	a	second	TextView.	Give	the	TextView	these	attributes:

Attribute Value

android:id "@+id/text_message"

android:layout_width wrap_content

android:layout_height wrap_content

android:layout_below "@+id/text_header"

android:layout_marginLeft "@dimen/activity_horizontal_margin"

android:layout_marginStart "@dimen/activity_horizontal_margin"

android:textAppearance "?android:attr/textAppearanceMedium"

3.	 Delete	the	android:text	attribute	(if	it	exists).

The	new	layout	for	the	second	activity	looks	the	same	as	it	did	in	the	previous	task,	because	the	new	TextView	does	not
(yet)	contain	any	text,	and	thus	does	not	appear	on	the	screen.

Introduction

105

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.twoactivities.SecondActivity">

			<TextView

							android:id="@+id/text_header"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/text_header"

							android:layout_marginBottom="@dimen/activity_vertical_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"

							android:textStyle="bold"/>

			<TextView

							android:id="@+id/text_message"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_below="@+id/text_header"

							android:layout_marginLeft="@dimen/activity_horizontal_margin"

							android:layout_marginStart="@dimen/activity_horizontal_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"	/>

</RelativeLayout>

3.4	Modify	the	second	activity	to	get	the	extras	and	display	the	message

1.	 Open		java/com.example.android.twoactivities/SecondActivity	.
2.	 In	the		onCreate()		method,	get	the	intent	that	activated	this	activity:

Intent	intent	=	getIntent();

3.	 Get	the	string	containing	the	message	from	the	intent	extras	using	the		MainActivity.EXTRA_MESSAGE		static	variable	as
the	key:

String	message	=

				intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

4.	 Use	findViewByID	to	get	a	reference	to	the	TextView	for	the	message	from	the	layout	(you	may	need	to	import	the
TextView	class):

TextView	textView	=	(TextView)	findViewById(R.id.text_message);

5.	 Set	the	text	of	that	TextView	to	the	string	from	the	intent	extra:

textView.setText(message);

6.	 Run	the	app.	When	you	type	a	message	in	the	main	activity	and	click	Send,	the	second	activity	is	launched	and
displays	that	message.

Solution	code:

Introduction

106

package	com.example.android.twoactivities;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.TextView;

public	class	SecondActivity	extends	AppCompatActivity	{

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_second);

							Intent	intent	=	getIntent();

							String	message	=

															intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

							TextView	textView	=	(TextView)	findViewById(R.id.text_message);

							textView.setText(message);

			}

}

Task	4.	Return	data	back	to	the	main	activity
Now	that	you	have	an	app	that	launches	a	new	activity	and	sends	data	to	it,	the	final	step	is	to	return	data	from	the	second
activity	back	to	the	main	activity.	You'll	also	use	intents	and	intent	extras	for	this	task.

4.1	Add	an	EditText	and	a	Button	to	the	second	activity	layout
1.	 Copy	the	EditText	and	Button	from	the	main	activity	layout	file	and	paste	them	into	the	second	layout.
2.	 In	the	activity_second.xml	file,	modify	the	attribute	values	for	both	the	Button	and	EditText	views.	Use	these	values:

Old	attribute	(Button) New	attribute	(Button)

android:id="@+id/button_main" android:id="@+id/button_second"

android:onClick=	"launchSecondActivity" android:onClick="returnReply"

android:text=	"@string/button_main" android:text=	"@string/button_second"

Old	attribute	(EditText) New	attribute	(EditText)

android:id="@+id/editText_main" android:id="@+id/editText_second"

android:layout_toLeftOf=	"@+id/button_main" android:layout_toLeftOf=	"@+id/button_second"

android:layout_toStartOf=	"@+id/button_main" android:layout_toStartOf=	"@+id/button_second"

android:hint=	"@string/editText_main" android:hint=	"@string/editText_second"

3.	 Open		res/values/strings.xml		and	add	string	resources	for	the	button	text	and	the	hint	in	the	EditText:

<string	name="button_second">Reply</string>

<string	name="editText_second">Enter	Your	Reply	Here</string>

4.	 In	the	XML	layout	editor,	place	the	cursor	on		"returnReply"	,	press	Alt-Enter	(Option-Enter	on	the	Mac)	and	select
Create	'returnReply(View)'	in	'SecondActivity'.

The	SecondActivity.java	files	open,	and	Android	Studio	generates	a	skeleton	method	for	the	onClick	handler.	You	will
implement	this	method	in	the	next	task.

The	new	layout	for	the	second	activity	looks	like	this:

Introduction

107

Introduction

108

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.twoactivities.SecondActivity">

			<TextView

							android:id="@+id/text_header"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/text_header"

							android:layout_marginBottom="@dimen/activity_vertical_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"

							android:textStyle="bold"/>

			<TextView

							android:id="@+id/text_message"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_below="@+id/text_header"

							android:layout_marginLeft="@dimen/activity_horizontal_margin"

							android:layout_marginStart="@dimen/activity_horizontal_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"	/>

			<Button

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/button_second"

							android:id="@+id/button_second"

							android:layout_alignParentBottom="true"

							android:layout_alignParentRight="true"

							android:layout_alignParentEnd="true"

							android:onClick="returnReply"/>

			<EditText

							android:id="@+id/editText_second"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:layout_alignParentBottom="true"

							android:layout_toLeftOf="@+id/button_second"

							android:layout_toStartOf="@+id/button_second"

							android:hint="@string/editText_second"	/>

</RelativeLayout>

4.2	Create	a	response	intent	in	the	second	activity

1.	 Open		java/com.example.android.twoactivities/SecondActivity	.
2.	 At	the	top	of	the	class,	add	a	public	constant	to	define	the	key	for	the	intent	extra:

public	static	final	String	EXTRA_REPLY	=					

				"com.example.android.twoactivities.extra.REPLY";

3.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	EditText	object.

private	EditText	mReply;

4.	 In	the	onCreate()	method,	use	findViewByID()	to	get	a	reference	to	the	EditText	instance	and	assign	it	to	that	private
variable:

Introduction

109

mReply	=	(EditText)	findViewById(R.id.editText_second);

5.	 In	the		returnReply()		method,	get	the	text	of	the	EditText	as	a	string:

String	reply	=	mReply.getText().toString();

6.	 Create	a	new	intent	for	the	response.
Note:	Do	not	reuse	the	intent	object	you	received	from	the	original	request.	Create	a	new	intent	for	the	response.

Intent	replyIntent	=	new	Intent();

7.	 Add	the	reply	string	from	the	EditText	to	the	new	intent	as	an	intent	extra.	Since	extras	are	key/value	pairs,	here	the
key	is	EXTRA_REPLY	and	the	the	value	is	the	reply:

replyIntent.putExtra(EXTRA_REPLY,	reply);

8.	 Set	the	result	to		RESULT_OK		to	indicate	the	response	was	successful.	Result	codes	(including	RESULT_OK	and
RESULT_CANCELLED)	are	defined	by	the	Activity	class.

setResult(RESULT_OK,replyIntent);

9.	 Call		finish()		to	close	the	activity	and	return	to	the	main	activity.

finish();

Solution	code:

Introduction

110

https://developer.android.com/reference/android/app/Activity.html

package	com.example.android.twoactivities;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.EditText;

import	android.widget.TextView;

public	class	SecondActivity	extends	AppCompatActivity	{

			public	static	final	String	EXTRA_REPLY	=

											"com.example.android.twoactivities.extra.REPLY";

			private	EditText	mReply;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_second);

							mReply	=	(EditText)	findViewById(R.id.editText_second);

							Intent	intent	=	getIntent();

							String	message	=

															intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

							TextView	textView	=	(TextView)	findViewById(R.id.text_message);

							textView.setText(message);

			}

			public	void	returnReply(View	view)	{

							String	reply	=	mReply.getText().toString();

							Intent	replyIntent	=	new	Intent();

							replyIntent.putExtra(EXTRA_REPLY,	reply);

							setResult(RESULT_OK,	replyIntent);

							finish();

			}

}

4.3	Add	TextViews	to	the	main	activity	layout	to	display	the	reply
The	main	activity	needs	a	way	to	display	the	reply	sent	back	from	the	second	activity.	In	this	task	you'll	add	TextViews	to	the
main	activity	layout	to	display	that	reply.	To	make	this	easier,	you	will	copy	the	TextViews	you	used	in	the	second	activity.

1.	 Copy	the	two	TextViews	for	the	message	display	from	the	second	activity	layout	file	and	paste	them	into	the	main
layout	above	the	existing	EditText	and	Button	views.

2.	 Modify	the	attribute	values	for	both	of	these	new	TextViews.	Use	these	values:

Old	attribute	(header	TextView) New	attribute	(header	TextView)

android:id="@+id/text_header" android:id="@+id/text_header_reply"

android:text="@string/text_header" android:text=	"@string/text_header_reply"

Old	attribute	(message	TextView) New	attribute	(message	TextView)

android:id="@+id/text_message" android:id="@+id/text_message_reply"

android:layout_below=	"@+id/text_header" android:layout_below=	"@+id/text_header_reply"

3.	 Add	the		android:visibility		attribute	to	each	of	the	TextViews	to	make	them	initially	invisible.	(Having	them	visible	on
the	screen,	but	without	any	content,	can	be	confusing	to	the	user.)	You	will	make	these	TextViews	visible	after	the
response	data	is	passed	back	from	the	second	activity.

android:visibility="invisible"

Introduction

111

4.	 Open	res/values/strings.xml	and	add	a	string	resource	for	the	reply	header:

<string	name="text_header_reply">Reply	Received</string>

The	layout	for	the	main	activity	looks	the	same	as	it	did	in	the	previous	task--although	you	have	added	two	new	TextViews
to	the	layout.	However,	since	you	set	the	TextViews	to	invisible,	they	do	not	appear	on	the	screen.

Solution	code:	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.twoactivities.MainActivity">

			<TextView

							android:id="@+id/text_header_reply"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/text_header_reply"

							android:visibility="invisible"

							android:layout_marginBottom="@dimen/activity_vertical_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"

							android:textStyle="bold"/>

			<TextView

							android:id="@+id/text_message_reply"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_below="@+id/text_header_reply"

							android:visibility="invisible"

							android:layout_marginLeft="@dimen/activity_horizontal_margin"

							android:layout_marginStart="@dimen/activity_horizontal_margin"

							android:textAppearance="?android:attr/textAppearanceMedium"	/>

			<Button

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:text="@string/button_main"

							android:id="@+id/button_main"

							android:layout_alignParentBottom="true"

							android:layout_alignParentRight="true"

							android:layout_alignParentEnd="true"

							android:onClick="launchSecondActivity"/>

			<EditText

							android:id="@+id/editText_main"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:layout_alignParentBottom="true"

							android:layout_toLeftOf="@+id/button_main"

							android:layout_toStartOf="@+id/button_main"

							android:hint="@string/editText_main"	/>

</RelativeLayout>

4.4	Get	the	reply	from	the	intent	extra	and	display	it
When	you	use	an	explicit	intent	to	start	another	activity,	you	may	not	expect	to	get	any	data	back	--	you're	just	activating
that	activity.	In	that	case,	you	use	startActivity()	to	start	the	new	activity,	as	you	did	earlier	in	this	lesson.	If	you	want	to	get
data	back	from	the	activated	activity,	however,	you'll	need	to	start	it	with	startActivityFromResult().

In	this	task	you'll	modify	the	app	to	start	the	second	activity	and	expect	a	result,	to	extract	that	return	data	from	the	intent,
and	to	display	that	data	in	the	TextViews	you	created	in	the	last	task.

Introduction

112

1.	 Open		java/com.example.android.twoactivities/MainActivity	.
2.	 Add	a	public	constant	at	the	top	of	the	class	to	define	the	key	for	a	particular	type	of	response	you're	interested	in:

public	static	final	int	TEXT_REQUEST	=	1;

3.	 Add	two	private	variables	to	hold	the	reply	header	and	reply	TextViews:

private	TextView	mReplyHeadTextView;

private	TextView	mReplyTextView;

4.	 In	the	onCreate()	method,	use	findViewByID	to	get	references	from	the	layout	to	the	reply	header	and	reply	TextView.
Assign	those	view	instances	to	the	private	variables:

mReplyHeadTextView	=	(TextView)	findViewById(R.id.text_header_reply);

mReplyTextView	=	(TextView)	findViewById(R.id.text_message_reply);

5.	 In	the		launchSecondActivity()		method,	modify	the	call	to		startActivity()	to	be		startActivityForResult()	,	and
include	the		TEXT_REQUEST		key	as	an	argument:

startActivityForResult(intent,	TEXT_REQUEST);

6.	 Create	the		onActivityResult()		callback	method	with	this	signature:

public	void	onActivityResult(int	requestCode,	int	resultCode,

				Intent	data)	{}

7.	 Inside	onActivityResult(),	call		super.onActivityResult()	:

super.onActivityResult(requestCode,	resultCode,	data);

8.	 Add	code	to	test	for	both		TEXT_REQUEST		(to	process	the	right	intent	result,	in	case	there	are	multiple	ones)	and	the
	RESULT_CODE		(to	make	sure	the	request	was	successful):

if	(requestCode	==	TEXT_REQUEST)	{

				if	(resultCode	==	RESULT_OK)	{

				}

}

9.	 Inside	the	inner	if	block,	get	the	intent	extra	from	the	response	intent	(data).	Here	the	key	for	the	extra	is	the
EXTRA_REPLY	constant	from	SecondActivity:

String	reply	=	data.getStringExtra(SecondActivity.EXTRA_REPLY);

10.	 Set	the	visibility	of	the	reply	header	to	true:

mReplyHeadTextView.setVisibility(View.VISIBLE);

11.	 Set	the	reply	textview	text	to	the	reply,	and	set	its	visibility	to	true:

mReplyTextView.setText(reply);

mReplyTextView.setVisibility(View.VISIBLE);

12.	 Run	the	app.

Now,	when	you	send	a	message	to	the	second	activity	and	get	a	reply	back,	the	main	activity	updates	to	display	the
reply.

Introduction

113

Introduction

114

Solution	code:

package	com.example.android.twoactivities;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.util.Log;

import	android.view.View;

import	android.widget.EditText;

import	android.widget.TextView;

public	class	MainActivity	extends	AppCompatActivity	{

			private	static	final	String	LOG_TAG	=	MainActivity.class.getSimpleName();

			public	static	final	String	EXTRA_MESSAGE	=

								"com.example.android.twoactivities.extra.MESSAGE";

			public	static	final	int	TEXT_REQUEST	=	1;

			private	EditText	mMessageEditText;

			private	TextView	mReplyHeadTextView;

			private	TextView	mReplyTextView;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							mMessageEditText	=	(EditText)	findViewById(R.id.editText_main);

							mReplyHeadTextView	=	(TextView)	findViewById(R.id.text_header_reply);

							mReplyTextView	=	(TextView)	findViewById(R.id.text_message_reply);

			}

			public	void	launchSecondActivity(View	view)	{

							Log.d(LOG_TAG,	"Button	clicked!");

							Intent	intent	=	new	Intent(this,	SecondActivity.class);

							String	message	=	mMessageEditText.getText().toString();

							intent.putExtra(EXTRA_MESSAGE,	message);

							startActivityForResult(intent,	TEXT_REQUEST);

			}

			public	void	onActivityResult(int	requestCode,	int	resultCode,

																																Intent	data)	{

							super.onActivityResult(requestCode,	resultCode,	data);

							if	(requestCode	==	TEXT_REQUEST)	{

											if	(resultCode	==	RESULT_OK)	{

															String	reply	=

																			data.getStringExtra(SecondActivity.EXTRA_REPLY);

															mReplyHeadTextView.setVisibility(View.VISIBLE);

															mReplyTextView.setText(reply);

															mReplyTextView.setVisibility(View.VISIBLE);

											}

							}

			}

}

Solution	code
Android	Studio	project:	TwoActivities

Coding	challenge

Introduction

115

https://github.com/google-developer-training/android-fundamentals/tree/master/TwoActivities

Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Create	an	app	with	three	buttons	labelled:	Text	One,	Text	Two,	and	Text	Three.	When	any	of	those	buttons	are
clicked,	launch	a	second	activity.	That	second	activity	should	contain	a	ScrollView	that	displays	one	of	three	text	passages
(you	can	include	your	choice	of	passages).	Use	intents	to	both	launch	the	second	activity	and	intent	extras	to	indicate
which	of	the	three	passages	to	display.

Summary
In	this	practical,	you	have	learned	that:

An	Activity	is	an	application	component	that	provides	a	single	screen	focussed	on	a	single	user	task.
Each	activity	has	its	own	user	interface	layout	file.
You	can	assign	your	activities	a	parent/child	relationship	to	enable	"upward"	navigation	within	your	app.
To	implement	an	activity	in	your	app,	do	the	following:

Create	an	activity	Java	class.
Implement	a	user	interface	for	that	activity.
Declare	that	new	activity	in	the	app	manifest.
When	you	create	a	new	project	for	your	app,	or	add	a	new	activity	to	your	app,	in	Android	Studio	(with	File	>	New	>
Activity),	template	code	for	each	of	these	tasks	is	provided	for	you.
Intents	allow	you	to	request	an	action	from	another	component	in	your	app,	for	example,	to	start	one	activity	from
another.	Intents	can	be	explicit	or	implicit.

With	explicit	intents	you	indicate	the	specific	target	component	to	receive	the	data.
With	implicit	intents	you	specify	the	functionality	you	want	but	not	the	target	component.
Intents	can	include	data	on	which	to	perform	an	action	(as	a	URI)	or	additional	information	as	intent	extras.
Intent	extras	are	key/value	pairs	in	a	bundle	that	are	sent	along	with	the	intent.

Views	can	be	made	visible	or	invisible	with	the		android:visibility		attribute

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Activities	and	Intents

Learn	more
Android	Application	Fundamentals
Starting	Another	Activity
Activity	(API	Guide)
Activity	(API	Reference)
Intents	and	Intent	Filters	(API	Guide)
Intent	(API	Reference)

Introduction

116

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/21_c_understanding_activities_and_intents.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/training/basics/firstapp/starting-activity.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html

2.2:	Activity	Lifecycle	and	Instance	State
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Add	lifecycle	callbacks	to	TwoActivities
Task	2.	Save	and	restore	activity	state
Coding	challenge
Summary
Related	concept
Learn	more

In	this	practical	you'll	learn	more	about	the	activity	lifecycle.	The	activity	lifecycle	is	the	set	of	states	an	activity	can	be	in
during	its	entire	lifetime,	from	the	time	it	is	initially	created	to	when	it	is	destroyed	and	the	system	reclaims	that	activity's
resources.	As	a	user	navigates	between	activities	in	your	app	(as	well	as	into	and	out	of	your	app),	those	activities	each
transition	between	different	states	in	the	activity	lifecycle.

Each	stage	in	the	lifecycle	of	an	activity	has	a	corresponding	callback	method	(onCreate(),	onStart(),	onPause(),	and	so
on).	When	an	activity	changes	state,	the	associated	callback	method	is	invoked.	You've	already	seen	one	of	these
methods:	onCreate().	By	overriding	any	of	the	lifecycle	callback	methods	in	your	activity	classes,	you	can	change	the
default	behavior	of	how	your	activity	behaves	in	response	to	different	user	or	system	actions.

Changes	to	the	activity	state	can	also	occur	in	response	to	device	configuration	changes	such	as	rotating	the	device	from
portrait	to	landscape.	These	configuration	changes	result	in	the	activity	being	destroyed	and	entirely	recreated	in	its	default
state,	which	may	cause	the	loss	of	information	the	user	has	entered	in	that	activity.	It's	important	to	develop	your	app	to
prevent	this	to	avoid	user	confusion.	Later	in	this	practical	we'll	experiment	with	configuration	changes	and	learn	how	to
preserve	the	state	of	your	activities	in	response	to	device	configuration	changes	or	other	Activity	lifecycle	events.

In	this	practical	you'll	add	logging	statements	to	the	TwoActivities	app	and	observe	the	lifecycle	changes	as	you	use	the
app	in	various	ways.	You	will	then	begin	working	with	these	changes	and	exploring	how	to	handle	user	input	under	these
conditions..

What	you	should	already	KNOW

Introduction

117

From	the	previous	practicals,	you	should	be	able	to:

Create	and	running	an	app	project	in	Android	Studio.
Add	log	statements	to	your	app	and	viewing	those	logs	in	the	Android	Monitor	(logcat).
Understand	and	work	with	activities	and	intents,	and	be	comfortable	interacting	with	them.

What	you	will	LEARN
You	will	learn	to:

Understand	the	activity	lifecycle,	and	when	activities	are	created,	pause,	stop,	and	are	destroyed.
Understand	the	lifecycle	callback	methods	associated	with	activity	changes.
Understand	the	effect	of	actions	such	as	configuration	changes	that	can	result	in	activity	lifecycle	events.
Retain	activity	state	across	lifecycle	events.

What	you	will	DO
In	this	practical,	you	will:

Extend	the	TwoActivities	app	from	the	previous	practical	to	implement	the	various	activity	lifecycle	callbacks	to	include
logging	statements.
Observe	the	state	changes	as	your	app	runs	and	as	you	interact	with	the	activities	in	your	app.
Modify	your	app	to	retain	the	instance	state	of	an	activity	that	is	unexpectedly	recreated	in	response	to	user	behavior
or	configuration	change	on	the	device.

App	Overview
For	this	practical	you'll	add	onto	the	TwoActivities	app.	The	app	looks	and	behaves	roughly	the	same	as	it	did	in	the	last
section:	with	two	activities	and	two	messages	you	can	send	between	them.	The	changes	you	make	to	the	app	in	this
practical	will	not	affect	its	visible	user	behavior.

Task	1.	Add	Lifecycle	Callbacks	to	TwoActivities
In	this	task	you	will	implement	all	of	the	activity	lifecycle	callback	methods	to	print	messages	to	logcat	when	those	methods
are	invoked.	These	log	messages	will	allow	you	to	see	when	the	activity	lifecycle	changes	state,	and	how	those	lifecycle
state	changes	affect	your	app	as	it	runs.

1.1	(Optional)	Copy	the	TwoActivities	Project

For	the	tasks	in	this	practical,	you	will	modify	the	existing	TwoActivities	project	that	you	built	in	the	last	practical.	If	you'd
prefer	to	keep	the	previous	TwoActivities	project	intact,	follow	the	steps	in	the	Appendix	to	make	a	copy	of	the	project.

1.2	Implement	callbacks	in	to	MainActivity

1.	 Open	java/com.example.android.twoactivities/MainActivity.
2.	 In	the	onCreate()	method,	add	the	following	log	statements:

Log.d(LOG_TAG,	"-------");

Log.d(LOG_TAG,	"onCreate");

3.	 Add	a	new	method	for	the	onStart()	callback,	with	a	statement	to	the	log	for	that	event:

Introduction

118

https://github.com/google-developer-training/android-fundamentals/tree/master/TwoActivities
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

@Override

public	void	onStart(){

				super.onStart();

				Log.d(LOG_TAG,	"onStart");

}

TIP:	Select	Code	>	Override	Methods	in	Android	Studio.	A	dialog	appears	with	all	of	the	possible	methods	you	can
override	in	your	class.	Choosing	one	or	more	callback	methods	from	the	list	inserts	a	complete	template	for	those
methods,	including	the	required	call	to	the	superclass.

4.	 Use	the	onStart()	method	as	a	template	to	implement	the	other	lifecycle	callbacks:

onPause()
onRestart()
onResume()
onStop()
onDestroy()

All	the	callback	methods	have	the	same	signatures	(except	for	the	name).	If	you	copy	and	paste	onStart()	to	create
these	other	callback	methods,	don't	forget	to	update	the	contents	to	call	the	right	method	in	the	superclass,	and	to	log
the	correct	method.

5.	 Build	and	run	your	app.

Solution	Code	(not	the	entire	class):

Introduction

119

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			Log.d(LOG_TAG,	"-------");

			Log.d(LOG_TAG,	"onCreate");

			mMessageEditText	=	(EditText)	findViewById(R.id.editText_main);

			mReplyHeadTextView	=	(TextView)	findViewById(R.id.text_header_reply);

			mReplyTextView	=	(TextView)	findViewById(R.id.text_message_reply);

}

@Override

public	void	onStart(){

			super.onStart();

			Log.d(LOG_TAG,	"onStart");

}

@Override

public	void	onRestart()	{

			super.onRestart();

			Log.d(LOG_TAG,	"onRestart");

}

@Override

public	void	onResume()	{

			super.onResume();

			Log.d(LOG_TAG,	"onResume");

}

@Override

public	void	onPause()	{

			super.onPause();

			Log.d(LOG_TAG,	"onPause");

}

@Override

public	void	onStop()	{

			super.onStop();

			Log.d(LOG_TAG,	"onStop");

}

@Override

public	void	onDestroy()	{

			super.onDestroy();

			Log.d(LOG_TAG,	"onDestroy");

}

1.3	Implement	lifecycle	callbacks	in	SecondActivity
Now	that	you've	implemented	the	lifecycle	callback	methods	for	MainActivity,	do	the	same	for	SecondActivity.

1.	 Open	java/com.example.android.twoactivities/SecondActivity.
2.	 At	the	top	of	the	class,	add	a	constant	for	the	LOG_TAG	variable:

private	static	final	String	LOG_TAG	=

					SecondActivity.class.getSimpleName();

3.	 Add	the	lifecycle	callbacks	and	log	statements	to	the	second	activity.	(You	can	also	just	copy	and	paste	the	callback
methods	from	MainActivity)

4.	 Add	a	log	statement	to	the	returnReply()	method,	just	before	the	finish()	method:

Log.d(LOG_TAG,	"End	SecondActivity");

Solution	Code	(not	the	entire	class):

Introduction

120

private	static	final	String	LOG_TAG	=	SecondActivity.class.getSimpleName();

public	void	returnReply(View	view)	{

			String	reply	=	mReply.getText().toString();

			Intent	replyIntent	=	new	Intent();

			replyIntent.putExtra(EXTRA_REPLY,	reply);

			setResult(RESULT_OK,	replyIntent);

			Log.d(LOG_TAG,	"End	SecondActivity");

			finish();

}

@Override

protected	void	onStart()	{

			super.onStart();

			Log.d(LOG_TAG,	"onStart");

}

@Override

public	void	onRestart()	{

			super.onRestart();

			Log.d(LOG_TAG,	"onRestart");

}

@Override

public	void	onResume()	{

			super.onResume();

			Log.d(LOG_TAG,	"onResume");

}

@Override

public	void	onPause()	{

			super.onPause();

			Log.d(LOG_TAG,	"onPause");

}

@Override

public	void	onStop()	{

			super.onStop();

			Log.d(LOG_TAG,	"onStop");

}

@Override

public	void	onDestroy()	{

			super.onDestroy();

			Log.d(LOG_TAG,	"onDestroy");

}

1.4	Observe	the	log	as	the	app	runs
1.	 Run	your	app.
2.	 Click	Android	Monitor	at	the	bottom	of	Android	Studio	to	open	the	Android	Monitor.
3.	 Select	the	logcat	tab.
4.	 Type	"Activity"	in	the	Android	Monitor	search	box.

Introduction

121

The	Android	logcat	can	be	very	long	and	cluttered.	Because	the	LOG_TAG	variable	in	each	class	contains	either	the
words	MainActivity	or	SecondActivity,	this	keyword	lets	you	filter	the	log	for	only	the	things	you're	interested	in.	

5.	 Experiment	using	your	app	and	note	that	the	lifecycle	events	occur	in	response	to	different	actions.	In	particular,	try
these	things:

Use	the	app	normally	(send	a	message,	reply	with	another	message.)
Use	the	back	button	to	go	back	from	the	second	activity	to	the	main	activity.
Use	the	left	arrow	in	the	action	bar	to	go	back	from	the	second	activity	to	the	main	activity.
Rotate	the	device	on	both	the	main	and	second	activity	at	different	times	in	your	app	and	observe	what	happens	in
the	log	and	on	the	screen.	TIP:	If	you're	running	your	app	in	an	emulator,	you	can	simulate	rotation	with	Ctrl-F11	or
Ctrl-Fn-F11.
Press	the	overview	button	(the	square	button	to	the	right	of	Home)	and	close	the	app	(tap	the	X).
Return	to	the	home	screen	and	restart	your	app.

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Watch	for	onDestroy()	in	particular.	Why	is	onDestroy()	called	sometimes	(after	clicking	the	back	button,	or	on
device	rotation)	and	not	others	(manually	stopping	and	restarting	the	app)?

Task	2.	Save	and	restore	the	activity	instance	state
Depending	on	system	resources	and	user	behavior,	the	activities	in	your	app	may	be	destroyed	and	reconstructed	far	more
frequently	than	you	might	think.	You	may	have	noticed	this	set	of	activities	in	the	last	section	when	you	rotated	the	device	or
emulator.	Rotating	the	device	is	one	example	of	a	device	configuration	change.	Although	rotation	is	the	most	common	one,
all	configuration	changes	result	in	the	current	activity	being	destroyed	and	recreated	as	if	it	were	new.	If	you	don't	account
for	this	behavior	in	your	code,	when	a	configuration	change	occurs,	your	activity's	layout	may	revert	to	its	default
appearance	and	initial	values,	and	your	user	may	lose	their	place,	their	data,	or	the	state	of	their	progress	in	your	app.

Introduction

122

The	state	of	each	activity	is	stored	as	a	set	of	key/value	pairs	in	a	Bundle	object	called	the	activity	instance	state.	The
system	saves	default	state	information	to	instance	state	bundle	just	before	the	activity	is	stopped,	and	passes	that	bundle
to	the	new	activity	instance	to	restore.

To	keep	from	losing	data	in	your	activities	when	they	are	unexpectedly	destroyed	and	recreated,	you	need	to	implement	the
onSaveInstanceState()	method.	The	system	calls	this	method	on	your	activity	(between	onPause()	and	onStop())	when
there	is	a	possibility	the	activity	may	be	destroyed	and	recreated.

The	data	you	save	in	the	instance	state	is	specific	to	only	this	instance	of	this	specific	activity	during	the	current	app
session.	When	you	stop	and	restart	a	new	app	session,	the	activity	instance	state	is	lost	and	your	activities	will	revert	to
their	default	appearance.	If	you	need	to	save	user	data	between	app	sessions,	use	shared	preferences	or	a	database.
You'll	learn	about	both	of	these	in	a	later	practical.

2.1	Save	the	activity	instance	state	with	onSaveInstanceState()
You	may	have	noticed	that	rotating	the	device	does	not	affect	the	state	of	the	second	activity	at	all.	This	is	because	the
second	activity's	layout	and	state	are	generated	from	the	layout	and	the	intent	that	activated	it.	Even	if	the	activity	is
recreated,	the	intent	is	still	there	and	the	data	in	that	intent	is	still	used	each	time	the	second	activity's	onCreate()	is	called.

In	addition,	you	may	notice	that	in	both	activities,	any	text	you	typed	into	message	or	reply	EditTexts	is	retained	even	when
the	device	is	rotated.	This	is	because	the	state	information	of	some	of	the	views	in	your	layout	are	automatically	saved
across	configuration	changes,	and	the	current	value	of	an	EditText	is	one	of	those	cases.

The	only	activity	states	you're	interested	in	are	the	TextViews	for	the	reply	header	and	the	reply	text	in	the	main	activity.
Both	TextViews	are	invisible	by	default;	they	only	appear	once	you	send	a	message	back	to	the	main	activity	from	the
second	activity.

In	this	task	you'll	add	code	to	preserve	the	instance	state	of	these	two	TextViews	using	onSaveInstanceState().

1.	 Open	java/com.example.android.twoactivities/MainActivity.
2.	 Add	this	skeleton	implementation	of	onSaveInstanceState()	to	the	activity,	or	use	Code	>	Override	Methods	to	insert

a	skeleton	override.

@Override

public	void	onSaveInstanceState(Bundle	outState)	{

					super.onSaveInstanceState(outState);

}

3.	 Check	to	see	if	the	header	is	currently	visible,	and	if	so	put	that	visibility	state	into	the	state	bundle	with	the
putBoolean()	method	and	the	key	"reply_visible".

if	(mReplyHeadTextView.getVisibility()	==	View.VISIBLE)	{

				outState.putBoolean("reply_visible",	true);

}

Remember	that	the	reply	header	and	text	are	marked	invisible	until	there	is	a	reply	from	the	second	activity.	If	the
header	is	visible,	then	there	is	reply	data	that	needs	to	be	saved.	We're	only	interested	in	that	visibility	state	--	the
actual	text	of	the	header	doesn't	need	to	be	saved,	because	that	text	never	changes.

4.	 Inside	that	same	check,	add	the	reply	text	into	the	bundle.

outState.putString("reply_text",	mReplyTextView.getText().toString());

If	the	header	is	visible	you	can	assume	that	the	reply	message	itself	is	also	visible.	You	don't	need	to	test	for	or	save
the	current	visibility	state	of	the	reply	message.	Only	the	actual	text	of	the	message	goes	into	the	state	bundle	with	the
key	"reply_text".

We	only	save	the	state	of	those	views	that	might	change	after	the	activity	is	created.

Introduction

123

The	other	views	in	your	app	(the	EditText,	the	Button)	can	be	recreated	from	the	default	layout	at	any	time.

Note:	The	system	will	save	the	state	of	some	views,	such	as	the	contents	of	the	EditText.

Solution	Code	(not	the	entire	class):

@Override

public	void	onSaveInstanceState(Bundle	outState)	{

			super.onSaveInstanceState(outState);

			//	If	the	heading	is	visible,	we	have	a	message	that	needs	to	be	saved.

			//	Otherwise	we're	still	using	default	layout.

			if	(mReplyHeadTextView.getVisibility()	==	View.VISIBLE)	{

							outState.putBoolean("reply_visible",	true);

							outState.putString("reply_text",	mReplyTextView.getText().toString());

			}

}

2.2	Restore	the	activity	instance	state	in	onCreate()
Once	you've	saved	the	activity	instance	state,	you	also	need	to	restore	it	when	the	activity	is	recreated.	You	can	do	this
either	in	onCreate(),	or	by	implementing	the	onRestoreInstanceState()	callback,	which	is	called	after	onStart()	after	the
activity	is	created.

Most	of	the	time	the	better	place	to	restore	the	activity	state	is	in	onCreate(),	to	ensure	that	your	user	interface	including	the
state	is	available	as	soon	as	possible.	It	is	sometimes	convenient	to	do	it	in	onRestoreInstanceState()	after	all	of	the
initialization	has	been	done,	or	to	allow	subclasses	to	decide	whether	to	use	your	default	implementation.

1.	 In	the	onCreate()	method,	add	a	test	to	make	sure	the	bundle	is	not	null.

if	(savedInstanceState	!=	null)	{

}

When	your	activity	is	created,	the	system	passes	the	state	bundle	to	onCreate()	as	its	only	argument.	The	first	time
onCreate()	is	called	and	your	app	starts,	the	bundle	is	null	-	there's	no	existing	state	the	first	time	your	app	starts.
Subsequent	calls	to	onCreate()	have	a	bundle	populated	with	any	the	data	you	stored	in	onSaveInstanceState().

2.	 Inside	that	check,	get	the	current	visibility	(true	or	false)	out	of	the	bundle	with	the	key	"reply_visible"

if	(savedInstanceState	!=	null)	{

				boolean	isVisible	=

				savedInstanceState.getBoolean("reply_visible");

}

3.	 Add	a	test	below	that	previous	line	for	the	isVisible	variable.

if	(isVisible)	{

}

If	there's	a	reply_visible	key	in	the	state	bundle	(and	isVisible	is	thus	true),	we	will	need	to	restore	the	state.

4.	 Inside	the	isVisible	test,	make	the	header	visible.

mReplyHeadTextView.setVisibility(View.VISIBLE);

5.	 Get	the	text	reply	message	from	the	bundle	with	the	key	"reply_text",	and	set	the	reply	TextView	to	show	that	string.

mReplyTextView.setText(savedInstanceState.getString("reply_text"));

6.	 Make	the	reply	TextView	visible	as	well:

Introduction

124

mReplyTextView.setVisibility(View.VISIBLE);

7.	 Run	the	app.	Try	rotating	the	device	or	the	emulator	to	ensure	that	the	reply	message	(if	there	is	one)	remains	on	the
screen	after	the	activity	is	recreated.

Solution	Code	(not	the	entire	class):

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			Log.d(LOG_TAG,	"-------");

			Log.d(LOG_TAG,	"onCreate");

			//	Initialize	all	the	view	variables.

			mMessageEditText	=	(EditText)	findViewById(R.id.editText_main);

			mReplyHeadTextView	=	(TextView)	findViewById(R.id.text_header_reply);

			mReplyTextView	=	(TextView)	findViewById(R.id.text_message_reply);

			//	Restore	the	saved	state.	See	onSaveInstanceState()	for	what	gets	saved.

			if	(savedInstanceState	!=	null)	{

							boolean	isVisible	=	savedInstanceState.getBoolean("reply_visible");

							//	Show	both	the	header	and	the	message	views.	If	isVisible	is

							//	false	or	missing	from	the	bundle,	use	the	default	layout.

							if	(isVisible)	{

											mReplyHeadTextView.setVisibility(View.VISIBLE);

											mReplyTextView.setText(savedInstanceState.getString("reply_text"));

											mReplyTextView.setVisibility(View.VISIBLE);

							}

			}

}

Solution	code
Android	Studio	Project:	TwoActivitiesLifecycle

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Create	a	simple	shopping	list	builder	app	with	two	activities.	The	main	activity	contains	the	list	itself,	which	is
made	up	of	ten	(empty)	text	views.	A	button	on	the	main	activity	labelled	"Add	Item"	launches	a	second	activity	that
contains	a	list	of	common	shopping	items	(Cheese,	Rice,	Apples,	and	so	on).	Use	Buttons	to	display	the	items.	Choosing
an	item	returns	you	to	the	main	activity,	and	updates	an	empty	TextView	to	include	the	chosen	item.

Use	intents	to	pass	information	between	the	two	activities.	Make	sure	that	the	current	state	of	the	shopping	list	is	saved
when	you	rotate	the	device.

Summary
The	Activity	lifecycle	is	a	set	of	states	an	activity	migrates	through,	beginning	when	it	is	first	created	and	ending	when
the	Android	system	reclaims	that	activity's	resources.
As	the	user	navigates	between	activities	and	inside	and	outside	of	your	app,	each	activity	moves	between	states	in	the
activity	lifecycle.
Each	state	in	the	activity	lifecycle	has	a	corresponding	callback	method	you	can	override	in	your	Activity	class.	Those
lifecycle	methods	are:

Introduction

125

https://github.com/google-developer-training/android-fundamentals/tree/master/TwoActivities

onCreate()
onStart()
onPause()
onRestart()
onResume()
onStop()
onDestroy()

Overriding	a	lifecycle	callback	method	allows	you	to	add	behavior	that	occurs	when	your	activity	transitions	into	that
state.
You	can	add	skeleton	override	methods	to	your	classes	in	Android	Studio	with	Code	>	Override.
Device	configuration	changes	such	as	rotation	results	in	the	activity	being	destroyed	and	recreated	as	if	it	were	new.
A	portion	of	the	activity	state	is	preserved	on	a	configuration	change,	including	the	current	values	of	of	EditTexts.	For
all	other	data,	you	must	explicitly	save	that	data	yourself.
Save	activity	instance	state	in	the	onSaveInstanceState()	method.
Instance	state	data	is	stored	as	simple	key/value	pairs	in	a	Bundle.	Use	the	Bundle	methods	to	put	data	into	and	get
data	back	out	of	the	bundle.
Restore	the	instance	state	in	onCreate(),	which	is	the	preferred	way,	or	onRestoreInstanceState().

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Activity	Lifecycle	and	Saving	State

Learn	more
Activity	(API	Guide)
Activity	(API	Reference)
Managing	the	Activity	Lifecycle
Recreating	an	Activity
Handling	Runtime	Changes

Introduction

126

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/22_c_the_activity_lifecycle_and_managing_state.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/guide/topics/resources/runtime-changes.html

2.3:	Start	Activities	with	Implicit	Intents
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	new	project	and	layout
Task	2.	Implement	open	website
Task	3.	Implement	open	location
Task	4.	Implement	share	this	text
Task	5.	Receive	implicit	intents
Coding	challenge
Summary
Related	concept
Learn	more

In	a	previous	section	you	learned	about	explicit	intents	--	activating	a	specific	activity	in	your	app	or	a	different	app	by
sending	an	intent	with	the	fully-qualified	class	name	of	that	activity.	In	this	section	you'll	learn	more	about	implicit	intents,
and	how	you	can	use	them	to	activate	activities	as	well.

Implicit	intents	allow	you	to	activate	an	activity	if	you	know	the	action,	but	not	the	specific	app	or	activity	that	will	handle	that
action.	For	example,	if	you	want	your	app	to	take	a	photo,	or	send	email,	or	display	a	location	on	a	map,	you	typically	do
not	care	which	specific	app	or	activity	actually	performs	these	actions.

Conversely,	your	activities	can	declare	one	or	more	intent	filters	in	the	Android	manifest	that	advertise	that	activity's	ability
to	accept	implicit	intents	and	to	define	the	particular	type	of	intents	it	will	accept.

To	match	your	request	with	a	specific	app	installed	on	the	device,	the	Android	system	matches	your	implicit	intent	with	an
activity	whose	intent	filters	indicate	that	they	can	perform	that	action.	If	there	are	multiple	apps	installed	that	match,	the	user
is	presented	with	an	app	chooser	that	lets	them	select	which	app	they	want	to	use	to	handle	that	intent.

In	this	practical	you'll	build	an	app	that	sends	three	implicit	intents:	to	open	a	URL	in	a	web	browser,	to	open	a	location	on	a
map,	and	to	share	a	bit	of	text.	Sharing	--	sending	a	piece	of	information	to	other	people	through	email	or	social	media	--	is
a	common	and	popular	feature	in	many	apps.	For	the	sharing	action	we'll	use	the	ShareCompat.IntentBuilder	class,	which
makes	it	easy	to	build	intents	for	sharing	data.

Finally,	we'll	create	a	simple	intent	receiver	app	that	accepts	implicit	intents	for	a	specific	action.

What	you	should	already	KNOW
From	the	previous	practicals,	you	should	be	able	to:

Create	and	use	activities.
Create	and	send	intents	between	activities.

What	you	will	LEARN
You	will	learn	to:

Create	implicit	intents,	and	use	their	actions	and	categories.
Use	the	ShareCompat.IntentBuilder	helper	class	to	easily	create	implicit	intents	for	sharing	data.
Advertise	that	your	app	can	accept	implicit	intents	by	declaring	intent	filters	in	the	Andriod	manifest

Introduction

127

What	you	will	DO
In	this	practical	you	will:

Create	a	new	app	to	send	implicit	intents.
Implement	two	implicit	intents	that	open	a	web	page	and	open	a	location	on	a	map.
Implement	an	action	to	share	a	snippet	of	text.
Create	a	new	app	that	can	accept	implicit	intents	for	opening	a	web	page.

App	overview
In	this	section	you'll	create	a	new	app	with	one	activity	and	three	options	for	actions:	open	a	web	site,	open	a	location	on	a
map,	and	share	a	snippet	of	text.	All	of	the	text	fields	are	editable	(EditText),	but	contain	default	values.

Introduction

128

Introduction

129

Task	1.	Create	new	project	and	layout
For	this	exercise,	you'll	create	a	new	project	and	app	called	Implicit	Intents	with	a	new	layout.

1.1	Create	the	project

1.	 Start	Android	Studio	and	create	a	new	Android	Studio	project.	Call	your	application	"Implicit	Intents."
2.	 Choose	Empty	Activity	for	the	project	template.	Click	Next.
3.	 Accept	the	default	activity	name	(MainActivity).	Make	sure	the	Generate	Layout	file	box	is	checked.	Click	Finish.

1.2	Create	the	layout

In	this	task,	create	the	layout	for	the	app.	Use	a	LinearLayout,	three	Buttons,	and	three	EditTexts,	like	this:	

1.	 Edit	res/values/strings.xml	to	include	these	string	resources:

<string	name="edittext_uri">http://developer.android.com</string>

<string	name="button_uri">Open	Website</string>

<string	name="edittext_loc">Golden	Gate	Bridge</string>

<string	name="button_loc">Open	Location</string>

<string	name="edittext_share">\'Twas	brillig	and	the	slithy	toves</string>

<string	name="button_share">Share	This	Text</string>

2.	 Change	the	layout	to	LinearLayout.	Add	the	android:orientation	attribute	and	give	it	the	value	"vertical."

Introduction

130

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.android.implicitintents.MainActivity"

				android:orientation="vertical">

3.	 Remove	the	"Hello	World"	TextView.
4.	 Add	an	EditText	and	a	Button	to	the	layout	for	the	Open	Website	function.	Use	these	attribute	values:

Attribute	(EditText) Value	(EditText)

android:id "@+id/website_edittext"

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:text "@string/edittext_uri"

Attribute	(Button) Value	(Button)

android:id "@+id/open_website_button"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:layout_marginBottom "24dp"

android:text "@string/button_uri"

android:onClick "openWebsite"

5.	 Add	a	second	EditText	and	a	Button	for	the	Open	Website	function.
6.	 Use	the	same	attributes	as	those	in	the	previous	step,	but	modify	these	attributes	as	noted	below:

Attribute	(EditText) Value	(EditText)

android:id "@+id/location_edittext"

android:text "@string/edittext_loc"

Attribute	(Button) Value	(Button)

android:id "@+id/open_location_button"

android:text "@string/button_loc"

android:onClick "openLocation"

7.	 Add	a	third	EditText	and	a	Button	for	the	Share	This	function.	Make	these	changes:

Introduction

131

Attribute	(EditText) Value	(EditText)

android:id "@+id/share_edittext"

android:text "@string/edittext_share"

Attribute	(Button) Value	(Button)

android:id "@+id/share_text_button"

android:text "@string/button_share"

android:onClick "shareText"

Solution	code:

Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

Introduction

132

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.implicitintents.MainActivity"

			android:orientation="vertical">

			<EditText

							android:id="@+id/website_edittext"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:text="@string/edittext_uri"	/>

			<Button

							android:id="@+id/open_website_button"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_marginBottom="24dp"

							android:onClick="openWebsite"

							android:text="@string/button_uri"	/>

			<EditText

							android:id="@+id/location_edittext"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:text="@string/edittext_loc"	/>

			<Button

							android:id="@+id/open_location_button"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_marginBottom="24dp"

							android:onClick="openLocation"

							android:text="@string/button_loc"	/>

			<EditText

							android:id="@+id/share_edittext"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:text="@string/edittext_share"	/>

			<Button

							android:id="@+id/share_text_button"

							android:layout_width="wrap_content"

							android:layout_height="wrap_content"

							android:layout_marginBottom="24dp"

							android:onClick="shareText"

							android:text="@string/button_share"	/>

</LinearLayout>

Task	2.	Implement	"open	website"
In	this	task	you'll	implement	the	on-click	handler	method	for	the	first	button	in	the	layout	("Open	Website.")	This	action	uses
an	implicit	intent	to	send	the	given	URI	to	an	activity	that	can	handle	that	Implicit	Intent	(such	as	a	web	browser).

2.1	Define	the	openWebsite	method
1.	 Open	MainActivity.java.
2.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	EditText	object	for	the	web	site	URI.

private	EditText	mWebsiteEditText;

Introduction

133

3.	 In	the	onCreate()	method,	use	findViewById()	to	get	a	reference	to	the	EditText	instance	and	assign	it	to	that	private
variable:

mWebsiteEditText	=	(EditText)	findViewById(R.id.website_edittext);

4.	 Create	a	new	method	called	openWebsite(),	with	this	signature:

public	void	openWebsite(View	view)	{	}

5.	 Get	the	string	value	of	the	EditText:

String	url	=	mWebsiteEditText.getText().toString();

6.	 Encode	and	parse	that	string	into	a	Uri	object:

Uri	webpage	=	Uri.parse(url);

7.	 Create	a	new	Intent	with	Intent.ACTION_VIEW	as	the	action	and	the	URI	as	the	data:

Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	webpage);

This	intent	constructor	is	different	from	the	one	you	used	to	create	an	explicit	intent.	In	your	previous	constructor,	you
specified	the	current	context	and	a	specific	component	(activity	class)	to	send	the	intent.	In	this	constructor	you	specify
an	action	and	the	data	for	that	action.	Actions	are	defined	by	the	Intent	class	and	can	include	ACTION_VIEW	(to	view
the	given	data),	ACTION_EDIT	(to	edit	the	given	data),	or	ACTION_DIAL	(to	dial	a	phone	number).	In	this	case	the
action	is	ACTION_VIEW	because	we	want	to	open	and	view	the	web	page	specified	by	the	URI	in	the	webpage
variable.

8.	 Use	the	resolveActivity()	and	the	Android	package	manager	to	find	an	activity	that	can	handle	your	implicit	intent.
Check	to	make	sure	the	that	request	resolved	successfully.

if	(intent.resolveActivity(getPackageManager())	!=	null)	{

}

This	request	that	matches	your	intent	action	and	data	with	the	intent	filters	for	installed	applications	on	the	device	to
make	sure	there	is	at	least	one	activity	that	can	handle	your	requests.

9.	 Inside	the	if-statement,	call	startActivity()	to	send	the	intent.

startActivity(intent);

10.	 Add	an	else	block	to	print	a	log	message	if	the	intent	could	not	be	resolved.

}	else	{

			Log.d("ImplicitIntents",	"Can't	handle	this!");

}

Solution	code	(not	the	entire	class):

Introduction

134

public	void	openWebsite(View	view)	{

			//	Get	the	URL	text.

			String	url	=	mWebsiteEditText.getText().toString();

			//	Parse	the	URI	and	create	the	intent.

			Uri	webpage	=	Uri.parse(url);

			Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	webpage);

			//	Find	an	activity	to	hand	the	intent	and	start	that	activity.

			if	(intent.resolveActivity(getPackageManager())	!=	null)	{

							startActivity(intent);

			}	else	{

							Log.d("ImplicitIntents",	"Can't	handle	this	intent!");

			}

}

Task	3.	Implement	"open	location"
In	this	task	you'll	implement	the	on-click	handler	method	for	the	second	button	in	the	UI	("Open	Location.")	This	method	is
almost	identical	to	the	openWebsite()	method.	The	difference	is	the	use	of	a	geo	URI	to	indicate	a	map	location.	You	can
use	a	geo	URI	with	latitude	and	longitude,	or	use	a	query	string	for	a	general	location.	In	this	example	we've	used	the	latter.

3.1	Define	the	openLocation	method
1.	 Open	MainActivity.java	(java/com.example.android.implicitintents/MainActivity).
2.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	EditText	object	for	the	location	URI.

private	EditText	mLocationEditText;

3.	 In	the	onCreate()	method,	use	findViewByID()	to	get	a	reference	to	the	EditText	instance	and	assign	it	to	that	private
variable:

mLocationEditText	=	(EditText)	findViewById(R.id.location_edittext);

4.	 Create	a	new	method	called	openLocation	to	use	as	the	onClick	method	for	the	Open	Location	button.	Use	the	same
method	signature	as	openWebsite().

5.	 Get	the	string	value	of	the	mLocationEditText	EditText.

String	loc	=	mLocationEditText.getText().toString();

6.	 Parse	that	string	into	a	Uri	object	with	a	geo	search	query:

Uri	addressUri	=	Uri.parse("geo:0,0?q="	+	loc);

7.	 Create	a	new	Intent	with	Intent.ACTION_VIEW	as	the	action	and	loc	as	the	data.

Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	addressUri);

8.	 Resolve	the	intent	and	check	to	make	sure	the	intent	resolved	successfully.	If	so,	startActivity(),	otherwise	log	an	error
message.

if	(intent.resolveActivity(getPackageManager())	!=	null)	{

			startActivity(intent);

}	else	{

			Log.d("ImplicitIntents",	"Can't	handle	this	intent!");

}

Solution	code	(not	the	entire	class):

Introduction

135

public	void	openLocation(View	view)	{

			//	Get	the	string	indicating	a	location.	Input	is	not	validated;	it	is

			//	passed	to	the	location	handler	intact.

			String	loc	=	mLocationEditText.getText().toString();

			//	Parse	the	location	and	create	the	intent.

			Uri	addressUri	=	Uri.parse("geo:0,0?q="	+	loc);

			Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	addressUri);

			//	Find	an	activity	to	handle	the	intent,	and	start	that	activity.

			if	(intent.resolveActivity(getPackageManager())	!=	null)	{

							startActivity(intent);

			}	else	{

							Log.d("ImplicitIntents",	"Can't	handle	this	intent!");

			}

}

Task	4.	Implement	share	this	text
Sharing	actions	are	an	easy	way	for	users	to	share	items	in	your	app	with	social	networks	and	other	apps.	Although	you
could	build	a	share	action	in	your	own	app	using	implicit	intents,	Android	provides	the	ShareCompat.IntentBuilder	helper
class	to	make	implementing	sharing	easy.	You	can	use	ShareCompat.IntentBuilder	to	build	an	intent	and	launch	a	chooser
to	let	the	user	choose	the	destination	app	for	sharing.

In	this	final	task	we'll	implement	sharing	a	bit	of	text	in	a	text	edit	with	the	ShareCompat.IntentBuilder	class.

4.1	Implement	the	shareText	method

1.	 Open	MainActivity.java.
2.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	EditText	object	for	the	web	site	URI.

private	EditText	mShareTextEditText;

3.	 In	the	onCreate()	method,	use	findViewById()	to	get	a	reference	to	the	EditText	instance	and	assign	it	to	that	private
variable:

mShareTextEditText	=	(EditText)	findViewById(R.id.share_edittext);

4.	 Create	a	new	method	called	shareThis()	to	use	as	the	onClick	method	for	the	Share	This	Text	button.	Use	the	same
method	signature	as	openWebsite().

5.	 Get	the	string	value	of	the		mShareTextEditText		EditText.

String	txt	=	mShareTextEditText.getText().toString();

6.	 Define	the	mime	type	of	the	text	to	share:

String	mimeType	=	"text/plain";

7.	 Call	ShareCompat.IntentBuilder	with	these	methods:

ShareCompat.IntentBuilder

							.from(this)

							.setType(mimeType)

							.setChooserTitle("Share	this	text	with:	")

							.setText(txt)

							.startChooser();

This	call	to	ShareCompat.IntentBuilder	uses	these	methods:

Introduction

136

http://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html

</tr>	</table>	This	format,	with	all	the	builder's	setter	methods	strung	together	in	one	statement,	is	an	easy	shorthand
way	to	create	and	launch	the	intent.	You	can	add	any	of	the	additional	methods	to	this	list.

Method Description

from() The	activity	that	launches	this	share	intent	(this).

setType() The	MIME	type	of	the	item	to	be	shared.

setChooserTitle() The	title	that	appears	on	the	system	app	chooser.

setText() The	actual	text	to	be	shared

startChooser() Show	the	system	app	chooser	and	send	the	intent.

Solution	code	(not	the	entire	class):

public	void	shareText(View	view)	{

				String	txt	=	mShareTextEditText.getText().toString();

				String	mimeType	=	"text/plain";

				ShareCompat.IntentBuilder

												.from(this)

												.setType(mimeType)

												.setChooserTitle("Share	this	text	with:	")

												.setText(txt)

												.startChooser();

}

Task	5.	Receive	implicit	intents
So	far,	you've	created	apps	that	use	both	explicit	and	implicit	intents	in	order	to	launch	some	other	app's	activity.	In	this	task
we'll	look	at	the	problem	from	the	other	way	around:	allowing	an	activity	in	your	app	to	respond	to	implicit	intents	sent	from
some	other	app.

Activities	in	your	app	can	always	be	activated	from	inside	or	outside	your	app	with	explicit	intents.	To	allow	an	activity	to
receive	implicit	intents,	you	define	an	intent	filter	in	your	manifest	to	indicate	which	implicit	intents	your	activity	is	interested
in	handling.

To	match	your	request	with	a	specific	app	installed	on	the	device,	the	Android	system	matches	your	implicit	intent	with	an
activity	whose	intent	filters	indicate	that	they	can	perform	that	action.	If	there	are	multiple	apps	installed	that	match,	the	user
is	presented	with	an	app	chooser	that	lets	them	select	which	app	they	want	to	use	to	handle	that	intent.

When	an	app	on	the	device	sends	an	implicit	intent,	the	Android	system	matches	that	intent's	action	and	data	with	available
activities	that	include	the	right	intent	filters.	If	your	activity's	intent	filters	match	the	intent,	your	activity	can	either	handle	the
intent	itself	(if	it	is	the	only	matching	activity),	or	(if	there	are	multiple	matches)	an	app	chooser	appears	to	allow	the	user	to
pick	which	app	they'd	prefer	to	execute	that	action.

In	this	task	you'll	create	a	very	simple	app	that	receives	implicit	intents	to	open	the	URI	for	a	web	page.	When	activated	by
an	implicit	intent,	that	app	displays	the	requested	URI	as	a	string	in	a	TextView.

5.1	Create	the	project	and	layout

1.	 Start	Android	Studio	and	create	a	new	Android	Studio	project.
2.	 Call	your	application	"Implicit	Intents	Receiver."
3.	 Choose	Empty	Activity	for	the	project	template.
4.	 Accept	the	default	activity	name	(MainActivity).	Click	Next.
5.	 Make	sure	the	Generate	Layout	file	box	is	checked.	Click	Finish.
6.	 Open		res/layout/activity_main.xml	.
7.	 Change	the	existing	("Hello	World")	TextView	these	attributes:

Introduction

137

Attribute Value

android:id "@+id/text_uri_message"

android:layout_width wrap_content

android:layout_height wrap_content

android:textSize "18sp"

android:textStyle "bold"

8.	 Delete	the		android:text	attribute.	There's	no	text	in	this	TextView	by	default,	but	you'll	add	the	URI	from	the	intent	in
onCreate().

5.2	Modify	the	Android	manifest	to	add	an	intent	filter

1.	 Open		manifests/AndroidManifest.xml	.
2.	 Note	that	the	main	activity	already	has	this	intent	filter:

<intent-filter>

			<action	android:name="android.intent.action.MAIN"	/>

			<category	android:name="android.intent.category.LAUNCHER"	/>

</intent-filter>

This	intent	filter,	which	is	part	of	the	default	project	manifest,	indicates	that	this	activity	is	the	main	entry	point	for	your
app	(it	has	an	intent	action	of	"android.intent.action.MAIN"),	and	that	this	activity	should	appear	as	a	top-level	item	in
the	launcher	(its	category	is		"android.intent.category.LAUNCHER")	

3.	 Add	a	second		<intent-filter>		tag	inside		<activity>	,	and	include	these	elements	:

<action	android:name="android.intent.action.VIEW"	/>

<category	android:name="android.intent.category.DEFAULT"	/>

<category	android:name="android.intent.category.BROWSABLE"	/>

<data	android:scheme="http"	android:host="developer.android.com"	/>

These	lines	define	an	intent	filter	for	the	activity,	that	is,	the	kind	of	intents	that	the	activity	can	handle.	This	intent	filter
declares	these	elements:

Filter
type Value Matches

action "android.intent.action.VIEW" All	intents	with	view	actions.

category "android.intent.category.DEFAULT" All	implicit	intents.	This	category	must	be	included	for
your	activity	to	receive	any	implicit	intents.

category "android.intent.category.BROWSABLE" Requests	for	browsable	links	from	web	pages,	email,
or	other	sources.

data android:scheme="http"
android:host="developer.android.com"

URIs	that	contain	a	scheme	of	http	AND	a	host	name
of	developer.android.com.

Note	that	the	data	filter	has	a	restriction	on	both	the	kind	of	links	it	will	accept	and	the	hostname	for	those	URIs.	If	you'd
prefer	your	receiver	to	be	able	to	accept	any	links,	you	can	leave	the		<data>		element	out	altogether.

Solution	code

Introduction

138

https://developer.android.com/guide/topics/manifest/data-element.html

<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

			package="com.example.android.implicitintentsreceiver">

			<application

							android:allowBackup="true"

							android:icon="@mipmap/ic_launcher"

							android:label="@string/app_name"

							android:supportsRtl="true"

							android:theme="@style/AppTheme">

							<activity	android:name=".MainActivity">

											<intent-filter>

															<action	android:name="android.intent.action.MAIN"	/>

															<category	android:name="android.intent.category.LAUNCHER"	/>

											</intent-filter>

											<intent-filter>

															<action	android:name="android.intent.action.VIEW"	/>

															<category	android:name="android.intent.category.DEFAULT"	/>

															<category	android:name="android.intent.category.BROWSABLE"	/>

															<data	android:scheme="http"

android:host="developer.android.com"	/>

											</intent-filter>

							</activity>

			</application>

</manifest>

5.3	Process	the	intent
In	the	onCreate()	method	for	your	activity,	you	process	the	incoming	intent	for	any	data	or	extras	it	includes.	In	this	case,
the	incoming	implicit	intent	has	the	URI	stored	in	the	Intent	data.

1.	 Open		MainActivity.java	.
2.	 In	the		onCreate()		method,	get	the	incoming	intent	that	was	used	to	activate	the	activity:

Intent	intent	=	getIntent();

3.	 Get	the	intent	data.	Intent	data	is	always	a	URI	object:

Uri	uri	=	intent.getData();

4.	 Check	to	make	sure	the		uri		variable	is	not	null.	If	that	check	passes,	create	a	string	from	that	URI	object:

if	(uri	!=	null)	{

			String	uri_string	=	"URI:	"	+	uri.toString();

}

5.	 Inside	that	same	if	block,	get	the	text	view	for	the	message:

TextView	textView	=	(TextView)	findViewById(R.id.text_uri_message);

6.	 Also	inside	the	if-block,	set	the	text	of	that	TextView	to	the	URI:

textView.setText(uri_string);

7.	 Run	the	receiver	app.

Running	the	app	on	its	own	shows	a	blank	activity	with	no	text.	This	is	because	the	activity	was	activated	from	the
system	launcher,	and	not	with	an	intent	from	another	app.

8.	 Run	the	ImplicitIntents	app,	and	click	Open	Website	with	the	default	URI.

Introduction

139

An	app	chooser	appears	asking	if	you	want	to	use	the	default	browser	or	the	ImplicitIntentsReceiver	app.	Choose	"Just
Once"	for	the	receiver	app.	The	ImplicitIntentsReceiver	app	launches	and	the	message	shows	the	URI	from	the
original	request.

9.	 Tap	the	back	button	and	enter	a	different	URI.	Click	Open	Website.

The	receiver	app	has	a	very	restrictive	intent	filter	that	matches	only	exact	URI	protocol	(http)	and	host
(developer.android.com).	Any	other	URI	opens	in	the	default	web	browser.

Solution	code
Android	Studio	project:	ImplicitIntents

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	In	the	last	section's	challenge	you	created	a	shopping	list	app	builder	with	two	activities:	one	to	display	the	list,
and	one	to	pick	an	item.	Add	an	EditText	and	a	Button	to	the	shopping	list	activity	to	locate	a	particular	store	on	a	map.

Summary
Implicit	intents	allow	you	to	activate	an	activity	if	you	know	the	action,	but	not	the	specific	app	or	activity	that	will	handle
that	action.
Activities	that	can	receive	implicit	intents	must	define	intent	filters	in	their	Android	manifest	that	match	one	or	more
intent	actions	and	categories.
The	Android	system	matches	the	content	of	an	implicit	intent	and	the	intent	filters	of	all	available	activities	to	determine
which	activity	to	activate.	If	there	is	more	than	one	available	activity,	the	system	provides	a	chooser	so	the	user	can
pick	one.
The	ShareCompat.IntentBuilder	class	makes	it	easy	to	build	implicit	intents	for	sharing	data	to	social	media	or	email.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Activities	and	Implicit	Intents

Learn	more
Activity	(API	Guide)
Activity	(API	Reference)
Intents	and	Intent	Filters	(API	Guide)
Intent	(API	Reference)
Uri
Google	Maps	Intents
ShareCompat.IntentBuilder	(API	Reference)

Introduction

140

https://github.com/google-developer-training/android-fundamentals/tree/master/ImplicitIntents
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/23_c_activities_and_implicit_intents.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/net/Uri.html
https://developers.google.com/maps/documentation/android-api/intents#display_a_map
http://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html

3.1	P:	Using	the	Debugger
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	the	SimpleCalc	Project	and	App
Task	2.	Run	SimpleCalc	in	the	Debugger
Task	3.	Explore	Debugger	Features
Coding	challenge
Summary
Related	concept
Learn	more

In	previous	practicals	you	used	the	Log	class	to	print	information	to	the	system	log	(logcat)	when	your	app	runs.	Adding
logging	statements	to	your	app	is	one	way	to	find	errors	and	improve	your	app's	operation.	Another	way	is	to	use	the
debugger	built	into	Android	Studio.

In	this	practical	you'll	learn	how	to	debug	your	app	in	an	emulator	and	on	the	device,	set	and	view	breakpoints,	step	through
your	code,	and	examine	variables.

What	you	should	already	KNOW
From	the	previous	practicals	you	should	be	able	to:

Create	an	Android	Studio	project,	and	work	with	EditText	and	Button	views.
Build	and	run	your	app	in	Android	Studio,	on	both	an	emulator	and	on	a	device.
Read	and	analyze	a	stack	trace,	including	last	on,	first	off.
Add	log	statements	and	view	the	system	log	(logcat)	in	Android	Monitor.

What	you	will	LEARN
You	will	learn	to:

Run	your	app	in	debug	mode	in	an	emulator	or	on	a	device.
Step	through	the	execution	of	your	app.
Set	and	organize	breakpoints.
Examine	and	modify	variables	in	the	debugger.

What	you	will	DO
In	this	practical,	you	will:

Build	the	SimpleCalc	app.
Set	and	view	breakpoints	in	the	code	for	SimpleCalc.
Step	through	your	code	as	it	runs.
Examine	variables	and	evaluate	expressions.
Identify	and	fix	problems	in	the	sample	app.

Introduction

141

App	Overview
The	SimpleCalc	app	has	two	edit	texts	and	four	buttons.	When	you	enter	two	numbers	and	click	a	button,	the	app	performs
the	calculation	for	that	button	and	displays	the	result.

Introduction

142

Introduction

143

Task	1.	Create	the	SimpleCalc	Project	and	App
For	this	practical	you	won't	build	the	SimpleCalc	app	yourself.	The	complete	project	is	available	at	SimpleCalc.	In	this	task
you	will	open	the	SimpleCalc	project	into	Android	Studio	and	explore	some	of	the	app's	key	features.

1.1	Download	and	Open	the	SimpleCalc	Project

1.	 Download	and	unzip	the	SimpleCalc	project	folder.
2.	 Start	Android	Studio	and	select	File	>	Open.
3.	 Navigate	to	the	folder	for	SimpleCalc,	select	that	folder	file,	and	click	OK.

The	SimpleCalc	project	builds.	Open	the	project	view	if	it	is	not	already	open.

Warning:	This	app	contains	errors	that	you	will	find	and	fix.	If	you	run	the	app	on	a	device	or	emulator	you	might	run
into	unexpected	behavior	which	may	include	crashes	in	the	app.

1.2	Explore	the	Layout
1.	 Open		res/layout/activity_main.xml	.
2.	 Preview	the	layout	in	the	Layout	Editor.
3.	 Examine	the	layout	code	and	design	and	note	the	following:

The	layout	contains	two	EditTexts	for	the	input,	four	Button	views	for	the	calculations,	and	one	TextViews	to
display	the	result.
Each	calculation	button	has	it's	own	onClick	handler	(onAdd,	OnSub,	and	so	on.)
The	TextView	for	the	result	does	not	have	any	text	in	it	by	default.
The	two	EditText	views	have	the	property	android:inputType	and	the	value		"numberDecimal"	.	This	property
indicates	that	the	EditText	only	accepts	numbers	as	input.	The	keyboard	that	appears	on	screen	will	only	contain
numbers.	You	will	learn	more	about	input	types	for	EditTexts	in	a	later	practical.

Introduction

144

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalc
https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalc

Introduction

145

1.3	Explore	the	app	code

1.	 Expand	the	app/java	folder	in	the	Android	project	view.	In	addition	to	the	MainActivity	class,	this	project	also	includes	a
utility	Calculator	class.

2.	 Open	Calculator	(java/com.example.android.simplecalc/Calculator.java).	Examine	the	code.	Upon	examination,	you
can	make	the	following	observations:

The	operations	the	calculator	can	perform	are	defined	by	the	Operator	enum.
All	of	the	operation	methods	are	public.

3.	 Open	MainActivity	(java/com.example.android.simplecalc/MainActivity).	Examine	the	code.	What	observations	can	you
make	about	the	code	and	activity?	Think	about	your	answer	and	confirm	the	following:

All	of	the	onClick	handlers	call	the	private	compute()	method,	with	the	operation	name	as	one	of	the	values	from
the	Calculator.Operator	enumeration.
The	compute()	method	calls	the	private	method	getOperand()	(which	in	turn	calls	getOperandText())	to	retrieve	the
number	values	from	the	EditTexts.
The	compute()	method	then	uses	a	switch	on	the	operand	name	to	call	the	appropriate	method	in	the	Calculator
class.
The	calculation	methods	in	the	Calculator	class	perform	the	actual	arithmetic	and	return	a	value.
The	last	part	of	the	compute()	method	updates	the	TextView	with	the	result	of	the	calculation.

4.	 Run	the	app.	Try	these	things:
Enter	both	integer	and	floating-point	values	for	the	calculation.
Enter	floating-point	values	with	large	decimal	fractions	(for	example,	1.6753456)
Divide	a	number	by	zero.
Leave	one	or	both	of	the	EditText	views	empty,	and	try	any	calculation.

5.	 Examine	the	stack	trace	in	Android	Studio	when	the	app	reports	an	error.

If	the	stack	trace	is	not	visible,	click	the	Android	Monitor	button	at	the	bottom	of	the	Android	Studio,	and	then	click
logcat.

If	one	or	both	of	the	EditText	views	in	SimpleCalc	is	empty,	the	app	reports	"Error"	and	the	system	log	displays	the
state	of	the	execution	stack	at	the	time	the	app	produced	the	error.	The	stack	trace	usually	provides	important
information	about	why	an	error	occurred.	

Introduction

146

Coding	Challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.
Challenge:	Examine	the	stack	trace	and	try	to	figure	out	what	caused	the	error	(but	don't	fix	it	yet.)

Task	2.	Run	SimpleCalc	in	the	Debugger
In	this	task	you'll	get	an	introduction	to	the	debugger	in	Android	Studio,	and	learn	how	to	run	your	app	in	debug	mode.

2.1	Start	and	Run	your	app	in	debug	mode

1.	 In	Android	Studio,	select	Run	>	Debug	app	or	click	the	Debug	icon	 	in	the	toolbar.

If	your	app	is	already	running,	you	will	be	asked	if	you	want	to	restart	your	app	in	debug	mode.	Click	Restart	app.

Android	Studio	builds	and	runs	your	app	on	the	emulator	or	on	the	device.	Debugging	is	the	same	in	either	case.	While
Android	Studio	is	initializing	the	debugger,	you	may	see	a	message	that	says	"Waiting	for	debugger"	on	the	device
before	you	can	use	your	app.

If	the	Debug	view	does	not	automatically	appear	in	Android	Studio,	click	the	Debug	tab	at	the	bottom	of	the	screen,
and	then	the	Debugger	tab.

2.	 Open	the	MainActivity.java	file	and	click	in	the	fourth	line	of	the	compute()	method	(the	line	just	after	the	try	statement).
3.	 Click	in	the	left	gutter	of	the	editor	window	at	that	line,	next	to	the	line	numbers.	A	red	dot	appears	at	that	line,

indicating	a	breakpoint.

You	can	also	use	Run	>	Toggle	Line	Breakpoint	or	Control-F8	(Command-F8	on	OS	X)	to	set	or	clear	a	breakpoint	at
a	line.	

4.	 In	the	SimpleCalc	app	on	a	device,	enter	numbers	in	the	EditText	views	and	click	one	of	the	calculate	buttons.

Introduction

147

The	execution	of	your	app	stops	when	it	reaches	the	breakpoint	you	set,	and	the	debugger	shows	the	current	state	of
your	app	at	that	breakpoint.	

5.	 Examine	the	the	Debug	window.	It	includes	these	parts:
6.	 Frames	panel:	shows	the	current	execution	stack	frames	for	a	given	thread.	The	execution	stack	shows	each	class

and	method	that	have	been	called	in	your	app	and	in	the	Android	runtime,	with	the	most	recent	method	at	the	top.
Threads	appear	in	a	drop	down	menu.	Your	app	is	currently	running	in	the	main	thread,	and	that	the	app	is	executing
the	compute()	method	in	MainActivity.

7.	 Variables	panel:	displays	the	variables	in	the	current	scope	and	their	values.	At	this	stage	of	your	app's	execution,	the
available	variables	are:		this		(for	the	activity),		operator		(the	operator	name	from	Calculator.Operator	that	the	method
was	called	from),	as	well	as	the	global	variables	for	the	EditTexts	and	the	TextView.	Each	variable	in	this	panel	has	a
disclosure	triangle	to	allow	you	to	view	the	properties	of	the	objects	contained	in	those	variables.	Try	expanding	a
variable	to	explore	its	properties.

8.	Watches	panel:	displays	the	values	for	any	variable	watches	you	have	set.	Watches	allow	you	to	keep	track	of	a
specific	variable	in	your	program,	and	see	how	that	variable	changes	as	your	program	runs.

9.	 Resume	your	app's	execution	with	Run	>	Resume	Program	or	click	the	Resume	 	icon	on	the	left	side	of	the
debugger	window.

The	SimpleCalc	app	continues	running,	and	you	can	interact	with	the	app	until	the	next	time	code	execution	arrives	at
the	breakpoint.

2.2	Debug	a	running	app
If	your	app	is	already	running	on	a	device	or	emulator,	and	you	decide	you	want	to	debug	that	app,	you	can	switch	an
already	running	app	to	debug	mode.

1.	 Run	the	SimpleCalc	app	normally,	with	the	Run	 	icon.

2.	 Select	Run	>	Attach	debugger	to	Android	process	or	click	the	Attach	 	icon	in	the	toolbar.

Introduction

148

3.	 Select	your	app's	process	from	the	dialog	that	appears.	Click	OK.	

The	Debug	window	appears,	and	you	can	now	debug	your	app	as	if	you	had	started	it	in	debug	mode.

Note:	If	the	Debug	window	does	not	automatically	appear,	click	the	Debug	tab	at	the	bottom	of	the	screen,	and	then
the	Debugger	tab.

Task	3.	Explore	Debugger	Features
In	this	task	we'll	explore	the	various	features	in	the	Android	Studio	debugger,	including	executing	your	app	line	by	line,
working	with	breakpoints,	and	examining	variables.

3.1	Step	through	your	app's	execution
After	a	breakpoint,	you	can	use	the	debugger	to	execute	each	line	of	code	in	your	app	one	at	a	time,	and	examine	the	state
of	variables	as	the	app	runs.

1.	 Debug	your	app	in	Android	Studio,	with	the	breakpoint	you	set	in	the	last	task.
2.	 In	the	app,	enter	numbers	in	both	EditText	views	and	click	the	Add	button.

Your	app's	execution	stops	at	the	breakpoint	that	you	set	earlier,	and	the	debugger	shows	the	current	state	of	the	app.
The	current	line	is	highlighted	in	your	code.

3.	 Click	the	Step	Over	 	button	at	the	top	of	the	debugger	window.

The	debugger	executes	the	current	line	in	the	compute()	method	(where	the	breakpoint	is,	the	assignment	for
operandOne),	and	the	highlight	moves	to	the	next	line	in	the	code	(the	assignment	for	operandTwo).	The	Variables
panel	updates	to	reflect	the	new	execution	state,	and	the	current	values	of	variables	also	appears	after	each	line	of
your	source	code	in	italics.

Introduction

149

You	can	also	use	Run	>	Step	Over,	or	F8,	to	step	over	your	code.

4.	 At	the	next	line	(the	assignment	for	operandTwo),	click	the	Step	Into	 	icon.

Step	Into	jumps	into	the	execution	of	a	method	call	in	the	current	line	(versus	just	executing	that	method	and	remaining
on	the	same	line).	In	this	case,	because	that	assignment	includes	a	call	to	getOperand(),	the	debugger	scrolls	the
MainActivity	code	to	that	method	definition.

When	you	step	into	a	method,	the	Frames	panel	updates	to	indicate	the	new	frame	in	the	call	stack	(here,
getOperand()),	and	the	Variables	panel	shows	the	available	variables	in	the	new	method	scope.	You	can	click	any	of
the	lines	in	the	Frames	panel	to	see	the	point	in	the	previous	stack	frame	where	the	method	was	invoked.	

You	can	also	use	Run	>	Step	Into,	or	F7,	to	step	into	a	method.

5.	 Click	Step	Over	 	to	run	each	of	the	lines	in	getOperand().	Note	that	when	the	method	completes	the	debugger
returns	you	to	the	point	where	you	first	stepped	into	the	method,	and	all	the	panels	update	with	the	new	information.

6.	 Use	Step	Over	twice	to	move	the	execution	point	to	the	first	line	inside	the	case	statement	for	ADD.

7.	 Click	Step	Into	 .

The	debugger	executes	the	appropriate	method	defined	in	the	Calculator	class,	opens	the	Calculator.java	file,	and
scrolls	to	the	execution	point	in	that	class.	Again,	the	various	panels	update	to	reflect	the	new	state.

8.	 Use	the	Step	Out	 	icon	to	execute	the	remainder	of	that	calculation	method	and	pop	back	out	to	the	compute()
method	in	MainActivity.	You	can	then	continue	debugging	the	compute()	method	from	where	you	left	off.

You	can	also	use	Run	>	Step	Out	or	Shift-F8	to	step	out	of	a	method	execution.

3.2	Work	with	Breakpoints

Use	breakpoints	to	indicate	where	in	your	code	you	want	to	interrupt	your	app's	execution	to	debug	that	portion	of	that	app.

1.	 Find	the	breakpoint	you	set	in	the	last	task	at	the	start	of	the	compute()	method	in	MainActivity.

Introduction

150

2.	 Add	a	breakpoint	to	the	start	of	the	switch	statement.
3.	 Right-click	on	that	new	breakpoint	and	enter	the	following	test	in	the	Condition	field:

(operandOne	==	42)||(operandTwo	==	42)

4.	 Click	Done.

This	second	breakpoint	is	a	conditional	breakpoint.	The	execution	of	your	app	will	only	stop	at	this	breakpoint	if	the	test
in	the	condition	is	true.	In	this	case,	the	expression	is	only	true	if	one	or	the	other	operands	you	entered	is	42.	You	can
enter	any	Java	expression	as	a	condition	as	long	as	it	returns	a	boolean.

5.	 Run	your	app	in	debug	mode	(Run	>	Debug),	or	click	Resume	 	if	it	is	already	running.	In	the	app,	enter	two
numbers	other	than	42	and	click	the	Add	button.	Execution	halts	at	the	first	breakpoint	in	the	compute()	method.

6.	 Click	Resume	to	continue	debugging	the	app.	Observe	that	execution	did	not	stop	at	your	second	breakpoint,	because
the	condition	was	not	met.

7.	 Right	click	the	first	breakpoint	and	uncheck	Enabled.	Click	Done.	Observe	that	the	breakpoint	icon	now	has	a	green
dot	with	a	red	border.

Disabling	a	breakpoint	enables	you	to	temporarily	"mute"	that	breakpoint	without	actually	removing	it	from	your	code.	If
you	remove	a	breakpoint	altogether	you	also	lose	any	conditions	you	created	for	that	breakpoint,	so	disabling	it	is	often
a	better	choice.

You	can	also	mute	all	breakpoints	in	your	app	at	once	with	the	Mute	Breakpoints	 	icon.

8.	 In	the	app,	enter	42	in	the	first	EditText	and	click	any	button.	Observe	that	the	conditional	breakpoint	at	the	switch
statement	halts	execution	(the	condition	was	met.)

9.	 Click	the	View	Breakpoints	 	icon	on	the	left	edge	of	the	debugger	window.	The	Breakpoints	window	appears.

The	Breakpoints	window	enables	you	to	view	all	the	breakpoints	in	your	app,	enable	or	disable	individual	breakpoints,
and	add	additional	features	of	breakpoints	including	conditions,	dependencies	on	other	breakpoints,	and	logging.

10.	 Click	Done	to	close	the	breakpoints	window.

3.3	Examine	and	modify	variables

The	Android	Studio	debugger	lets	you	examine	the	state	of	the	variables	in	your	app	as	that	app	runs.

1.	 Run	the	SimpleCalc	app	in	debug	mode	if	it	is	not	already	running.
2.	 In	the	app,	enter	two	numbers,	one	of	them	42,	and	click	the	Add	button.

The	first	breakpoint	in	compute()	is	still	muted.	Execution	stops	at	the	second	breakpoint	(at	the	switch	statement),	and
the	debugger	appears.

3.	 Observe	in	the	Variables	panel	that	the	operandOne	and	operandTwo	variables	have	the	values	you	entered	into	the
app.

4.	 Observe	that	the	this	variable	is	a	MainActivity	object.	Click	the	disclosure	arrow	to	view	the	member	variables	of	that
object.

5.	 Right-click	the	operandOne	variable	in	the	Variables	panel,	and	select	Set	Value.	You	can	also	use	F2.
6.	 Change	the	value	of	operandOne	to	10	and	press	Return.
7.	 Modify	the	value	of	operandTwo	to	10	in	the	same	way	and	press	Return.
8.	 Click	the	Resume	icon	to	continue	running	your	app.	Observe	that	the	result	in	the	app	is	now	20,	based	on	the

variable	values	you	changed	in	the	debugger.
9.	 In	the	app,	click	the	Add	button.	Execution	halts	at	the	breakpoint.

10.	 Click	the	Evaluate	Expression	 	icon,	or	select	Run	>	Evaluate	Expression.	The	Evaluate	Code	Fragment	window
appears.	You	can	also	right-click	on	any	variable	and	choose	Evaluate	Expression.

Introduction

151

Use	Evaluate	Expression	to	explore	the	state	of	variables	and	objects	in	your	app,	including	calling	methods	on	those
objects.	You	can	enter	any	code	into	this	window.

11.	 Type	mOperandOneEditText.getHint()	into	the	Expression	window	and	click	Evaluate.
12.	 The	Evaluate	Expression	window	updates	with	the	result	of	that	expression.	The	hint	for	this	EditText	is	the	string

"Type	Operand	1",	as	was	originally	defined	in	the	XML	for	that	EditText.

The	result	you	get	from	evaluating	an	expression	is	based	on	the	app's	current	state.	Depending	on	the	values	of	the
variables	in	your	app	at	the	time	you	evaluate	expressions,	you	may	get	different	results.

Note	also	that	if	you	use	Evaluate	Expression	to	change	the	values	of	variables	or	object	properties,	you	change	the
running	state	of	the	app.

13.	 Click	Close	to	hide	the	Evaluate	Expression	window.

Coding	challenge
Note:	All	coding	challenges	are	optional	and	not	prerequisites	for	later	lessons.	

Challenge:	In	Task	1.3,	you	tried	running	the	SimpleCalc	app	with	no	values	in	either	of	the	EditText	views,	resulting	in	an
error	message.	Use	the	debugger	to	step	through	the	execution	of	the	code	and	determine	precisely	why	this	error	occurs.
Fix	the	bug	that	causes	this	error.

Summary
View	logging	information	in	Android	Studio	with	the	logcat	tab	of	the	Android	Monitor	pane.
Run	your	app	in	debug	mode	by	clicking	the	debug	icon	or	choosing	Run	>	Debug	app.
A	breakpoint	is	a	place	in	your	code	where	you	want	to	pause	normal	execution	of	your	app	to	perform	other	actions.
Set	or	clear	a	debugging	breakpoint	by	clicking	in	the	left	gutter	of	the	editor	window	immediately	next	to	the	target	line
The	Debug	window	in	Android	Studio	shows	(stack)	Frames,	Variables	in	that	frame	and	Watches	(active	tracking	of	a
variable	while	the	program	runs).

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Debugging	Your	App

Learn	more
Debug	Your	App	(Android	Studio	User	Guide)
Debugging	and	Testing	in	Android	Studio	(video)

Introduction

152

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/31_c_the_android_studio_debugger.html
https://developer.android.com/studio/debug/index.html
https://www.youtube.com/watch?v=2I6fuD20qlY

3.2:	Testing	Apps	With	Unit	Tests
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Explore	and	run	SimpleCalc	in	Android	Studio
Task	2.	Add	more	unit	tests	to	CalculatorTest
Coding	challenges
Summary
Related	Concept
Learn	More

Testing	your	code	can	help	you	catch	bugs	early	on	in	development	—	when	they	are	the	least	expensive	to	address	—
and	improve	the	robustness	of	your	code	as	your	app	gets	larger	and	more	complex.	With	tests	in	your	code,	you	can
exercise	small	portions	of	your	app	in	isolation,	and	in	an	automatable	and	repeatable	manner.

Android	Studio	and	the	Android	Testing	Support	Library	support	several	different	kinds	of	tests	and	testing	frameworks.	In
this	practical	you'll	explore	Android	Studio's	built-in	functionality	for	testing,	and	learn	how	to	write	and	run	local	unit	tests.

Local	unit	tests	are	tests	that	are	compiled	and	run	entirely	on	your	local	machine	with	the	Java	Virtual	Machine	(JVM).	Use
local	unit	tests	to	test	the	parts	of	your	app	(such	as	the	internal	logic)	that	do	not	need	access	to	the	Android	framework	or
an	Android	device	or	emulator,	or	those	for	which	you	can	create	fake	("mock"	or	stub)	objects	that	pretend	to	behave	like
the	framework	equivalents.	Unit	tests	are	written	with	JUnit,	a	common	unit	testing	framework	for	Java.

What	you	should	already	KNOW
From	the	previous	practicals	you	should	be	familiar	with:

How	to	create	projects	in	Android	Studio.
The	major	components	of	your	Android	Studio	project	(manifest,	resources,	Java	files,	gradle	files).
How	to	build	and	run	apps.

What	you	will	LEARN
How	organizing	and	running	tests	works	in	Android	Studio
What	a	unit	test	is,	and	how	to	write	unit	tests	for	your	code.
How	to	create	and	run	local	unit	tests	in	Android	Studio.

What	you	will	DO
Run	the	initial	tests	in	the	SimpleCalc	app.
Add	more	tests	to	the	SimpleCalc	app.
Run	those	unit	tests	the	see	the	results.

App	Overview
This	practical	uses	the	same	SimpleCalc	app	from	the	last	practical.	You	can	modify	that	app	in	place,	or	copy	your	project
into	a	new	app.

Introduction

153

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalc
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

Task	1.	Explore	and	run	SimpleCalc	in	Android	Studio
You	both	write	and	run	your	tests	(both	unit	tests	and	instrumented	tests)	inside	Android	Studio,	alongside	the	code	for
your	app.	Every	new	Android	project	includes	basic	sample	classes	for	testing	that	you	can	extend	or	replace	for	your	own
uses.

In	this	task	we'll	return	to	the	SimpleCalc	app,	which	includes	a	basic	unit	testing	class.

1.1	Explore	source	sets	and	SimpleCalc
Source	sets	are	a	collection	of	related	code	in	your	project	that	are	for	different	build	targets	or	other	"flavors"	of	your	app.
When	Android	Studio	creates	your	project,	it	creates	three	source	sets:

The	main	source	set,	for	your	app's	code	and	resources.
The	test	source	set,	for	your	app's	local	unit	tests.
The	androidTest	source	set,	for	Android	instrumented	tests.

In	this	task	you'll	explore	how	source	sets	are	displayed	in	Android	Studio,	examine	the	gradle	configuration	for	testing,	and
run	the	unit	tests	for	the	SimpleCalc	app.	You'll	use	the	androidTest	source	set	in	more	detail	in	a	later	practical.

1.	 Open	the	SimpleCalc	project	in	Android	Studio	if	you	have	not	already	done	so.	If	you	don't	have	SimpleCalc	you	can
find	it	at	this	download	link.

2.	 Open	the	Project	view,	and	expand	the	app	and	java	folders.

The	java	folder	in	the	Android	view	lists	all	the	source	sets	in	the	app	by	package	name
(com.android.example.simplecalc),	with	test	and	androidTest	shown	in	parentheses	after	the	package	name.	In	the
SimpleCalc	app,	only	the	main	and	test	source	sets	are	used.	

3.	 Expand	the	com.android.example.simplecalc	(test)	folder.

This	folder	is	where	you	put	your	app's	local	unit	tests.	Android	Studio	creates	a	sample	test	class	for	you	in	this	folder
for	new	projects,	but	for	SimpleCalc	the	test	class	is	called	CalculatorTest.

4.	 Open	CalculatorTest.java.
5.	 Examine	the	code	and	note	the	following:

The	only	imports	are	from	the	org.junit,	org.hamcrest,	and	android.test	packages.	There	are	no	dependencies	on
the	Android	framework	classes	here.
The	@RunWith(JUnit4.class)	annotation	indicates	the	runner	that	will	be	used	to	run	the	tests	in	this	class.	A	test
runner	is	a	library	or	set	of	tools	that	enables	testing	to	occur	and	the	results	to	be	printed	to	a	log.	For	tests	with
more	complicated	setup	or	infrastructure	requirements	(such	as	Espresso)	you'll	use	different	test	runners.	For	this

Introduction

154

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalc

example	we're	using	the	basic	JUnit4	test	runner.
The	@SmallTest	annotation	indicates	that	all	the	tests	in	this	class	are	unit	tests	that	have	no	dependencies,	and
run	in	milliseconds.	The	@SmallTest,	@MediumTest,	and	@LargeTest	annotations	are	conventions	that	make	it
easier	to	bundle	groups	of	tests	into	suites	of	similar	functionality.
The	setUp()	method	is	used	to	set	up	the	environment	before	testing,	and	includes	the	@Before	annotation.	In	this
case	the	setup	creates	a	new	instance	of	the	Calculator	class	and	assigns	it	to	the	mCalculator	member	variable.
The	addTwoNumbers()	method	is	an	actual	test,	and	is	annotated	with	@Test.	Only	methods	in	a	test	class	that
have	an	@Test	annotation	are	considered	tests	to	the	test	runner.	Note	that	by	convention	test	methods	do	not
include	the	word	"test."
The	first	line	of	addTwoNumbers()	calls	the	add()	method	from	the	Calculator	class.	You	can	only	test	methods
that	are	public	or	package-protected.	In	this	case	the	Calculator	is	a	public	class	with	public	methods,	so	all	is	well.
The	second	line	is	the	assertion	for	the	test.	Assertions	are	expressions	that	must	evaluate	and	result	in	true	for
the	test	to	pass.	In	this	case	the	assertion	is	that	the	result	you	got	from	the	add	method	(1	+	1)	matches	the	given
number	2.	You'll	learn	more	about	how	to	create	assertions	later	in	this	practical.

1.2	Run	tests	in	Android	Studio

In	this	task	you'll	run	the	unit	tests	in	the	test	folder	and	view	the	output	for	both	successful	and	failed	tests.

1.	 In	the	project	view,	right-click	the	CalculatorTest	class	and	select	Run	'CalculatorTest'.

The	project	builds,	if	necessary,	and	the	testing	view	appears	at	the	bottom	of	the	screen.	At	the	top	of	the	screen,	the
dropdown	(for	available	execution	configurations)	also	changes	to	CalculatorTest.	

All	the	tests	in	the	CalculatorTest	class	run,	and	if	those	tests	are	successful,	the	progress	bar	at	the	top	of	the	view
turns	green.	(In	this	case,	there	is	currently	only	the	one	test.)	A	status	message	in	the	footer	also	reports	"Tests
Passed."

2.	 In	the	CalculatorTest	class,	change	the	assertion	in	addTwoNumbers()	to:

assertThat(resultAdd,	is(equalTo(3d)));

3.	 In	the	run	configurations	dropdown	at	the	top	of	the	screen,	select	CalculatorTest	(if	it	is	not	already	selected)	and

click	Run	 .

Introduction

155

The	test	runs	again	as	before,	but	this	time	the	assertion	fails	(3	is	not	equal	to	1	+	1.)	The	progress	bar	in	the	run	view
turns	red,	and	the	testing	log	indicates	where	the	test	(assertion)	failed	and	why.

4.	 Change	the	assertion	in	addTwoNumbers()	back	to	the	correct	test	and	run	your	tests	again	to	ensure	they	pass.
5.	 In	the	run	configurations	dropdown,	select	app	to	run	your	app	normally.

Task	2.	Add	more	unit	tests	to	CalculatorTest
With	unit	testing,	you	take	a	small	bit	of	code	in	your	app	such	as	a	method	or	a	class,	and	isolate	it	from	the	rest	of	your
app,	so	that	the	tests	you	write	makes	sure	that	one	small	bit	of	the	code	works	in	the	way	you'd	expect.	Typically	unit	tests
call	a	method	with	a	variety	of	different	inputs,	and	verifies	that	the	particular	method	does	what	you	expect	and	returns
what	you	expect	it	to	return.

In	this	task	you'll	learn	more	about	how	to	construct	unit	tests.	You'll	write	additional	unit	tests	for	the	methods	in	the
Calculator	utility	methods	in	the	SimpleCalc	app,	and	run	those	tests	to	make	sure	they	produce	the	output	you	expect.

Note:	Unit	testing,	test-driven	development	and	the	JUnit	4	API	are	all	large	and	complex	topics	and	outside	the	scope	of
this	course.	See	the	Resources	for	links	to	more	information.

2.1	Add	more	tests	for	the	add()	method

Although	it	is	impossible	to	test	every	possible	value	that	the	add()	method	may	ever	see,	it's	a	good	idea	to	test	for	input
that	might	be	unusual.	For	example,	consider	what	happens	if	the	add()	method	gets	arguments:

With	negative	operands.
With	floating-point	numbers.
With	exceptionally	large	numbers.
With	operands	of	different	types	(a	float	and	a	double,	for	example)
With	an	operand	that	is	zero.
With	an	operand	that	is	infinity.

In	this	task	we'll	add	more	unit	tests	for	the	add()	method	to	test	different	kinds	of	inputs.

1.	 Add	a	new	method	to	CalculatorTest	called	addTwoNumbersNegative().	Use	this	skeleton:

@Test

public	void	addTwoNumbersNegative()	{

}

This	test	method	has	a	similar	structure	to	addTwoNumbers:	it	is	a	public	method,	with	no	parameters,	that	returns
void.	It	is	annotated	with	the	@Test	annotation,	which	indicates	it	is	a	single	unit	test.

Why	not	just	add	more	assertions	to	addTwoNumbers?	Grouping	more	than	one	assertion	into	a	single	method	can
make	your	tests	harder	to	debug	if	only	one	assertion	fails,	and	obscures	the	tests	that	do	succeed.	The	general	rule
for	unit	tests	is	to	provide	a	test	method	for	every	individual	assertion.

2.	 Run	all	tests	in	CalculatorTests,	as	before.

In	the	test	window	both	addTwoNumbers	and	addTwoNumbersNegative	are	listed	as	available	(and	passing)	tests	in
the	left	panel.	The	addTwoNumbersNegative	test	still	passes	even	though	it	doesn't	contain	any	code	--	a	test	that
does	nothing	is	still	considered	a	successful	test.

3.	 Add	a	line	to	invoke	the	add()	method	in	the	Calculator	class	with	a	negative	operand.

double	resultAdd	=	mCalculator.add(-1d,	2d);

Introduction

156

The	"d"	notation	after	each	operand	indicates	that	these	are	numbers	of	type	double.	Since	the	add()	method	is
defined	with	double	parameters,	floats	or	ints	will	also	work.	Indicating	the	type	explicitly	enables	you	to	test	other
types	separately,	if	you	need	to.

4.	 Add	an	assertion	with	assertThat().

assertThat(resultAdd,	is(equalTo(1d)));

The	assertThat()	method	is	a	JUnit4	assertion	that	claims	the	expression	in	the	first	argument	is	equal	to	the	one	in	the
second	argument.	Older	versions	of	JUnit	used	more	specific	assertion	methods	(assertEquals(),	assertNull(),
assertTrue()),	but	assertThat()	is	a	more	flexible,	more	debuggable	and	often	easier	to	read	format.

The	assertThat()	method	is	used	with	matchers.	Matchers	are	the	chained	method	calls	in	the	second	operand	of	this
assertion	(is(equalto()).	The	available	matchers	you	can	use	to	build	an	assertion	are	defined	by	the	hamcrest
framework	(Hamcrest	is	an	anagram	for	matchers.)	Hamcrest	provides	many	basic	matchers	for	most	basic	assertions.
You	can	also	define	your	own	custom	matchers	for	more	complex	assertions.

In	this	case	the	assertion	is	that	the	result	of	the	add()	operation	(-1	+	2)	is	equal	to	1.

5.	 Add	a	new	unit	test	to	CalculatorTest	for	floating-point	numbers:

@Test

public	void	addTwoNumbersFloats()	{

			double	resultAdd	=	mCalculator.add(1.111f,	1.111d);

			assertThat(resultAdd,	is(equalTo(2.222d)));

}

Again,	a	very	similar	test	to	the	previous	test	method,	but	with	one	argument	to	add()	that	is	explicitly	type	float	rather
than	double.	The	add()	method	is	defined	with	parameters	of	type	double,	so	you	can	call	it	with	a	float	type,	and	that
number	is	promoted	to	a	double.

6.	 Run	all	tests	in	CalculatorTests,	as	before.

7.	 Click	Run	 	to	run	all	the	tests	again.

This	time	the	test	failed,	and	the	progress	bar	is	red.	This	is	the	important	part	of	the	error	message:

java.lang.AssertionError:

Expected:	is	<2.222>

					but:	was	<2.2219999418258665>

Arithmetic	with	floating-point	numbers	is	inexact,	and	the	promotion	resulted	in	a	side	effect	of	additional	precision.	The
assertion	in	the	test	is	technically	false:	the	expected	value	is	not	equal	to	the	actual	value.

The	question	here	is:	when	you	have	a	precision	problem	with	promoting	float	arguments	is	that	a	problem	with	your
code,	or	a	problem	with	your	test?	In	this	particular	case	both	input	arguments	to	the	add()	method	from	the	Calculator
app	will	always	be	type	double,	so	this	is	an	arbitrary	and	unrealistic	test.	However,	if	your	app	was	written	such	that
the	input	to	the	add()	method	could	be	either	double	or	float	and	you	only	care	about	some	precision,	you	need	to
provide	some	wiggle	room	to	the	test	so	that	"close	enough"	counts	as	a	success.

8.	 Change	the	assertThat()	method	to	use	the	closeTo()	matcher:

assertThat(resultAdd,	is(closeTo(2.222,	0.01)));

For	this	test,	rather	that	testing	for	exact	equality	you	can	test	for	equality	within	a	specific	delta.	In	this	case	the
closeTo()	matcher	method	takes	two	arguments:	the	expected	value	and	the	amount	of	delta.	Here	that	delta	is	just	two
decimal	points	of	precision.

Introduction

157

2.2	Add	unit	tests	for	the	other	calculation	methods

Use	what	you	learned	in	the	previous	task	to	fill	out	the	unit	tests	for	the	Calculator	class.

1.	 Add	a	unit	test	called	subTwoNumbers()	that	tests	the	sub()	method.
2.	 Add	a	unit	test	called	subWorksWithNegativeResults()	that	tests	the	sub()	method	where	the	given	calculation	results

in	a	negative	number.
3.	 Add	a	unit	test	called	mulTwoNumbers()	that	tests	the	mul()	method.
4.	 Add	a	unit	test	called	mulTwoNumbersZero()	that	tests	the	mul	method	with	at	least	one	argument	as	zero.
5.	 Add	a	unit	test	called	divTwoNumbers()	that	tests	the	div()	method	with	two	non-zero	arguments.

Challenge:	Add	a	unit	test	called	divByZero()	that	tests	the	div()	method	with	a	second	argument	of	0.	Hint:	Try	this	in	the
app	first	to	see	what	the	result	is.

Solution	Code:

@Test

public	void	addTwoNumbers()	{

			double	resultAdd	=	mCalculator.add(1d,	1d);

			assertThat(resultAdd,	is(equalTo(2d)));

}

@Test

public	void	addTwoNumbersNegative()	{

			double	resultAdd	=	mCalculator.add(-1d,	2d);

			assertThat(resultAdd,	is(equalTo(1d)));

}

@Test

public	void	addTwoNumbersFloats()	{

			double	resultAdd	=	mCalculator.add(1.111f,	1.111d);

assertThat(resultAdd,	is(closeTo(2.222,	0.01)));

}

@Test

public	void	subTwoNumbers()	{

			double	resultSub	=	mCalculator.sub(1d,	1d);

			assertThat(resultSub,	is(equalTo(0d)));

}

@Test

public	void	subWorksWithNegativeResult()	{

			double	resultSub	=	mCalculator.sub(1d,	17d);

			assertThat(resultSub,	is(equalTo(-16d)));

}

@Test

public	void	mulTwoNumbers()	{

			double	resultMul	=	mCalculator.mul(32d,	2d);

			assertThat(resultMul,	is(equalTo(64d)));

}

@Test

public	void	divTwoNumbers()	{

			double	resultDiv	=	mCalculator.div(32d,2d);

			assertThat(resultDiv,	is(equalTo(16d)));

}

@Test

public	void	divTwoNumbersZero()	{

			double	resultDiv	=	mCalculator.div(32d,0);

			assertThat(resultDiv,	is(equalTo(Double.POSITIVE_INFINITY)));

}

Solution	code
Android	Studio	project:	SimpleCalcTest

Coding	challenges

Introduction

158

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalcTest

Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	Dividing	by	zero	is	always	worth	testing	for,	because	it	a	special	case	in	arithmetic.	If	you	try	to	divide	by	zero
in	the	current	version	of	the	SimpleCalc	app,	it	behaves	the	way	Java	defined:	Dividing	a	number	by	returns	the	"Infinity"
constant	(Double.POSITIVE_INFINITY).	Dividing	0	by	0	returns	the	not	a	number	constant	(Double.NaN).	Although	these
values	are	correct	for	Java,	they're	not	necessarily	useful	values	for	the	user	in	the	app	itself.	How	might	you	change	the
app	to	more	gracefully	handle	divide	by	zero?	To	accomplish	this	challenge,	start	with	the	test	first	--	consider	what	the	right
behavior	is,	and	then	write	the	tests	as	if	that	behavior	already	existed.	Then	change	or	add	to	the	code	so	that	it	makes	the
tests	come	up	green.

Challenge	2:	Sometimes	it's	difficult	to	isolate	a	unit	of	code	from	all	of	its	external	dependencies.	Rather	than	artificially
organize	your	code	in	complicated	ways	just	so	it	can	be	more	easily	tested,	you	can	use	a	mock	framework	to	create	fake
("mock")	objects	that	pretend	to	be	dependencies.	Research	the	Mockito	framework,	and	learn	how	to	set	it	up	in	Android
Studio.	Write	a	test	class	for	the	calcButton()	method	in	SimpleCalc,	and	use	Mockito	to	to	simulate	the	Android	context	in
which	your	tests	will	run.

Summary
Android	Studio	has	built-in	features	for	running	local	unit	tests.

Local	unit	tests	use	the	JVM	of	your	local	machine	and	do	not	use	the	Android	framework.
Unit	tests	are	written	with	JUnit,	a	common	unit	testing	framework	for	Java.
The	"test"	folder	(Android	Studio's	Project	View)	is	where	JUnit	tests	are	located.
Local	unit	tests	only	need	the	packages:	org.junit,	org.hamcrest	and	android.test
The	@RunWith(JUnit4.class)	annotation	tells	the	test	runner	to	run	tests	in	this	class.
@SmallTest,	@MediumTest,	and	@LargeTest	annotations	are	conventions	that	make	it	easier	to	bundle	similar
groups	of	tests
The	@SmallTest	annotation	indicates	all	the	tests	in	a	class	are	unit	tests	that	have	no	dependencies	and	run	in
milliseconds.

Instrumented	tests	are	tests	that	run	on	an	Android	device	or	emulator.
Instrumented	tests	have	access	to	the	Android	framework.

A	test	runner	is	a	library	or	set	of	tools	that	enables	testing	to	occur	and	the	results	to	be	printed	to	the	log.

Related	Concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Testing	Your	App

Learn	More
Best	Practices	for	Testing
Getting	Started	with	Testing
Building	Local	Unit	Tests
JUnit	4	Home	Page
JUnit	4	API	Reference
Mockito	Home	Page
Android	Testing	Support	-	Testing	Patterns	(video)
Android	Testing	Codelab
Android	Tools	Protip:	Test	Size	Annotations
The	Benefits	of	Using	assertThat	over	other	Assert	Methods	in	Unit	Tests

Introduction

159

http://mockito.org/
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/32_c_testing_your_app.html
https://developer.android.com/training/testing/index.html
https://developer.android.com/training/testing/start/index.html
https://developer.android.com/training/testing/unit-testing/local-unit-tests.html
http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/package-summary.html
http://mockito.org/
https://www.youtube.com/watch?v=W8LJjfkTKik
https://codelabs.developers.google.com/codelabs/android-testing/index.html
https://plus.sandbox.google.com/+AndroidDevelopers/posts/TPy1EeSaSg8
https://objectpartners.com/2013/09/18/the-benefits-of-using-assertthat-over-other-assert-methods-in-unit-tests/

Introduction

160

3.3:	Using	The	Android	Support	Libraries
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	your	project	to	use	support	libraries
Task	2.	Implement	button	behavior
Coding	challenge
Summary
Related	concept
Learn	more

The	Android	SDK	includes	several	libraries	collectively	called	the	Android	support	library.	These	libraries	provide	a	number
of	features	that	are	not	built	into	the	Android	framework,	including:

Backward-compatible	versions	of	framework	components:	the	support	library	allows	apps	running	on	older	versions	of
the	Android	platform	to	support	features	made	available	on	newer	versions.
Additional	layout	and	user	interface	elements
Support	for	different	device	form	factors,	such	as	TV	or	wearables
Components	to	support	material	design	elements
Various	other	features	such	as	palette	support,	annotations,	percentage-based	layout	dimensions,	and	preferences.

What	you	should	already	KNOW
From	the	previous	practicals	you	should	be	familiar	with:

How	to	create	projects	in	Android	Studio.
The	major	components	of	your	Android	Studio	project	(manifest,	resources,	Java	files,	gradle	build	files).

What	you	will	LEARN
How	to	verify	that	the	the	Android	support	libraries	are	available	in	Android	Studio.
How	to	indicate	support	library	classes	in	your	app.
How	to	tell	the	difference	between	the	values	for	compileSdkVersion,	targetSdkVersion,	and	minSdkVersion.
How	to	recognize	deprecated	or	unavailable	APIs	in	your	code.
Where	to	find	more	information	on	the	Android	support	libraries.

What	you	will	DO
In	this	practical,	you	will:

Create	a	new	app	with	one	textview	and	one	button.
Verify	that	the	Android	Support	Library	is	available	on	your	system.
Explore	the	build.gradle	for	your	app.
Manage	class	or	method	calls	that	are	unavailable	for	the	version	of	Android	your	app	supports.
Use	a	compatibility	class	from	the	support	library	to	provide	backward-compatibility	for	your	app.

App	overview

Introduction

161

In	this	practical	you'll	create	an	app	called	HelloCompat	with	one	textview	that	displays	"Hello	World"	on	the	screen,	and
one	button,	that	changes	the	color	of	the	text.	There	are	20	possible	colors,	defined	as	resources	in	the	color.xml	file,	and
each	button	click	randomly	picks	one	of	those	colors.

Introduction

162

Introduction

163

The	methods	to	get	a	color	value	from	the	app's	resources	have	changed	with	different	versions	for	the	Android	framework.
This	example	uses	the	ContextCompat	class,	part	of	the	Android	support	library,	which	allows	you	to	use	a	method	that
works	for	all	versions.

Task	1.	Set	up	your	project	to	use	support	libraries
For	this	task	you'll	set	up	a	new	project	for	the	HelloCompat	app	and	implement	the	layout	and	basic	behavior.

1.1	Verify	that	the	Android	Support	Library	is	available

The	Android	support	libraries	are	downloaded	as	part	of	the	Android	SDK,	and	available	in	the	Android	SDK	manager.	In
Android	Studio,	you'll	use	the	Android	Support	Repository—the	local	repository	for	the	support	libraries—to	get	access	to
the	library	from	within	your	gradle	build	files.	In	this	task	you'll	verify	that	the	Android	Support	Repository	is	downloaded	and
available	for	your	projects.

1.	 In	Android	Studio,	select	Tools	>	Android	>	SDK	Manager,	or	click	the	SDK	Manager	 	icon.

The	SDK	Manager	preference	pane	appears.	

2.	 Click	the	SDK	Tools	tab	and	expand	Support	Repository.
3.	 Look	for	Android	Support	Repository	in	the	list.
4.	 If	Installed	appears	in	the	Status	column,	you're	all	set.	Click	Cancel.
5.	 If	Not	installed	or	Update	Available	appears,	click	the	checkbox	next	to	Android	Support	Repository.	A	download	icon

should	appear	next	to	the	checkbox.	Click	OK.
6.	 Click	OK	again,	and	then	Finish	when	the	support	repository	has	been	installed.

Introduction

164

1.2	Set	up	the	project	and	examine	build.gradle

1.	 Create	a	new	project	called	HelloCompat,	and	choose	the	Empty	Activity	template.

On	the	Target	Android	Devices	page,	note	that	API	15:	Android	4.0.3	(IceCreamSandwich)	is	selected	for	the	minimum
SDK.	As	you've	learned	in	previous	lessons,	this	is	the	oldest	version	of	the	Android	platform	your	app	will	support.	

2.	 In	Android	Studio,	make	sure	the	Project	pane	is	open	and	the	Android	tab	is	selected.
3.	 Expand	Gradle	Scripts,	if	necessary,	and	open	the	build.gradle	(Module:	app)	file.

Note	that	build.gradle	for	the	overall	project	(build.gradle	(Project:	app_name))	is	a	different	file	from	the	build.gradle
for	the	app	module.

4.	 Locate	the	compileSdkVersion	line	near	the	top	of	the	file.	For	example:

compileSdkVersion	24

The	compile	version	is	the	Android	framework	version	your	app	is	compiled	with	in	Android	Studio.	For	new	projects
the	compile	version	is	the	most	recent	set	of	framework	APIs	you	have	installed.	This	value	affects	only	Android	Studio
itself	and	the	warnings	or	errors	you	get	in	Android	Studio	if	you	use	older	or	newer	APIs.

5.	 Locate	the	minSdkVersion	line	in	the	defaultConfig	section	a	few	lines	down.

minSdkVersion	15

Introduction

165

The	minimum	version	is	the	oldest	Android	API	version	your	app	runs	under.	It's	the	same	number	you	chose	in	Step	1
when	you	created	your	project.	The	Google	Play	store	uses	this	number	to	make	sure	your	app	can	run	on	a	given
user's	device.	Android	Studio	also	uses	this	number	to	warn	you	about	using	deprecated	APIs.

6.	 Locate	the	targetSdkVersion	line	in	the	defaultConfig	section.	For	example:

targetSdkVersion	24

The	target	version	indicates	the	API	version	your	app	is	designed	and	tested	for.	If	the	API	of	the	Android	platform	is
higher	than	this	number	(that	is,	your	app	is	running	on	a	newer	device),	the	platform	may	enable	compatibility
behaviors	to	make	sure	your	app	continues	to	work	the	way	it	was	designed	to.	For	example,	Android	6.0	(API	23)
provides	a	new	runtime	permissions	model.	If	your	app	targets	a	lower	API	level,	the	platform	falls	back	to	the	older
install-time	permissions	model.

Although	the	target	SDK	can	be	the	same	number	as	the	compile	SDK,	it	is	often	a	lower	number	that	indicates	the
most	recent	version	of	the	API	for	which	you	have	tested	your	app.

7.	 Locate	the		dependencies		section	of	build.gradle,	near	the	end	of	the	file.	For	example:

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

				androidTestCompile(

								'com.android.support.test.espresso:espresso-core:2.2.2',	{

								exclude	group:	'com.android.support',

												module:	'support-annotations'

				})

				compile	'com.android.support:appcompat-v7:24.2.1'

				testCompile	'junit:junit:4.12'

}

The	dependencies	section	for	a	new	project	includes	several	dependencies	to	enable	testing	with	Espresso,	JUnit,	as
well	as	the	v7	appcompat	support	library.	Note	that	the	version	numbers	for	these	libraries	in	your	project	may	be
different	than	those	shown	here.

The	v7	appcompat	support	library	provides	backward-compatibility	for	older	versions	of	Android	all	the	way	back	to	API
9.	It	includes	the	v4	compat	library	as	well,	so	you	don't	need	to	add	both	as	a	dependency.

8.	 Update	the	version	numbers,	if	necessary.

If	the	current	version	number	for	a	library	is	lower	than	the	currently	available	library	version	number,	Android	Studio
will	highlight	the	line	and	warn	you	that	a	new	version	is	available.	("a	newer	version	of
com.android.	support:appcompat-v7		is	available").	Edit	the	version	number	to	the	updated	version.

Tip:	You	can	also	click	anywhere	in	the	highlight	line	and	type	Alt-Enter	(Option-Enter	on	the	Mac).	Select	"Change
to	XX.X.X"	from	the	menu,	where	XX.X.X	is	the	most	up-to-date	version	available.

9.	 Update	the	compileSdkVersion	number,	if	necessary.

The	major	version	number	of	the	support	library	(the	first	number)	must	match	your	compileSdkVersion.	When	you
update	the	support	library	version	you	may	also	need	to	update	compileSdkVersion	to	match.

10.	 Click	Sync	Now	to	sync	your	updated	gradle	files	with	the	project,	if	prompted.
11.	 Install	missing	SDK	platform	files,	if	necessary.

If	you	update	compileSdkVersion	you	may	need	to	install	the	SDK	platform	components	to	match.	Click	Install
missing	platform(s)	and	sync	project	to	start	this	process.

1.3	Add	the	layout	and	colors

In	this	task,	modify	the	layout	for	the	app.

1.	 Open		res/layout/activity_main.xml	.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change

Introduction

166

the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.
2.	 If	the	TextView	element	includes	any	layout-contraint	attributes,	remove	them.
3.	 Modify	the	TextView	element	to	have	these	attributes:

Attribute Value

android:id "@+id/hello_textview"

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:padding 	"@dimen/activity_horizontal_margin"	

android:gravity "center"

android:textSize "100sp"

android:textStyle "bold"

android:text "Hello	World!"

4.	 Extract	the	string	for	"Hello	World"	into	a	string	resource.
5.	 Add	a	Button	view	under	the	TextView,	and	add	these	attributes:

Attribute Value

android:id "@+id/color_button"

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:layout_alignParentBottom "true"

android:paddingTop 	"@dimen/activity_vertical_margin"	

android:text "Change	Color"

android:onClick "changeColor"

6.	 Extract	the	string	for	"Change	Color"	into	a	string	resource.
7.	 Open		res/values/colors.xml	.
8.	 Add	these	color	resources	to	the	file:

<color	name="red">#F44336</color>

<color	name="pink">#E91E63</color>

<color	name="purple">#9C27B0</color>

<color	name="deep_purple">#673AB7</color>

<color	name="indigo">#3F51B5</color>

<color	name="blue">#2196F3</color>

<color	name="light_blue">#03A9F4</color>

<color	name="cyan">#00BCD4</color>

<color	name="teal">#009688</color>

<color	name="green">#4CAF50</color>

<color	name="light_green">#8BC34A</color>

<color	name="lime">#CDDC39</color>

<color	name="yellow">#FFEB3B</color>

<color	name="amber">#FFC107</color>

<color	name="orange">#FF9800</color>

<color	name="deep_orange">#FF5722</color>

<color	name="brown">#795548</color>

<color	name="grey">#9E9E9E</color>

<color	name="blue_grey">#607D8B</color>

<color	name="black">#000000</color>

These	color	values	and	names	come	from	the	recommended	color	palettes	for	Android	apps	defined	at	Material	Design	-
Style	-	Color.	The	codes	indicate	color	RGB	values	in	hexadecimal.

Introduction

167

https://material.google.com/style/color.html

Solution	code	(activity_main.xml)	Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the
following.

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:id="@+id/activity_main"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.hellocompat.MainActivity">

			<TextView

							android:id="@+id/hello_textview"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:gravity="center"

							android:padding="@dimen/activity_horizontal_margin"

							android:text="@string/hello_text_string"

							android:textSize="100sp"

							android:textStyle="bold"	/>

			<Button

							android:id="@+id/color_button"

							android:layout_width="match_parent"

							android:layout_height="wrap_content"

							android:layout_alignParentBottom="true"

							android:onClick="changeColor"

							android:paddingTop="@dimen/activity_vertical_margin"

							android:text="@string/button_label"	/>

</RelativeLayout>

1.4	Add	behavior	to	MainActivity

In	this	task	you'll	finish	setting	up	the	project	by	adding	private	variables	and	implementing	onCreate()	and
onSaveInstanceState().

1.	 Open	MainActivity.java.
2.	 Add	a	private	variable	at	the	top	of	the	class	to	hold	the	TextView	object	for	the	Hello	World	textview.

private	TextView	mHelloTextView;

3.	 Add	the	following	color	array	just	after	the	private	variable:

private	String[]	mColorArray	=	{"red",	"pink",	"purple",	"deep_purple",

				"indigo",	"blue",	"light_blue",	"cyan",	"teal",	"green",

				"light_green",	"lime",	"yellow",	"amber",	"orange",	"deep_orange",

				"brown",	"grey",	"blue_grey",	"black"

};

Each	of	these	color	names	correspond	to	the	names	of	the	color	resources	from	color.xml.

4.	 In	the	onCreate()	method,	use	findViewById()	to	get	a	reference	to	the	TextView	instance	and	assign	it	to	that	private
variable:

mHelloTextView	=	(TextView)	findViewById(R.id.hello_textview);

5.	 Also	in	onCreate(),	restore	the	saved	instance	state,	if	any:

Introduction

168

//	restore	saved	instance	state	(the	text	color)

if	(savedInstanceState	!=	null)	{

				mHelloTextView.setTextColor(savedInstanceState.getInt("color"));

}

6.	 Add	the	onSaveInstanceState()	method	to	MainActivity	to	save	the	text	color:

@Override

public	void	onSaveInstanceState(Bundle	outState)	{

				super.onSaveInstanceState(outState);

				//	save	the	current	text	color

			outState.putInt("color",	mHelloTextView.getCurrentTextColor());

}

Solution	code	(not	the	whole	class)

//	Text	view	for	Hello	World.

private	TextView	mHelloTextView;

//	array	of	color	names,	these	match	the	color	resources	in	color.xml

private	String[]	mColorArray	=	{"red",	"pink",	"purple",	"deep_purple",

				"indigo",	"blue",	"light_blue",	"cyan",	"teal",	"green",

				"light_green",	"lime",	"yellow",	"amber",	"orange",	"deep_orange",

				"brown",	"grey",	"blue_grey",	"black"

};

...

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	Initialize	the	main	text	view

			mHelloTextView	=	(TextView)	findViewById(R.id.hello_textview);

			//	restore	saved	instance	state	(the	text	color)

			if	(savedInstanceState	!=	null)	{

							mHelloTextView.setTextColor(savedInstanceState.getInt("color"));

			}

}

...

@Override

public	void	onSaveInstanceState(Bundle	outState)	{

			super.onSaveInstanceState(outState);

			//	save	the	current	text	color

			outState.putInt("color",	mHelloTextView.getCurrentTextColor());

}

Task	2.	Implement	button	behavior
The	Change	Color	button	in	the	HelloCompat	app	picks	one	of	the	20	colors	from	the	color.xml	resource	file	at	random	and
sets	the	color	of	the	text	to	that	color.	In	this	task	you'll	implement	the	onClick()	behavior	for	this	handler.

2.1	Add	the	changeButton()	onClick	handler

1.	 Open		res/layout/activity_main.xml	,	if	it	is	not	already	open.
2.	 Click	anywhere	in	the	android:onClick	attribute,	inside	the	Button	element.
3.	 Press	Alt-Enter	(Option-Enter	on	the	Mac),	and	select	Create	onClick	event	handler.
4.	 Choose	MainActivity	and	click	OK.

This	creates	a	placeholder	method	stub	for	the	changeColor()	method	in	MainActivity.java.

Introduction

169

2.2	Implement	the	button	action

1.	 Open	MainActivity.java,	if	it	is	not	already	open.
2.	 In	the	changeColor()	method,	create	a	random	number	object.

Random	random	=	new	Random();

Use	the	Random	class	(a	Java	class)	to	generate	simple	random	numbers.

3.	 Use	the	random	instance	to	pick	a	random	color	from	the	mColorArray	array:

String	colorName	=	mColorArray[random.nextInt(20)];

The	nextInt()	method	with	the	argument	20	gets	another	random	integer	between	0	and	19.	Use	that	integer	as	the
index	of	the	array	to	get	a	color	name.

4.	 Get	the	resource	identifier	(an	integer)	for	the	color	name	out	of	the	resources:

int	colorResourceName	=	getResources().getIdentifier(colorName,

				"color",	getApplicationContext().getPackageName());

When	your	app	is	compiled,	the	Android	system	converts	the	definitions	in	your	XML	files	into	resources	with	internal
integer	IDs.	There	are	separate	IDs	for	both	the	names	and	the	values.	This	line	matches	the	color	strings	from	the
colorName	array	with	the	corresponding	color	name	IDs	in	the	XML	resource	file.	The	getResources()	method	gets	all
the	resources	for	your	app.	The	getIdentifier()	method	looks	up	the	color	name	(the	string)	in	the	color	resources
("color")	for	the	current	package	name.

5.	 Get	the	integer	ID	for	the	actual	color	from	the	resources	and	assign	it	to	a	colorRes	variable:

int	colorRes	=	getResources().getColor(colorResourceName);

The	getResources()	method	gets	the	set	of	resources	for	your	app,	and	the	getColor()	method	retrieves	a	specific	color
from	those	resources	by	the	ID	of	the	color	name.

Note	that	the	getColor()	method	appears	with	a	strikethrough	in	the	Android	Studio	editor.	If	you	hover	your	mouse
over	getColor(),	the	error	"getColor(int)	is	deprecated"	appears.	In	API	23,	the	getColor()	method	was	modified	to
include	a	second	argument	for	the	app's	theme.	Since	your	app	has	a	compileSdkVersion	of	24	(or	higher),	Android
Studio	provides	this	warning	that	you're	using	an	older,	deprecated	method.

You	can	still	compile	your	app	and	it	would	still	run	on	both	new	and	old	Android	devices	--	the	deprecation	warning	is
a	warning,	not	an	error.	But	it's	best	not	to	ignore	warnings	where	they	exist,	as	deprecated	methods	can	result	in
unexpected	behavior.

6.	 Change	the	colorRes	assignment	line	to	include	the	second	argument	to	getColor():

int	colorRes	=

				getResources().getColor(colorResourceName,	this.getTheme());

You	can	use	the	getTheme()	method	to	get	the	theme	for	the	current	application	context.	Only	now	with	this	change
you'll	note	that	getColor()	has	a	red	underlined	highlight.	If	you	hover	over	getColor()	Android	Studio	reports:	"Call
requires	API	23	(current	min	is	15)".	Since	your	minSdkVersion	is	15,	you'll	get	this	message	if	you	try	to	use	any	APIs
that	were	introduced	after	API	15.	You	can	still	compile	your	app,	but	because	this	new	version	of	getColor()	with	two
arguments	is	not	available	on	devices	prior	to	API	23,	your	app	will	crash	when	the	user	taps	the	Change	button.

At	this	stage	you	could	check	for	the	platform	version	and	use	the	right	version	of	getColor()	depending	on	where	the
app	is	running.	(you	will	still	get	a	warning	for	both	calls	in	Android	Studio).	The	better	way	to	support	both	older	and
newer	Android	APIs	without	warnings	is	to	use	one	of	the	compatibility	classes	in	the	support	library.

Introduction

170

7.	 Change	the	colorRes	assignment	line	to	use	the	ContextCompat	class:

int	colorRes	=	ContextCompat.getColor(this,	colorResourceName);

ContextCompat	provides	many	compatibility	methods	to	address	API	differences	in	the	application	context	and	app
resources.	The	getColor()	method	in	ContextCompat	takes	two	arguments:	the	current	context	(here,	the	activity
instance,	this),	and	the	name	of	the	color.

The	implementation	of	this	method	in	the	support	library	hides	the	implementation	differences	in	different	versions	of
the	API.	You	can	call	this	method	regardless	of	your	compile	SDK	or	minimum	SDK	versions	with	no	warnings,	errors,
or	crashes.

8.	 Set	the	color	of	the	Hello	World	text	view	to	the	color	resource	ID:

mHelloTextView.setTextColor(colorRes);

9.	 Compile	and	run	the	app	on	a	device	or	emulator.

The	Change	Color	button	should	now	change	the	color	of	the	text	in	Hello	World.

Solution	code	(changeColor()	method	only)

public	void	changeColor(View	view)	{

			//	get	a	random	color	name	from	the	color	array	(20	colors)

			Random	random	=	new	Random();

			String	colorName	=	mColorArray[random.nextInt(20)];

			//	get	the	color	identifier	that	matches	the	color	name

			int	colorResourceName	=	getResources().getIdentifier(colorName,	"color",

							getApplicationContext().getPackageName());

			//	get	the	color	ID	from	the	resources

			int	colorRes	=	ContextCompat.getColor(this,	colorResourceName);

			//	Set	the	text	color

			mHelloTextView.setTextColor(colorRes);

}

Solution	code
Android	Studio	project:	HelloCompat

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.
Challenge:	Instead	of	using	ContextCompat	for	to	get	the	color	resource,	use	a	test	of	the	values	in	the	Build	class	to
perform	a	different	operation	if	the	app	is	running	on	a	device	that	supports	less	than	API	23.

Summary
In	this	practical,	you	learned	that:

Android	uses	three	directives	to	indicate	how	your	app	should	behave	for	different	API	versions:
minSdkVersion:	the	minimum	API	version	your	app	supports.
compileSdkVersion:	the	API	version	your	app	should	be	compiled	with.
targetSdkVersion:	the	API	version	your	app	was	designed	for.

The	Android	Support	Library	can	be	installed	in	the	SDK	manager

Introduction

171

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloCompat
https://developer.android.com/reference/android/os/Build.html

You	can	add	library	dependencies	for	support	libraries	in	the	gradle.build	file
The	ContextCompat	class	provides	methods	for	compatibility	with	context	and	resource-related	methods	for	both	old
and	new	API	levels.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

The	Android	Support	Library

Learn	more
Android	Support	Library	(introduction)
Support	Library	Setup
Support	Library	Features
Supporting	Different	Platform	Versions
Picking	your	compileSdkVersion,	minSdkVersion,	and	targetSdkVersion
All	the	things	Compat
API	Reference	(all	packages	that	start	with	android.support)

Introduction

172

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%201/33_c_the_android_support_library.html
https://developer.android.com/topic/libraries/support-library/
https://developer.android.com/topic/libraries/support-library/setup.html
https://developer.android.com/topic/libraries/support-library/features.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://medium.com/google-developers/picking-your-compilesdkversion-minsdkversion-targetsdkversion-a098a0341ebd#.sijs5t35v
https://blog.egorand.me/all-the-things-compat/
https://developer.android.com/reference/packages.html

4.1:	Using	Keyboards,	Input	Controls,	Alerts,	and	Pickers
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Experiment	with	text	entry	keyboard	attributes
Task	2:	Change	the	keyboard	type
Task	3:	Add	a	spinner	input	control	for	selecting	a	phone	label
Task	4:	Use	a	dialog	for	an	alert	requiring	a	decision
Task	5:	Use	a	picker	for	user	input
Task	6:	Use	image	views	as	buttons
Task	7:	Use	radio	buttons
Coding	challenge
Summary
Related	concept
Learn	more

You	can	customize	input	methods	to	make	entering	data	easier	for	users.

In	this	practical,	you'll	learn	to:

Use	different	on-screen	keyboards	and	controls	for	user	input.
Show	an	alert	message	that	users	can	interact	with.
Provide	interface	elements	for	selecting	a	time	and	date.
Use	images	as	buttons	to	launch	an	activity.
Add	radio	buttons	for	the	user	to	select	one	item	from	a	set	of	items.

What	you	should	already	KNOW
For	this	practical	you	should	be	able	to:

Create	an	Android	Studio	project	from	a	template	and	generating	the	main	layout.
Run	apps	on	the	emulator	or	a	connected	device.
Make	a	copy	of	an	app	project,	and	renaming	the	app.
Create	and	editing	UI	elements	using	the	Layout	Editor	and	XML	code.
Access	UI	elements	from	your	code	using		findViewById()	.
Convert	the	text	in	a	view	to	a	string	using		getText().toString()	.
Handle	a	button	click.
Display	a	toast	message.
Start	an	activity	with	another	app	using	an	implicit	intent.
Use	an	adapter	to	connect	your	data	to	a	view,	such	as	the	RecyclerView	in	a	previous	lesson.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Change	the	input	methods	to	enable	spelling	suggestions,	auto-capitalization,	and	password	obfuscation.
Change	the	generic	on-screen	keyboard	to	a	phone	keypad	or	other	specialized	keyboards.
Add	a	spinner	input	control	to	show	a	dropdown	menu	with	values,	from	which	the	user	can	select	one.
Add	an	alert	with	OK	and	Cancel	for	a	user	decision.

Introduction

173

Use	date	and	time	pickers	and	recording	the	selections.
Use	images	as	buttons	to	launch	an	activity.
Add	radio	buttons	for	the	user	to	select	one	item	from	a	set	of	items.

What	you	will	DO
Create	new	Android	Studio	projects	to	show	keyboards,	a	spinner,	an	alert,	and	time	and	date	pickers.
Provide	spelling	suggestions	when	a	user	enters	text,	and	automatically	capitalize	new	sentences,	by	experimenting
with	the	input	method.
Experiment	with	the	input	type	attribute	to	change	the	on-screen	keyboard	to	a	special	keyboard	for	entering	email
addresses,	and	then	to	a	numeric	keypad	to	force	numeric	entry.
Add	a	spinner	input	control	for	the	phone	number	field	for	selecting	one	value	from	a	set	of	values.
Create	a	new	project	with	an	alert	dialog	to	notify	the	user	to	make	a	decision,	such	as	OK	or	Cancel.
Add	the	date	picker	and	time	picker	to	the	new	project,	and	use	listeners	to	record	the	user's	selection.
Create	a	new	project	to	use	images	as	buttons.
Create	a	second	activity	and	add	radio	buttons	for	selecting	an	option.
Set		onClick		handlers	for	the	images	used	as	buttons	to	launch	a	second	activity.

App	overview
In	this	practical,	you'll	create	and	build	a	new	app	called	Keyboard	Samples	for	experimenting	with	the	android:inputType
attribute	for	the	EditText	UI	element.	You	will	change	the	keyboard	so	that	it	suggests	spelling	corrections	and	capitalizes
each	new	sentence,	as	shown	on	the	left	side	of	the	figure	below.	To	keep	the	app	simple,	you'll	display	the	entered	text	in
a	toast	message,	shown	on	the	right	side	of	the	figure	below.	

You	will	also	change	the	keyboard	to	one	that	offers	the	"@"	symbol	in	a	prominent	location	for	entering	email	addresses,
and	to	a	phone	keypad	for	entering	phone	numbers,	as	shown	on	the	left	side	and	in	the	center	of	the	figure	below.	As	a
challenge,	you	will	implement	a	listener	for	the	action	key	in	the	keyboard	in	order	to	send	an	implicit	intent	to	another	app
to	dial	the	phone	number.

Introduction

174

https://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/guide/topics/ui/notifiers/toasts.html

You	will	then	copy	the	app	to	create	Phone	Number	Spinner	that	offers	a	spinner	input	control	for	selecting	the	label	(Home,
Work,	Other,	Custom)	for	the	phone	number,	as	shown	on	the	right	side	of	the	figure	below.	

The	figure	above	shows	the	following:

1.	 The	email	keyboard	with	the	"@"	symbol	in	an	easy-to-find	location
2.	 The	phone	keypad
3.	 The	spinner

You'll	also	create	Alert	Sample	to	experiment	with	an	alert	dialog,	shown	on	the	left	side	of	the	figure	below,	and	Date	Time
Pickers	to	experiment	with	a	date	picker	and	a	time	picker,	shown	in	the	center	and	on	the	right	side	of	the	figure	below,
and	use	the	time	and	date	selections	in	your	app.	

The	last	tasks	involve	creating	an	app	from	the	Basic	Activity	template	that	lets	a	user	tap	image	buttons	to	launch	an
activity,	as	shown	on	the	left	side	of	the	figure	below,	and	choose	a	single	delivery	option	from	radio-button	choices	for	a
food	order,	as	shown	on	the	right	side	of	the	figure	below.	

Introduction

175

Task	1.	Experiment	with	text	entry	keyboard	attributes
Touching	an	EditText	editable	text	field	places	the	cursor	in	the	text	field	and	automatically	displays	the	on-screen
keyboard.	You	will	change	attributes	of	the	text	entry	field	so	that	the	keyboard	suggests	spelling	corrections	while	you	type,
and	automatically	starts	each	new	sentence	with	capital	letters.	For	example:

	android:inputType="textCapSentences"	:	Sets	the	keyboard	to	capital	letters	at	the	beginning	of	sentences.
	android:inputType="textAutoCorrect"	:	Sets	the	keyboard	to	show	automatic	spelling	corrections	as	you	enter
characters.
	android:inputType="textMultiLine"	:	Enables	the	Return	key	on	the	keyboard	to	end	lines	and	create	new	blank	lines
without	closing	the	keyboard.
	android:inputType="textPassword"	:	Sets	the	characters	the	user	enters	into	dots	to	conceal	the	entered	password.

1.1	Create	the	main	layout	and	the	showText	method

You	will	add	a	Button,	and	change	the	TextView	element	to	an	EditText	element	so	that	the	user	can	enter	text.	The	app's
layout	will	look	like	the	following	figure.

Introduction

176

https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/widget/EditText.html

Introduction

177

1.	 Create	a	new	project	called	Keyboard	Samples,	and	choose	the	Empty	Activity	template.
2.	 Open	the	activity_main.xml	layout	file.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change

the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.
3.	 Add	a	Button	above	the	existing	TextView	element	with	the	following	attributes:

Button	attribute New	value

android:id "@+id/button_main"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:layout_alignParentBottom "true"

android:layout_alignParentRight "true"

android:onClick "showText"

android:text "Show"

4.	 Extract	the	string	resource	for	the		android:text		attribute	value	to	create	and	entry	for	it	in	strings.xml:	Place	the
cursor	on	"Show",	press	Alt-Enter	(Option-Enter	on	the	Mac),	and	select	Extract	string	resources.	Then	change	the
Resource	name	for	the	string	value	to	show.

You	extract	string	resources	because	it	makes	the	app	project	more	flexible	for	changing	strings.	The	string	resource
assignments	are	stored	in	the	strings.xml	file	(under	app	>	res	>	values).	You	can	edit	this	file	to	change	the	string
assignments	so	that	the	app	can	be	localized	with	a	different	language.	For	example,	the	"Show"	value	for	the	resource
named		show		could	be	changed	to	"Montrer"	for	the	French	version	of	the	app.

5.	 Change	the	existing	TextView	element	as	follows:
i.	 Delete	the		android:text		attribute	that	specified	"Hello	World!".
ii.	 If	the	TextView	element	includes	any	layout-constraint	attributes,	remove	them.
iii.	 Change	the	TextView	tag	to	an	EditText	tag,	and	make	sure	the	ending	tag	is		/>	.
iv.	 Add	or	change	the	following	attributes:

EditText	attribute TextView	old	value EditText	new	value

android:id "@+id/editText_main"

android:layout_width "wrap_content" "match_parent"

android:layout_height "wrap_content" "wrap_content"

android:layout_alignParentBottom "true"

android:layout_toLeftOf "@id/button_main"

android:hint "Enter	a	message"

You	learned	about	the		android:layout_toLeftOf		and		android:layout_alignParentBottom		attributes	in	a	previous
lesson.	These	layout-related	attributes	work	with	the	RelativeLayout	view	group	to	position	child	views	relative	to
each	other	or	to	the	parent.	The		android:hint		attribute	sets	the	text	to	appear	in	the	field	that	provides	a	hint	for
the	user	to	provide	input,	such	as	"Enter	a	message"

6.	 Extract	the	string	resource	for	the		android:hint		attribute	value	"Enter	a	message"	to	the	resource	name	enter.
Depending	on	your	version	of	Android	Studio,	your	activity_main.xml	layout	file	will	look	something	like	the	following:

Introduction

178

https://developer.android.com/reference/android/widget/RelativeLayout.html

<RelativeLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.android.keyboardsamples.MainActivity">

				<Button

								android:id="@+id/button_main"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_alignParentBottom="true"

								android:layout_alignParentRight="true"

								android:onClick="showText"

								android:text="@string/show"	/>

				<EditText

								android:id="@+id/editText_main"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_alignParentBottom="true"

								android:layout_toLeftOf="@id/button_main"

								android:hint="@string/enter"	/>

</RelativeLayout>

7.	 Open	MainActivity.java	and	enter	the	following		showText		method,	which	retrieves	the	information	entered	into	the
EditText	element	and	shows	it	in	a	toast	message:

public	void	showText(View	view)	{

			EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

			if	(editText	!=	null)	{

						String	showString	=	editText.getText().toString();

						Toast.makeText(this,	showString,	Toast.LENGTH_SHORT).show();

			}

}

8.	 Open	strings.xml	(in	app	>	res	>	values),	and	edit	the		app_name		value	to	"Keyboard	Samples"	(be	sure	to	include	a
space	between	"Keyboard"	and	"Samples").

9.	 Run	the	app	and	examine	how	the	keyboard	works.

Tapping	the	Show	button	shows	the	toast	message	of	the	text	entry.

To	close	the	on-screen	keyboard,	tap	the	down-pointing	arrow	in	the	bottom	row	of	icons.

In	the	standard	keyboard	layout,	a	checkmark	icon	in	a	green	circle,	shown	below,	appears	in	the	lower	right	corner	of	the

keypad.	This	is	known	as	the	Return	(or	Enter)	key,	and	it	is	used	to	enter	a	new	line:	

With	the	default	attributes	for	the	EditText	element,	tapping	the	Return	key	adds	another	line	of	text.	In	the	next	section,	you
will	change	the	keyboard	so	that	it	capitalizes	sentences	as	you	type.	As	a	result	of	setting	the	android:inputType	attribute,
the	default	attribute	for	the	Return	key	changes	to	shift	focus	away	from	the	EditText	element	and	close	the	keyboard.

1.2	Set	the	keyboard	to	capitalize	sentences

1.	 Add	the		android:inputType		attribute	to	the	EditText	element	using	the		textCapSentences		value	to	set	the	keyboard	to
capital	letters	at	the	beginning	of	a	sentence,	so	that	users	can	automatically	start	a	sentence	with	a	capital	letter:

android:inputType="textCapSentences"

Introduction

179

https://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType

2.	 Run	your	app.

Capital	letters	will	now	appear	on	the	keyboard	at	the	beginning	of	sentences.	When	you	tap	the	Return	key	on	the
keyboard,	the	keyboard	closes	and	your	text	entry	is	finished.	You	can	still	tap	the	text	entry	field	to	add	more	text	or	edit
the	text.	Tap	Show	to	show	the	text	in	a	toast	message.

For	details	about	the		android:inputType		attribute,	see	Specifying	the	Input	Method	Type.

1.3	Set	the	keyboard	to	hide	a	password	when	entering	it
1.	 Change	the	EditText	element	to	use	the		textPassword		value	for	the		android:inputType		attribute.

android:inputType="textPassword"

2.	 Change	the		android:hint		to	"Enter	your	password".
3.	 Run	the	app.

The	characters	the	user	enters	turn	into	dots	to	conceal	the	entered	password.	For	help,	see	Text	Fields.

Solution	code:

Android	Project:	KeyboardSamples

Task	2.	Change	the	keyboard	type
Every	text	field	expects	a	certain	type	of	text	input,	such	as	an	email	address,	phone	number,	password,	or	just	plain	text.
It's	important	to	specify	the	input	type	for	each	text	field	in	your	app	so	that	the	system	displays	the	appropriate	soft	input
method,	such	as:

The	standard	on-screen	keyboard	for	plain	text
The	keyboard	for	an	email	address	which	includes	the	"@"	symbol	in	a	prominent	location
The	phone	keypad	for	a	phone	number

2.1	Use	an	email	keyboard
Modify	the	main	activity's	EditText	element	to	show	an	email	keyboard	rather	than	a	standard	keyboard:

1.	 In	the	EditText	element	in	the	activity_main.xml	layout	file,	change	the		android:inputType		attribute	to	the	following:

android:inputType="textEmailAddress"

2.	 Change	the		android:hint		attribute	to	"Enter	an	email	address".
3.	 Extract	the	string	resource	for	the		android:hint		value	to		enter_email	.
4.	 Run	the	app.	Tapping	the	field	brings	up	the	on-screen	email	keyboard	with	the	"@"	symbol	located	next	to	the	space

key.

2.2	Use	a	phone	keypad

Modify	the	main	activity's	EditText	element	to	show	a	phone	keypad	rather	than	a	standard	keyboard:

1.	 In	the	EditText	element	in	the	activity_main.xml	layout	file,	change	the		android:inputType		attribute	to	the	following:

android:inputType="phone"

2.	 Change	the		android:hint		attribute	to	"Enter	a	phone	number".
3.	 Extract	the	string	resource	for	the		android:hint		value	to		enter_phone	.
4.	 Run	the	app.

Introduction

180

http://developer.android.com/training/keyboard-input/style.html
http://developer.android.com/guide/topics/ui/controls/text.html
https://github.com/google-developer-training/android-fundamentals/tree/master/KeyboardSamples

Tapping	the	field	now	brings	up	the	on-screen	phone	keypad	in	place	of	the	standard	keyboard.

Note:	When	running	the	app	on	the	emulator,	the	field	will	still	accept	text	rather	than	numbers	if	you	type	on	the
computer's	keyboard.	However,	when	run	on	the	device,	the	field	only	accepts	the	numbers	of	the	keypad.

Task	3.	Add	a	spinner	input	control	for	selecting	a	phone	label
Input	controls	are	the	interactive	components	in	your	app's	user	interface.	Android	provides	a	wide	variety	of	controls	you
can	use	in	your	UI,	such	as	buttons,	seek	bars,	checkboxes,	zoom	buttons,	toggle	buttons,	spinners,	and	many	more.	(For
more	information	about	input	controls,	see	Input	Controls.)

A	spinner	provides	a	quick	way	to	select	one	value	from	a	set.	Touching	the	spinner	displays	a	drop-down	list	with	all
available	values,	from	which	the	user	can	select	one.	If	you	are	providing	only	two	or	three	choices,	you	might	want	to	use
radio	buttons	for	the	choices	if	you	have	room	in	your	layout	for	them;	however,	with	more	than	three	choices,	a	spinner
works	very	well,	scrolls	as	needed	to	display	items,	and	takes	up	little	room	in	your	layout.

For	more	information	about	spinners,	see	Spinners.

To	provide	a	way	to	select	a	label	for	a	phone	number	(such	as	Home,	Work,	Mobile,	and	Other),	you	can	add	a	spinner	to
the	layout	to	appear	right	next	to	the	phone	number	field.

3.1	Copy	the	KeyboardSamples	project	and	modify	the	layout
Use	the	following	figure	as	as	a	guide	for	the	main	activity's	layout:	

In	the	above	figure:

1.	 The	first	LinearLayout	with	an	EditText	view,	a	spinner	icon,	and	the	Show	button.
2.	 The	second	LinearLayout	with	two	TextViews.

Follow	these	steps:

Introduction

181

http://developer.android.com/guide/topics/ui/controls.html
http://developer.android.com/guide/topics/ui/controls/spinner.html

1.	 Copy	the	KeyboardSamples	project	folder,	rename	it	to	PhoneNumberSpinner,	and	refactor	it	to	populate	the	new
name	throughout	the	app	project.	(See	the	Appendix	for	instructions	on	copying	a	project.)

2.	 After	refactoring,	change	the		<string	name="app_name">		value	in	the	strings.xml	file	(within	app	>	res	>	values)	to
Phone	Number	Spinner	(with	spaces)	as	the	app's	name.

3.	 Open	the	activity_main.xml	layout	file.
4.	 Enclose	the	existing	EditText	and	Button	elements	from	the	previous	lesson	within	a	LinearLayout	with	a	horizontal

orientation,	placing	the	EditText	element	above	the	Button:

<LinearLayout

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:layout_marginTop="@dimen/activity_vertical_margin"

			android:orientation="horizontal">

			<EditText

						…

			<Button

						…

</LinearLayout>

5.	 Make	the	following	changes	to	the	EditText	and	Button	elements:
i.	 Remove	the	following	attributes	from	the	EditText	element:

	android:layout_toLeftOf	

	android:layout_alignParentBottom	

ii.	 Remove	the	following	attributes	from	the	Button	element:
	android:layout_alignParentRight	

	android:layout_alignParentBottom	

iii.	 Change	three	other	attributes	of	the	EditText	element	as	follows:

EditText	attribute Value

android:layout_width "wrap_content"

android:inputType "phone"

android:hint "Enter	phone	number"

6.	 Add	a	Spinner	element	between	the	EditText	element	and	the	Button	element:

<Spinner

			android:id="@+id/label_spinner"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content">

</Spinner>

The	Spinner	element	provides	the	drop-down	list.	In	the	next	task	you	will	add	code	that	will	fill	the	spinner	list	with
values.	The	layout	code	for	the	EditText,	Spinner,	and	Button	elements	within	the	LinearLayout	should	now	look	like
this:

Introduction

182

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

<LinearLayout

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:layout_marginTop="@dimen/activity_vertical_margin"

			android:orientation="horizontal">

			<EditText

						android:id="@+id/editText_main"

						android:layout_width="wrap_content"

						android:layout_height="wrap_content"

						android:inputType="phone"

						android:hint="Enter	phone	number"	/>

			<Spinner

						android:id="@+id/label_spinner"

						android:layout_width="wrap_content"

						android:layout_height="wrap_content">

			</Spinner>

			<Button

						android:id="@+id/button_main"

						android:layout_width="wrap_content"

						android:layout_height="wrap_content"

						android:onClick="showText"

						android:text="Show"	/>

</LinearLayout>

7.	 Add	another	LinearLayout	below	the	LinearLayout	you	just	created,	with	a	horizontal	orientation	to	enclose	two
TextView	elements	side-by-side	—	a	text	description,	and	a	text	field	to	show	the	phone	number	and	the	phone	label	—
and	align	the	LinearLayout	to	the	parent's	bottom	(refer	to	the	figure	above):

<LinearLayout

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:orientation="horizontal"

			android:layout_alignParentBottom="true">

			<TextView

						…

			<TextView

						…

</LinearLayout>

8.	 Add	the	following	TextView	elements	within	the	LinearLayout:

TextView	attribute Value

android:id "@+id/title_phonelabel"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Phone	Number:	"

TextView	attribute Value

android:id "@+id/text_phonelabel"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Nothing	entered."

9.	 Check	your	layout	by	clicking	the	Preview	tab	on	the	right	side	of	the	layout	window.	

Introduction

183

	You	should	now	have	a	screen	(refer	to	the	figure	above)	with
the	phone	entry	field	at	the	top	on	the	left,	a	skeletal	spinner	next	to	the	field,	and	the	Show	button	on	the	right.	At	the
bottom	should	appear	the	text	"Phone	Number:"	followed	by	"Nothing	entered."

10.	 Extract	your	strings	into	string	resources:	Place	the	cursor	on	the	hard-coded	string,	press	Alt-Enter	(Option-Enter	on
the	Mac),	and	select	Extract	string	resources.	Then	edit	the	Resource	name	for	the	string	value.	Extract	as	follows:

Element String String	resource

EditText "Enter	phone	number" "@string/hint_phonenumber"

Button "Show" "@string/show_button"

TextView "Phone	Number:	" "@string/phonenumber_label"

TextView "Nothing	entered." "@string/nothing_entered"

3.2	Add	code	to	activate	the	spinner	and	its	listener

The	choices	for	this	phone	label	spinner	are	well-defined	static	strings	("Home",	"Work",	etc),	so	you	can	use	a	text	array
defined	in	strings.xml	to	hold	the	values	for	it.

To	activate	the	spinner	and	its	listener,	implement	the		AdapterView.OnItemSelectedListener		interface,	which	requires	also
adding	the		onItemSelected()		and		onNothingSelected()		callback	methods.

1.	 Open	strings.xml	to	define	the	selectable	values	(Home,	Work,	Mobile,	and	Other)	for	the	spinner	as	the	string	array
	labels_array	:

<string-array	name="labels_array">

								<item>Home</item>

								<item>Work</item>

								<item>Mobile</item>

								<item>Other</item>

</string-array>

2.	 To	define	the	selection	callback	for	the	spinner,	change	your		MainActivity		class	to	implement	the

Introduction

184

	AdapterView.OnItemSelectedListener		interface	as	shown:

public	class	MainActivity	extends	AppCompatActivity	implements

												AdapterView.OnItemSelectedListener	{

As	you	type	AdapterView.	in	the	above	statement,	Android	Studio	automatically	imports	the		AdapterView		widget.	The
reason	why	you	need	the		AdapterView		is	because	you	need	an	adapter—specifically	an	ArrayAdapter—to	assign	the
array	to	the	spinner.	An	adapter	connects	your	data—in	this	case,	the	array	of	spinner	items—to	the	spinner	view.	You
will	learn	more	about	this	pattern	of	using	an	adapter	to	connect	data	in	another	lesson.	This	line	should	appear	in	your
block	of	import	statements:

import	android.widget.AdapterView;

After	typing	OnItemSelectedListener	in	the	above	statement,	wait	a	few	seconds	for	a	red	light	bulb	to	appear	in	the
left	margin.

3.	 Click	the	bulb	and	choose	Implement	methods.	The		onItemSelected()		and		onNothingSelected()		methods,	which	are
required	for		OnItemSelectedListener	,	should	already	be	highlighted,	and	the	"Insert	@Override"	option	should	be
checked.	Click	OK.

This	step	automatically	adds	empty		onItemSelected()		and		onNothingSelected()		callback	methods	to	the	bottom	of	the
	MainActivity		class.	Both	methods	use	the	parameter		AdapterView<?>	.	The		<?>		is	a	Java	type	wildcard,	enabling	the
method	to	be	flexible	enough	to	accept	any	type	of		AdapterView		as	an	argument.

4.	 Instantiate	a	spinner	object	in	the		onCreate()		method	using	the	Spinner	element	in	the	layout	(label_spinner),	and
set	its	listener	(spinner.setOnItemSelectedListener)	in	the		onCreate()		method.	Add	the	code	to	the		onCreate()	
method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			//	Create	the	spinner.

			Spinner	spinner	=	(Spinner)	findViewById(R.id.label_spinner);

			if	(spinner	!=	null)	{

												spinner.setOnItemSelectedListener(this);

			}

			...

5.	 Continuing	to	edit	the		onCreate()		method,	add	a	statement	that	creates	the	ArrayAdapter	with	the	string	array
(labels_array)	using	the	Android-supplied	simple	spinner	layout	for	each	item	(layout.simple_spinner_item):

...

//	Create	ArrayAdapter	using	the	string	array	and	default	spinner	layout.

ArrayAdapter<CharSequence>	adapter	=	ArrayAdapter.createFromResource(this,

												R.array.labels_array,	android.R.layout.simple_spinner_item);

...

The		simple_spinner_item		layout	used	in	this	step,	and	the		simple_spinner_dropdown_item		layout	used	in	the	next	step,
are	the	default	pre-defined	layouts	provided	by	Android	in	the	R.layout	class.	You	should	use	these	layouts	unless	you
want	to	define	your	own	layouts	for	the	items	in	the	spinner	and	the	spinner's	appearance.

6.	 Specify	the	layout	for	the	spinner's	choices	to	be		simple_spinner_dropdown_item	,	and	then	apply	the	adapter	to	the
spinner:

			...

			//	Specify	the	layout	to	use	when	the	list	of	choices	appears.

			adapter.setDropDownViewResource

																							(android.R.layout.simple_spinner_dropdown_item);

			//	Apply	the	adapter	to	the	spinner.

			if	(spinner	!=	null)	{

												spinner.setAdapter(adapter);

			}

			...

Introduction

185

https://developer.android.com/reference/android/widget/ArrayAdapter.html
https://developer.android.com/reference/android/R.layout.html#simple_spinner_item

3.3	Add	code	to	respond	to	the	user's	selections

When	the	user	selects	an	item	in	the	spinner,	the	Spinner	object	receives	an	on-item-selected	event.	To	handle	this	event,
you	already	implemented	the		AdapterView.OnItemSelectedListener		interface	in	the	previous	step,	adding	empty
	onItemSelected()		and		onNothingSelected()		callback	methods.

In	this	step	you	will	first	declare		mSpinnerLabel		as	the	string	to	hold	the	selected	item.	You	will	then	fill	in	the	code	for	the
	onItemSelected()		method	to	retrieve	the	selected	item	in	the	spinner,	using		getItemAtPosition()	,	and	assign	the	item	to
	mSpinnerLabel	:

1.	 Declare	the		mSpinnerLabel		string	at	the	beginning	of	the		MainActivity		class	definition:

public	class	MainActivity	extends	AppCompatActivity	implements

															AdapterView.OnItemSelectedListener	{

	private	String	mSpinnerLabel	=	"";

	...

}

2.	 Add	code	to	the	empty		onItemSelected()		callback	method,	as	shown	below,	to	retrieve	the	user's	selected	item	using
	getItemAtPosition	,	and	assign	it	to		mSpinnerLabel	.	You	can	also	add	a	call	to	the		showText()		method	you	already
added	to	the	previous	version	of	the	app:

public	void	onItemSelected(AdapterView<?>	adapterView,	View	view,	int

															i,	long	l)	{

			mSpinnerLabel	=	adapterView.getItemAtPosition(i).toString();

			showText(view);

}

Tip:	By	adding	the		showText()		method	to	the	above		onItemSelected()		method,	you	have	enabled	the	spinner
selection	listener	to	display	the	spinner	choice	along	with	the	phone	number,	so	that	you	no	longer	need	the	Show
button	that	called	the		showText()		method.

3.	 Add	code	to	the	empty		onNothingSelected()		callback	method,	as	shown	below,	to	display	a	logcat	message	if	nothing
is	selected:

public	void	onNothingSelected(AdapterView<?>	adapterView)	{

				Log.d(TAG,	"onNothingSelected:	");

}

The	TAG	in	the	above	statement	is	in	red	because	it	hasn't	been	defined.

4.	 Extract	the	string	resource	for		"onNothingSelected:	"		to		nothing_selected	.

5.	 Click	TAG,	click	the	red	light	bulb,	and	choose	Create	constant	field	'TAG'	from	the	pop-up	menu.	Android	Studio
adds	the	following	under	the		MainActivity		class	declaration:

private	static	final	String	TAG	=	;

1.	 Add		MainActivity.class.getSimpleName()		to	use	the	simple	name	of	the	class	for	TAG:

private	static	final	String	TAG	=	MainActivity.class.getSimpleName();

1.	 Change	the		String	showString		statement	in	the		showText		method	to	show	both	the	entered	string	and	the	selected
spinner	item	(mSpinnerLabel):

String	showString	=	(editText.getText().toString()	+	"	-	"	+	mSpinnerLabel);

1.	 Run	the	app.

Introduction

186

The	spinner	appears	next	to	the	phone	entry	field	and	shows	the	first	choice	(Home).	Tapping	the	spinner	reveals	all	the
choices,	as	shown	on	the	left	side	of	the	figure	below.	After	entering	a	phone	number	and	choosing	a	spinner	item,	a
message	appears	at	the	bottom	of	the	screen	with	the	phone	number	and	the	selected	spinner	item,	as	shown	on	the	right
side	of	the	figure	below.	(You	can	also	tap	the	Show	button	to	show	both	the	phone	number	and	the	spinner	item,	but	since
this	is	redundant,	you	can	now	remove	the	Show	button.)

Solution	code:

Android	Studio	project:	PhoneNumberSpinner

Task	4.	Use	a	dialog	for	an	alert	requiring	a	decision
You	can	provide	a	dialog	for	an	alert	to	require	users	to	make	a	decision.	A	dialog	is	a	window	that	appears	on	top	of	the
display	or	fills	the	display,	interrupting	the	flow	of	activity.

For	example,	an	alert	dialog	might	require	the	user	to	click	Continue	after	reading	it,	or	give	the	user	a	choice	to	agree	with
an	action	by	clicking	a	positive	button	(such	as	OK	or	Accept),	or	to	disagree	by	clicking	a	negative	button	(such	as
Cancel).	In	Android,	you	use	the	AlertDialog	subclass	of	the	Dialog	class	to	show	a	standard	dialog	for	an	alert.

Tip:	Use	dialogs	sparingly	as	they	interrupt	the	user's	work	flow.	Read	the	Dialogs	design	guide	for	best	design	practices,
and	Dialogs	in	the	Android	developer	documentation	for	code	examples.

In	this	practical,	you	will	use	a	button	to	trigger	a	standard	alert	dialog.	In	a	real	world	app,	you	might	trigger	an	alert	dialog
based	on	some	condition,	or	based	on	the	user	tapping	something.

Android	Studio	project:	AlertSample

4.1	Create	a	new	project	with	a	layout	to	show	an	alert	dialog

Introduction

187

https://github.com/google-developer-training/android-fundamentals/tree/master/PhoneNumberSpinner
https://developer.android.com/reference/android/app/AlertDialog.html
https://www.google.com/design/spec/components/dialogs.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://github.com/google-developer-training/android-fundamentals/tree/master/AlertSample

In	this	exercise,	you'll	build	an	alert	with	OK	and	Cancel	buttons,	which	will	be	triggered	by	the	user	clicking	a	button.

1.	 Create	a	new	project	called	Alert	Sample	based	on	the	Empty	Activity	template.
2.	 Open	the	activity_main.xml	layout	file.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change

the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.
3.	 If	the	TextView	element	includes	any	layout-constraint	attributes,	remove	them.
4.	 Make	the	following	changes	to	the	TextView:

TextView	attribute Value

android:id "@+id/top_message"

android:text "Tap	to	test	the	alert:"

5.	 Extract	the		android:text		string	above	into	the	resource		tap_test		to	make	it	easier	to	translate.
6.	 Add	a	Button	with	the	following	attributes:

Button	attribute Value

android:id "@+button1"

android:layout_width wrap_content

android:layout_height wrap_content

android:layout_below "@id/top_message"

android:layout_marginTop "36dp"

android:text "Alert"

android:onClick "onClickShowAlert"

7.	 Extract	the		android:text		string	above	into	the	resource		alert_button		to	make	it	easier	to	translate.
8.	 Extract	the	dimension	value	for		android:layout_marginTop		the	same	way:	Place	the	cursor	on		"36dp"	,	press	Alt-Enter

(Option-Enter	on	the	Mac),	and	select	Extract	dimension	resource.	Then	edit	the	Resource	name	for	the	value	to
button_top_margin.

The	dimension	resource	assignments	are	stored	in	the	dimens.xml	file	(under	app	>	res	>	values	>	dimens).	You	can	edit
this	file	to	change	the	assignments	so	that	the	app	can	be	changed	for	different	display	sizes.

4.2	Add	an	alert	dialog	to	the	main	activity
The	builder	design	pattern	makes	it	easy	to	create	an	object	from	a	class	that	has	a	lot	of	required	and	optional	attributes
and	would	therefore	require	a	lot	of	parameters	to	build.	Without	this	pattern,	you	would	have	to	create	constructors	for
combinations	of	required	and	optional	attributes;	with	this	pattern,	the	code	is	easier	to	read	and	maintain.	For	more
information	about	the	builder	design	pattern,	see	Builder	pattern.

The	builder	class	is	usually	a	static	member	class	of	the	class	it	builds.	You	use	AlertDialog.Builder	to	build	a	standard	alert
dialog,	using		setTitle		to	set	its	title,		setMessage		to	set	its	message,	and		setPositiveButton		and		setNegativeButton		to
set	its	buttons.

To	make	the	alert,	you	need	to	make	an	object	of	AlertDialog.Builder.	You	will	add	the		onClickShowAlert()		method,	which
makes	this	object	as	its	first	order	of	business.

Note:	To	keep	this	example	simple	to	understand,	the	alert	dialog	is	created	in	the		onClickShowAlert()		method.	This
occurs	only	if	the		onClickShowAlert()		method	is	called,	which	is	what	happens	when	the	user	clicks	the	button.	This	means
the	app	builds	a	new	dialog	only	when	the	button	is	clicked,	which	is	useful	if	the	dialog	is	seen	only	rarely	(when	the	user
takes	a	certain	path	through	the	app).	However,	if	the	dialog	appears	often,	you	may	want	to	build	the	dialog	once	in	the
	onCreate()		method,	and	then	invoke	the	dialog	in	the		onClickShowAlert()		method.
1.	 Add	the		onClickShowAlert()		method	to		MainActivity.java		as	follows:

Introduction

188

https://en.wikipedia.org/wiki/Builder_pattern
https://developer.android.com/reference/android/app/AlertDialog.Builder.html

public	void	onClickShowAlert(View	view)	{

		AlertDialog.Builder	myAlertBuilder	=	new

																AlertDialog.Builder(MainActivity.this);

Note:	If	AlertDialog.Builder	is	not	recognized	as	you	enter	it,	click	the	red	light	bulb	icon,	and	choose	the	support
library	version	(android.support.v7.app.AlertDialog)	for	importing	into	your	activity.

2.	 Set	the	title	and	the	message	for	the	alert	dialog	inside		onClickShowAlert()		after	the	code	in	the	previous	step:

...

//	Set	the	dialog	title.

myAlertBuilder.setTitle("Alert");

//	Set	the	dialog	message.

myAlertBuilder.setMessage("Click	OK	to	continue,	or	Cancel	to	stop:");

...

3.	 Extract	the	title	and	message	into	string	resources.	The	previous	lines	of	code	should	now	be:

...

//	Set	the	dialog	title.

myAlertBuilder.setTitle(R.string.alert_title);

//	Set	the	dialog	message.

myAlertBuilder.setMessage(R.string.alert_message);

...

4.	 Add	the	OK	button	to	the	alert	with		setPositiveButton()		and	using		onClickListener()	:

...

//	Add	the	buttons.

myAlertBuilder.setPositiveButton("OK",	new	DialogInterface.OnClickListener()	{

					public	void	onClick(DialogInterface	dialog,	int	which)	{

										//	User	clicked	OK	button.

										Toast.makeText(getApplicationContext(),	"Pressed	OK",

																		Toast.LENGTH_SHORT).show();

					}

});

...

You	set	the	positive	(OK)	and	negative	(Cancel)	buttons	using	the		setPositiveButton()		and		setNegativeButton()	
methods.	After	the	user	taps	the	OK	button	in	the	alert,	you	can	grab	the	user's	selection	and	use	it	in	your	code.	In
this	example,	you	display	a	toast	message	if	the	OK	button	is	clicked.

5.	 Extract	the	string	resource	for		"OK"		and	for		"Pressed	OK"	.	The	statement	should	now	be:

...

//	Add	the	buttons.

myAlertBuilder.setPositiveButton(R.string.ok,	new

																						DialogInterface.OnClickListener()	{

					public	void	onClick(DialogInterface	dialog,	int	which)	{

									//	User	clicked	OK	button.

									Toast.makeText(getApplicationContext(),	R.string.pressed_ok,

																						Toast.LENGTH_SHORT).show();

					}

});

...

6.	 Add	the	Cancel	button	to	the	alert	with		setNegativeButton()		and		onClickListener()	,	display	a	toast	message	if	the
button	is	clicked,	and	then	cancel	the	dialog:

Introduction

189

...

myAlertBuilder.setNegativeButton("Cancel",	new						

																							DialogInterface.OnClickListener()	{

					public	void	onClick(DialogInterface	dialog,	int	which)	{

										//	User	cancelled	the	dialog.

										Toast.makeText(getApplicationContext(),	"Pressed	Cancel",

																							Toast.LENGTH_SHORT).show();

					}

});

...

7.	 Extract	the	string	resource	for		"Cancel"		and		"Pressed	Cancel"	.	The	statement	should	now	be:

...

myAlertBuilder.setNegativeButton(R.string.cancel,	new

																							DialogInterface.OnClickListener()	{

					public	void	onClick(DialogInterface	dialog,	int	which)	{

									//	User	cancelled	the	dialog.

									Toast.makeText(getApplicationContext(),	R.string.pressed_cancel,

																							Toast.LENGTH_SHORT).show();

					}

});

...

8.	 Add		show()	,	which	creates	and	then	displays	the	alert	dialog,	to	the	end	of		onClickShowAlert()	:

		...

		//	Create	and	show	the	AlertDialog.

		myAlertBuilder.show();

}

Tip:	To	learn	more	about	onClickListener	and	other	listeners,	see	User	Interface:	Input	Events.

9.	 Run	the	app.

You	should	be	able	to	tap	the	Alert	button,	shown	on	the	left	side	of	the	figure	below,	to	see	the	alert	dialog,	shown	in	the
center	of	the	figure	below.	The	dialog	shows	OK	and	Cancel	buttons,	and	a	toast	message	appears	showing	which	one
you	pressed,	as	shown	on	the	right	side	of	the	figure	below.	

Solution	code:

Introduction

190

http://developer.android.com/guide/topics/ui/ui-events.html

Android	Studio	project:	AlertSample

Task	5.	Use	a	picker	for	user	input
Android	provides	ready-to-use	dialogs,	called	pickers,	for	picking	a	time	or	a	date.	You	can	use	them	to	ensure	that	your
users	pick	a	valid	time	or	date	that	is	formatted	correctly	and	adjusted	to	the	user's	local	time	and	date.	Each	picker
provides	controls	for	selecting	each	part	of	the	time	(hour,	minute,	AM/PM)	or	date	(month,	day,	year).	You	can	read	all
about	setting	up	pickers	in	Pickers.

In	this	task	you'll	create	a	new	project,	and	add	the	date	picker	and	time	picker.	You	will	also	learn	how	to	use	fragments.	A
fragment	is	a	behavior	or	a	portion	of	user	interface	within	an	activity.	It's	like	a	mini-activity	within	the	main	activity,	with	its
own	own	lifecycle,	and	it's	used	for	building	a	picker.	All	the	work	is	done	for	you.	To	learn	about	fragments,	see	Fragments
in	the	API	Guide.

One	benefit	of	using	fragments	for	the	pickers	is	that	you	can	isolate	the	code	sections	for	managing	the	date	and	the	time
for	various	locales	that	display	date	and	time	in	different	ways.	The	best	practice	to	show	a	picker	is	to	use	an	instance	of
DialogFragment,	which	is	a	subclass	of	Fragment.	A	DialogFragment	displays	a	dialog	window	floating	on	top	of	its
activity's	window.	In	this	exercise,	you'll	add	a	fragment	for	each	picker	dialog	and	use	DialogFragment	to	manage	the
dialog	lifecycle.

Tip:	Another	benefit	of	using	fragments	for	the	pickers	is	that	you	can	implement	different	layout	configurations,	such	as	a
basic	dialog	on	handset-sized	displays	or	an	embedded	part	of	a	layout	on	large	displays.

5.1	Create	the	main	activity	layout

To	start	this	task,	create	the	main	activity	layout	to	provide	buttons	to	access	the	time	and	date	pickers.	Refer	to	the	XML
layout	code	below:

1.	 Start	a	new	project	called	Date	Time	Pickers	using	the	Empty	Activity	template.
2.	 Open	activity_main.xml	to	edit	the	layout	code.
3.	 Change	the	layout	to	LinearLayout	and	add		android:orientation="vertical"		to	orient	the	layout	vertically.	Don't	worry

about	the	appearance	of	the	layout	yet.	The	goal	is	to	use	a	layout	that	embeds	a	RelativeLayout	within	the

Introduction

191

https://github.com/google-developer-training/android-fundamentals/tree/master/AlertSample
http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/support/v4/app/DialogFragment.html

LinearLayout:	
4.	 Change	the	first	TextView	element's	text	to	"Choose	the	date	and	time:	"	and	extract	the	text	to	the	string	resource

	choose_datetime	.

TextView	attribute Old	value New	value

android:text "Hello	World" "@string/choose_datetime"

5.	 Add	the		android:textSize		attribute	and	enter	a	text	size	of	20sp.	Extract	the		android:textSize		dimension	to
	text_size	.

TextView	attribute Old	value New	value

android:textSize "@dimen/text_size"

6.	 Add	a	RelativeLayout	child	inside	the	LinearLayout	to	contain	the	Button	elements,	and	accept	the		"match	parent"
	default	width	and	height.

7.	 Add	the	first	Button	element	within	the	RelativeLayout	with	the	following	attributes:

First	Button	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:id "@+id/button_date"

android:layout_marginTop "12dp"

android:text "Date"

android:onClick "showDatePickerDialog"

Don't	worry	that	the		showDatePickerDialog		reference	is	in	red.	The	method	hasn't	been	defined	yet—you	define	it	later.
8.	 Extract	the	string		"Date"		into	the	string	resource		date_button	.
9.	 Extract	the	dimension		"12dp"		for		android:layout_marginTop		to		button_top_margin	.
10.	 Add	the	second	Button	element	inside	the	RelativeLayout	child	with	the	following	attributes:

Introduction

192

Second	Button	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:id "@+id/button_time"

android:layout_marginTop "@dimen/button_top_margin"

android:layout_alignBottom "@id/button_date"

android:layout_toRightOf "@id/button_date"

android:text "Time"

android:onClick "showTimePickerDialog"

The		showTimePickerDialog		reference	is	in	red.	The	method	hasn't	been	defined	yet	—	you	define	it	later.
11.	 Extract	the	string		"Time"		into	the	string	resource		time_button	.
12.	 If	you	haven't	already	done	so,	click	the	Preview	tab	to	show	a	preview	of	the	layout.	It	should	look	like	the	code	and

figure	below.

Solution	code	for	the	main	layout:

Depending	on	your	version	of	Android	Studio,	your	code	will	look	something	like	the	following.

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:orientation="vertical"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.android.DateTimePickers.MainActivity">

				<TextView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:textSize="@dimen/text_size"

								android:text="@string/choose_datetime"/>

				<RelativeLayout

								android:layout_width="match_parent"

								android:layout_height="match_parent">

								<Button

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:id="@+id/button_date"

												android:layout_marginTop="@dimen/button_top_margin"

												android:text="@string/date_button"

												android:onClick="showDatePickerDialog"/>

								<Button

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:id="@+id/button_time"

												android:layout_marginTop="@dimen/button_top_margin"

												android:layout_alignBottom="@id/button_date"

												android:layout_toRightOf="@id/button_date"

												android:text="@string/time_button"

												android:onClick="showTimePickerDialog"/>

				</RelativeLayout>

</LinearLayout>

Introduction

193

5.2	Create	a	new	fragment	for	the	date	picker

In	this	exercise,	you'll	add	a	fragment	for	the	date	picker.	A	fragment	is	like	a	mini-activity	within	the	main	activity,	with	its
own	own	lifecycle.

1.	 Expand	app	>	java	>	com.example.android.DateTimePickers	and	select	MainActivity.
2.	 Choose	File	>	New	>	Fragment	>	Fragment	(Blank),	and	name	the	fragment	DatePickerFragment.	Uncheck	all	three

checkbox	options	so	that	you	do	not	create	a	layout	XML,	do	not	include	fragment	factory	methods,	and	do	not	include
interface	callbacks.	You	don't	need	to	create	a	layout	for	a	standard	picker.	Click	Finish	to	create	the	fragment.

3.	 Open	DatePickerFragment	and	edit	the	DatePickerFragment	class	definition	to	extend	DialogFragment	and	implement
	DatePickerDialog.OnDateSetListener		to	create	a	standard	date	picker	with	a	listener.	See	Picker	for	more	information
about	extending	DialogFragment	for	a	date	picker:

	public	class	DatePickerFragment	extends	DialogFragment

																	implements	DatePickerDialog.OnDateSetListener	{

As	you	type	DialogFragment	and	DatePickerDialog.OnDateSetListener,	Android	Studio	automatically	adds	the
following	in	the		import		block	at	the	top:

import	android.app.DatePickerDialog;

import	android.support.v4.app.DialogFragment;

In	addition,	a	red	bulb	icon	appears	in	the	left	margin	after	a	few	seconds.
4.	 Click	the	red	bulb	icon	and	choose	Implement	methods	from	the	pop-up	menu.	A	dialog	appears	with		onDateSet()	

already	selected	and	the	"Insert	@Override"	option	checked.	Click	OK	to	create	the	empty		onDateSet()		method.	This
method	will	be	called	when	the	user	sets	the	date.	After	adding	the	empty		onDateSet()		method,	Android	Studio
automatically	adds	the	following	in	the		import		block	at	the	top:

import	android.widget.DatePicker;

The		onDateSet()		method's	parameters	should	be		int	year	,		int	month	,	and		int	dayOfMonth	.	Change	the
	dayOfMonth		parameter	to		day		for	brevity:

public	void	onDateSet(DatePicker	view,	int	year,	int	month,	int	day)

5.	 Remove	the	empty	public	constructor	for	DatePickerFragment.
6.	 Replace		onCreateView()		with		onCreateDialog()		that	returns		Dialog	,	and	annotate		onCreateDialog()		with		@NonNull	

to	indicate	that	the	return	value		Dialog		can't	be	null—any	attempt	to	refer	to	the	return	value		Dialog		must	be	null-
checked.

		@NonNull

		@Override

		public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

						...

		}

7.	 Add	the	following	code	to		onCreateDialog()		to	initialize	the		year	,		month	,	and		day		from		Calendar	,	and	return	the
dialog	and	these	values	to	the	main	activity.	As	you	enter		Calendar	,	specify	the	import	to	be		java.util.Calendar	.

Introduction

194

http://developer.android.com/guide/topics/ui/controls/pickers.html

		@NonNull

		@Override

		public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

					//	Use	the	current	date	as	the	default	date	in	the	picker.

					final	Calendar	c	=	Calendar.getInstance();

					int	year	=	c.get(Calendar.YEAR);

					int	month	=	c.get(Calendar.MONTH);

					int	day	=	c.get(Calendar.DAY_OF_MONTH);

					//	Create	a	new	instance	of	DatePickerDialog	and	return	it.

					return	new	DatePickerDialog(getActivity(),	this,	year,	month,	day);

		}

Solution	code	for	DatePickerFragment:

public	class	DatePickerFragment	extends	DialogFragment

								implements	DatePickerDialog.OnDateSetListener	{

				@NonNull

				@Override

				public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

								//	Use	the	current	date	as	the	default	date	in	the	picker.

								final	Calendar	c	=	Calendar.getInstance();

								int	year	=	c.get(Calendar.YEAR);

								int	month	=	c.get(Calendar.MONTH);

								int	day	=	c.get(Calendar.DAY_OF_MONTH);

								//	Create	a	new	instance	of	DatePickerDialog	and	return	it.

								return	new	DatePickerDialog(getActivity(),	this,	year,	month,	day);

				}

				public	void	onDateSet(DatePicker	view,	int	year,	int	month,	int	day)	{

								//	Do	something	with	the	date	chosen	by	the	user.

				}

}

5.3	Create	a	new	fragment	for	the	time	picker

Add	a	fragment	to	the	DateTimePickers	project	for	the	time	picker:

1.	 Select	MainActivity	again.
2.	 Choose	File	>	New	>	Fragment	>	Fragment	(Blank),	and	name	the	fragment	TimePickerFragment.	Uncheck	all	three

options	so	you	do	not	create	a	layout	XML,	do	not	include	fragment	factory	methods,	and	do	not	include	interface
callbacks.	Click	Finish	to	create	the	fragment.

3.	 Open	TimePickerFragment	and	follow	the	same	procedures	as	with	DatePickerFragment,	implementing	the
	onTimeSet()		blank	method,	replacing		onCreateView()		with		onCreateDialog()	,	and	removing	the	empty	public
constructor	for	TimePickerFragment.	TimePickerFragment	performs	the	same	tasks	as	the	DatePickerFragment,	but
with	time	values:

It	extends	DialogFragment	and	implements		TimePickerDialog.OnTimeSetListener		to	create	a	standard	time	picker
with	a	listener.	See	Picker	for	more	information	about	extending	DialogFragment	for	a	time	picker.
It	uses	the		onCreateDialog()		method	to	initialize	the		hour		and		minute		from		Calendar	,	and	returns	the	dialog
and	these	values	to	the	main	activity	using	the	24-hour	date	format.	As	you	enter		Calendar	,	specify	the	import	to
be		java.util.Calendar	.
It	also	defines	the	empty		onTimeSet()		method	for	you	to	add	code	to	use	the		hourOfDay		and		minute		the	user
selects.	This	method	will	be	called	when	the	user	sets	the	time:

public	void	onTimeSet(TimePicker	view,

																							int	hourOfDay,	int	minute)	{

//	Do	something	with	the	time	chosen	by	the	user.

}

Introduction

195

http://developer.android.com/guide/topics/ui/controls/pickers.html

Note:	As	you	make	the	changes,	Android	Studio	automatically	adds	the	following	in	the	import	block	at	the	top:

import	android.support.v4.app.DialogFragment;

import	android.app.TimePickerDialog;

import	android.widget.TimePicker;

import	java.util.Calendar;

Solution	code	for	TimePickerFragment:

public	class	TimePickerFragment	extends	DialogFragment

								implements	TimePickerDialog.OnTimeSetListener	{

				@NonNull

				@Override

				public	Dialog	onCreateDialog(Bundle	savedInstanceState)	{

								//	Use	the	current	time	as	the	default	values	for	the	picker.

								final	Calendar	c	=	Calendar.getInstance();

								int	hour	=	c.get(Calendar.HOUR_OF_DAY);

								int	minute	=	c.get(Calendar.MINUTE);

								//	Create	a	new	instance	of	TimePickerDialog	and	return	it.

								return	new	TimePickerDialog(getActivity(),	this,	hour,	minute,

																DateFormat.is24HourFormat(getActivity()));

				}

				public	void	onTimeSet(TimePicker	view,	int	hourOfDay,	int	minute)	{

								//	Do	something	with	the	time	chosen	by	the	user.

				}

}

5.4	Modify	the	main	activity

While	much	of	the	code	in	the	main	activity	stays	the	same,	you	need	to	add	methods	that	create	instances	of
FragmentManager	to	manage	each	fragment	and	show	each	picker.

1.	 Create	string	resources	in	strings.xml:

<string	name="date_picker">datePicker</string>

<string	name="time_picker">timePicker</string>

2.	 Open	MainActivity.
3.	 Add	the		showDatePickerDialog()		and		showTimePickerDialog()		methods,	referring	to	the	code	below.	It	creates	an

instance	of	FragmentManager	to	manage	the	fragment	automatically,	and	to	show	the	picker.	For	more	information
about	fragments,	see	Fragments.

Introduction

196

http://developer.android.com/guide/components/fragments.html

public	class	MainActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_main);

				}

				public	void	showDatePickerDialog(View	v)	{

								DialogFragment	newFragment	=	new	DatePickerFragment();

								newFragment.show(getSupportFragmentManager(),

																				getString(R.string.date_picker));

				}

				public	void	showTimePickerDialog(View	view)	{

								DialogFragment	newFragment	=	new	TimePickerFragment();

								newFragment.show(getSupportFragmentManager(),

																				getString(R.string.time_picker));

				}

}

4.	 Run	the	app.	You	should	see	the	date	and	time	pickers	after	tapping	the	buttons.	

5.5	Use	the	chosen	date	and	time

In	this	exercise	you'll	pass	the	date	and	time	back	to	MainActivity,	and	convert	the	date	and	time	to	strings	that	you	can
show	in	a	toast	message.

1.	 Open	MainActivity	and	add	the		processDatePickerResult()		method	signature	that	takes	the		year	,		month	,	and		day	
as	arguments:

public	void	processDatePickerResult(int	year,	int	month,	int	day)	{

}

2.	 Add	the	following	code	to	the		processDatePickerResult()		method	to	convert	the		month	,		day	,	and		year		to	separate
strings:

String	month_string	=	Integer.toString(month+1);

String	day_string	=	Integer.toString(day);

String	year_string	=	Integer.toString(year);

Introduction

197

Tip:	The		month		integer	returned	by	the	date	picker	starts	counting	at	0	for	January,	so	you	need	to	add	1	to	it	to	start
show	months	starting	at	1.

3.	 Add	the	following	after	the	above	code	to	concatenate	the	three	strings	and	include	slash	marks	for	the	U.S.	date
format:

String	dateMessage	=	(month_string	+	"/"	+

																												day_string	+	"/"	+	year_string);

4.	 Add	the	following	after	the	above	statement	to	display	a	toast	message:

Toast.makeText(this,	"Date:	"	+	dateMessage,

																												Toast.LENGTH_SHORT).show();

5.	 Extract	the	hard-coded	string		"Date:	"		into	a	string	resource	named		date	.	This	automatically	replaces	the	hard-
coded	string	with		getString(R.string.date)	.	The	code	for	the		processDatePickerResult()		method	should	now	look	like
this:

public	void	processDatePickerResult(int	year,	int	month,	int	day)	{

			String	month_string	=	Integer.toString(month	+	1);

			String	day_string	=	Integer.toString(day);

			String	year_string	=	Integer.toString(year);

			//	Assign	the	concatenated	strings	to	dateMessage.

			String	dateMessage	=	(month_string	+	"/"	+

																																	day_string	+	"/"	+	year_string);

			Toast.makeText(this,	getString(R.string.date)	+	dateMessage,

																																	Toast.LENGTH_SHORT).show();

}

6.	 Open	DatePickerFragment,	and	add	the	following	to	the		onDateSet()		method	to	invoke	the
	processDatePickerResult()		method	in		MainActivity		and	pass	it	the		year	,		month	,	and		day	:

public	void	onDateSet(DatePicker	view,	int	year,	int	month,	int	day)	{

			//	Set	the	activity	to	the	Main	Activity.

			MainActivity	activity	=	(MainActivity)	getActivity();

			//	Invoke	Main	Activity's	processDatePickerResult()	method.

			activity.processDatePickerResult(year,	month,	day);

}

You	use		getActivity()		which,	when	used	in	a	fragment,	returns	the	activity	the	fragment	is	currently	associated	with.
You	need	this	because	you	can't	call	a	method	in		MainActivity		without	the	context	of		MainActivity		(you	would	have
to	use	an		intent		instead,	as	you	learned	in	a	previous	lesson).	The	activity	inherits	the	context,	so	you	can	use	it	as
the	context	for	calling	the	method	(as	in		activity.processDatePickerResult).

7.	 The	TimePickerFragment	uses	the	same	logic.	Open	MainActivity	and	add	the		processTimePickerResult()		method
signature	that	takes	the		hourOfDay		and		minute		as	arguments:

public	void	processTimePickerResult(int	hourOfDay,	int	minute)	{

}

8.	 Add	the	following	code	to	the		processTimePickerResult()		method	to	convert	the		hourOfDay		and		minute		to	separate
strings:

String	hour_string	=	Integer.toString(hourOfDay);

String	minute_string	=	Integer.toString(minute);

9.	 Add	the	following	after	the	above	code	to	concatenate	the	strings	and	include	a	colon	for	the	time	format:

String	timeMessage	=	(hour_string	+	":"	+	minute_string);

10.	 Add	the	following	after	the	above	statement	to	display	a	toast	message:

Introduction

198

Toast.makeText(this,	"Time:	"	+	timeMessage,

																												Toast.LENGTH_SHORT).show();

11.	 Extract	the	hard-coded	string		"Time:	"		into	a	string	resource	named		time	.	This	automatically	replaces	the	hard-
coded	string	with		getString(R.string.time)	.	The	code	for	the		processDatePickerResult()		method	should	now	look	like
this:

public	void	processTimePickerResult(int	hourOfDay,	int	minute)	{

			//	Convert	time	elements	into	strings.

			String	hour_string	=	Integer.toString(hourOfDay);

			String	minute_string	=	Integer.toString(minute);

			//	Assign	the	concatenated	strings	to	timeMessage.

			String	timeMessage	=	(hour_string	+	":"	+	minute_string);

			Toast.makeText(this,	getString(R.string.time)	+	timeMessage,

																																		Toast.LENGTH_SHORT).show();

}

12.	 Open	TimePickerFragment	and	add	the	following	to	the		onTimeSet()		method	to	invoke	the		processTimePickerResult()	
method	in		MainActivity		and	pass	it	the		hourOfDay		and		minute	:

public	void	onTimeSet(TimePicker	view,	int	hourOfDay,	int	minute)	{

			//	Set	the	activity	to	the	Main	Activity.

			MainActivity	activity	=	(MainActivity)	getActivity();

			//	Invoke	Main	Activity's	processTimePickerResult()	method.

			activity.processTimePickerResult(hourOfDay,	minute);

}

13.	 You	can	now	run	the	app.	After	selecting	the	date	or	time,	the	date	or	time	appears	in	a	toast	message	at	the	bottom,

as	shown	in	the	figure	below.	

Solution	code:

Android	Studio	project:	DateTimePickers

Task	6:	Use	image	views	as	buttons
You	can	make	a	view	clickable,	as	a	button,	by	adding	the		android:onClick		attribute	in	the	XML	layout.	For	example,	you
can	make	an	image	act	like	a	button	by	adding		android:onClick		to	the	ImageView.

Introduction

199

https://github.com/google-developer-training/android-fundamentals/tree/master/DateTimePickers
https://developer.android.com/reference/android/widget/ImageView.html

Tip:	If	you	are	using	multiple	images	as	clickable	images,	arrange	them	in	a	viewgroup	so	that	they	are	grouped	together.

In	this	task	you'll	create	a	prototype	of	an	app	for	ordering	desserts	from	a	café.	After	starting	a	new	project	based	on	the
Basic	Activity	template,	you'll	modify	the	"Hello	World"	TextView	with	appropriate	text,	and	add	images	to	use	for	the	"Add
to	order"	buttons.

6.1	Start	the	new	project

1.	 Start	a	new	Android	Studio	project	with	the	app	name	Droid	Cafe.	Choose	the	Basic	Activity	template,	accept	the
default	settings,	and	click	Finish.	The	project	opens	with	two	layouts	in	the	res	>	layout	folder:	activity_main.xml,	and
content_main.xml.

2.	 Open	the	content_main.xml	layout	file.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change
the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.

3.	 Open	content_main.xml.	If	the	TextView	element	includes	any	layout-constraint	attributes,	remove	them.	Extract	the
	"Hello	World"		string	in	the	TextView	to	use	the		intro_text		resource	name.

4.	 Open	strings.xml	and	redefine	the		intro_text		resource	to	use	more	descriptive	text,	such	as		"Droid	Desserts"	:

<string	id="intro_text">Droid	Desserts</string>

5.	 Change	the	TextView	in	the	layout	to	use	a	larger	text	size	of		24sp		and	padding	of		10dp	,	and	add	the		android:id	
attribute	with	the		id		set	to		textintro	.

6.	 Extract	the	dimension	resource	for	the		android:padding		attribute	to	the	resource	name		padding_regular	,	and	the
	android:textSize		attribute	to	the	resource	name		text_heading	.	You	will	use	these	resource	names	in	subsequent
steps.

7.	 Add	another	TextView	under	the		textintro		TextView	with	the	following	attributes:

TextView	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_regular"

android:id "@+id/choose_dessert"

android:layout_below "@id/textintro"

android:text "Choose	a	dessert."

8.	 Extract	the	string	resource	for	the		android:text		attribute	to	the	resource	name		choose_a_dessert	.

6.2	Add	the	images

1.	 The	images	named	donut_circle.jpg,	froyo_circle.jpg,	and	icecream_circle.jpg	are	provided	with	the	starter	apps	in	the
4_1_P_starter_images.zip	file,	which	you	can	unzip	on	your	computer.	To	copy	the	images	to	your	project,	follow
these	steps:
i.	 Close	your	project.
ii.	 Copy	the	image	files	into	your	project's	drawable	folder.	Find	the	drawable	folder	in	a	project	by	using	this	path:

project_name	>	app	>	src	>	main	>	res	>	drawable
iii.	 Reopen	your	project.

2.	 Open	content_main.xml	file	again	and	add	an	ImageView	for	the	donut	image	to	the	layout	under	the		choose_dessert	
view,	using	the	following	attributes:

Introduction

200

https://github.com/google-developer-training/android-fundamentals-starter-apps/blob/master/4_1_P_starter_images.zip

ImageView	attribute	for	donut Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_regular"

android:id "@+id/donut"

android:layout_below "@id/choose_dessert"

android:contentDescription "Donuts	are	glazed	and	sprinkled	with	candy."

android:src "@drawable/donut_circle"

3.	 Extract	the		android:contentDescription		attribute	value	to	the	string	resource		donuts	.	You	will	use	this	string	resource
in	the	next	step.

4.	 Add	a	TextView	that	will	appear	next	to	the	donut	image	as	a	description,	with	the	following	attributes:

TextView	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "35dp"

android:layout_below "@+id/choose_dessert"

android:layout_toRightOf "@id/donut"

android:text "@string/donuts"

5.	 Extract	the	dimension	resource	for	the		android:padding		attribute	to	the	resource	name		padding_wide	.	You	will	use
this	resource	name	in	subsequent	steps.

6.	 Add	a	second	ImageView	to	the	layout	for	the	ice	cream	sandwich,	using	the	following	attributes:

ImageView	attribute	for	ice_cream Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_regular"

android:id "@+id/ice_cream"

android:layout_below "@id/donut"

android:contentDescription "Ice	cream	sandwiches	have	chocolate	wafers	and	vanilla	filling."

android:src "@drawable/icecream_circle"

7.	 Extract	the		android:contentDescription		attribute	value	to	the	string	resource		ice_cream_sandwiches	.
8.	 Add	a	TextView	that	will	appear	next	to	the	ice	cream	sandwich	as	a	description,	with	the	following	attributes:

TextView	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_wide"

android:layout_below "@+id/donut"

android:layout_toRightOf "@id/ice_cream"

android:text "@string/ice_cream_sandwiches"

Introduction

201

9.	 Add	a	third	ImageView	to	the	layout	for	the	froyo,	using	the	following	attributes:

ImageView	attribute	for	ice_cream Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_regular"

android:id "@+id/froyo"

android:layout_below "@id/ice_cream"

android:contentDescription "FroYo	is	premium	self-serve	frozen	yogurt."

android:src "@drawable/froyo_circle"

10.	 Extract	the		android:contentDescription		attribute	value	to	the	string	resource		froyo	.
11.	 Add	a	TextView	that	will	appear	next	to	the	froyo	as	a	description,	with	the	following	attributes:

TextView	attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:padding "@dimen/padding_wide"

android:layout_below "@+id/ice_cream"

android:layout_toRightOf "@id/froyo"

android:text "@string/froyo"

6.3	Add	onClick	methods	for	the	image	views

You	can	add	the		android:onClick		attribute	to	any	View	to	make	it	clickable	as	a	button.	In	this	step	you	will	add
	android:onClick		to	the	images	in	the	content_main.xml	layout.	You	need	to	also	add	a	method	for	the		android:onClick	
attribute	to	call.	The	method,	for	this	task,	displays	a	toast	message	showing	which	image	was	tapped.	(In	a	later	task,	you
will	modify	the	method	to	launch	another	activity	called	OrderActivity.)

1.	 Add	the	following	string	resources	to	the	strings.xml	file	for	the	strings	to	be	shown	in	the	toast	message:

<string	name="donut_order_message">You	ordered	a	donut.</string>

<string	name="ice_cream_order_message">You	ordered	an	ice	cream	sandwich.</string>

<string	name="froyo_order_message">You	ordered	a	FroYo.</string>

2.	 Add	the	following		displayToast()		method	for	displaying	a	toast	message:

public	void	displayToast(String	message)	{

			Toast.makeText(getApplicationContext(),	message,

																										Toast.LENGTH_SHORT).show();

}

3.	 Add	the	following		showFoodOrder()		method	to	the	end	of	MainActivity	(before	the	closing	bracket).	For	this	task,	use
the		displayToast()		method	to	display	a	toast	message:

/**

*	Displays	a	toast	message	for	the	food	order

*	and	starts	the	OrderActivity	activity.

*	@param	message			Message	to	display.

*/

public	void	showFoodOrder(String	message)	{

			displayToast(message);

}

Introduction

202

Tip:	The	first	four	lines	are	a	comment	in	the	Javadoc	format,	which	makes	the	code	easier	to	understand	and	also
helps	generate	documentation	for	your	code	if	you	use	Javadoc.	It	is	a	best	practice	to	add	such	a	comment	to	every
new	method	you	create.	For	more	information	about	how	to	write	comments,	see	How	to	Write	Doc	Comments	for	the
Javadoc	Tool.

Although	you	could	have	added	this	method	in	any	position	within	MainActivity,	it	is	best	practice	to	put	your	own	methods
below	the	methods	already	provided	in	MainActivity	by	the	template.

1.	 Add	the	following	methods	to	the	end	of	MainActivity	(you	can	add	them	before		showFoodOrder()):

/**

*	Shows	a	message	that	the	donut	image	was	clicked.

*/

public	void	showDonutOrder(View	view)	{

			showFoodOrder(getString(R.string.donut_order_message));

}

/**

*	Shows	a	message	that	the	ice	cream	sandwich	image	was	clicked.

*/

public	void	showIceCreamOrder(View	view)	{

			showFoodOrder(getString(R.string.ice_cream_order_message));

}

/**

*	Shows	a	message	that	the	froyo	image	was	clicked.

*/

public	void	showFroyoOrder(View	view)	{

			showFoodOrder(getString(R.string.froyo_order_message));

}

2.	 Add	the		android:onClick		attribute	to	the	three	ImageViews	in	content_main.xml:

<ImageView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:padding="10dp"

								android:id="@+id/donut"

								android:layout_below="@id/choose_dessert"

								android:contentDescription="@string/donut"

								android:src="@drawable/donut_circle"

								android:onClick="showDonutOrder"/>

.	.	.

<ImageView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:padding="10dp"

								android:id="@+id/ice_cream"

								android:layout_below="@id/donut"

								android:contentDescription="@string/ice_cream_sandwich"

								android:src="@drawable/icecream_circle"

								android:onClick="showIceCreamOrder"/>

.	.	.

<ImageView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:padding="10dp"

								android:id="@+id/froyo"

								android:layout_below="@id/ice_cream"

								android:contentDescription="@string/froyo"

								android:src="@drawable/froyo_circle"

								android:onClick="showFroyoOrder"/>

3.	 Run	the	app.

Clicking	the	donut,	ice	cream	sandwich,	or	froyo	image	displays	a	toast	message	about	the	order,	as	shown	in	the
figure	below.

Introduction

203

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

Introduction

204

Task	7:	Use	radio	buttons
Radio	buttons	are	input	controls	that	are	useful	for	selecting	only	one	option	from	a	set	of	options.	You	should	use	radio
buttons	if	you	want	the	user	to	see	all	available	options	side-by-side.	If	it's	not	necessary	to	show	all	options	side-by-side,
you	may	want	to	use	a	spinner	instead.

Later	in	this	practical	you	will	add	another	activity	and	screen	layout	for	setting	the	delivery	options	for	a	food	order,	and	use
radio	buttons	for	the	delivery	choices.

For	an	overview	and	more	sample	code	for	radio	buttons,	see	Radio	Buttons.

7.1	Add	another	activity
As	you	learned	in	a	previous	lesson,	an	activity	represents	a	single	screen	in	your	app	in	which	your	user	can	perform	a
single,	focused	task.	You	already	have	one	activity,	MainActivity.java.	You	will	now	add	another	activity	for	setting	the
delivery	options	for	an	order,	and	use	an	explicit	intent	to	launch	the	second	activity.

1.	 Right-click	the	com.example.android.droidcafe	folder	in	the	left	column	and	choose	New	>	Activity	>	Empty
Activity.	Edit	the	Activity	Name	to	be	OrderActivity,	and	the	Layout	Name	to	be	activity_order.	Leave	the	other
options	alone,	and	click	Finish.

The	OrderActivity	class	should	now	be	listed	under		MainActivity		in	the	java	folder,	and	activity_order.xml	should	now
be	listed	in	the	layout	folder.	The	Empty	Activity	template	added	these	files.

2.	 Open	the	activity_order.xml	layout	file.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change
the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.

3.	 Open	MainActivity.	Change	the		showFoodOrder()		method	to	make	an	explicit	intent	to	start	OrderActivity:

public	void	showFoodOrder(String	message)	{

								displayToast(message);

								Intent	intent	=	new	Intent(this,	OrderActivity.class);

								startActivity(intent);

}

4.	 Run	the	app.	Clicking	an	image	button	now	launches	the	second	activity,	which	is	a	blank	screen.	(The	toast	message
appears	briefly	on	the	blank	screen.)

7.2	Add	the	layout	for	radio	buttons

To	create	each	radio	button	option,	you	will	create	RadioButton	elements	in	the	activity_order.xml	layout	file,	which	is	linked
to	OrderActivity.	After	editing	the	layout	file,	the	layout	for	the	radio	buttons	in	OrderActivity	will	look	something	like	the

figure	below,	depending	on	your	version	of	Android	Studio.	

Since	radio	button	selections	are	mutually	exclusive,	you	will	group	them	together	inside	a	RadioGroup.	By	grouping	them
together,	the	Android	system	ensures	that	only	one	radio	button	can	be	selected	at	a	time.

Note:	The	order	in	which	you	list	the	RadioButton	elements	determines	the	order	that	they	appear	on	the	screen.
1.	 Open	activity_order.xml_ac	and	add	a	TextView	element	with	the		id		set	to		order_intro_text	:

Introduction

205

https://developer.android.com/guide/topics/ui/controls/radiobutton.html
https://developer.android.com/reference/android/widget/RadioButton.html
https://developer.android.com/reference/android/widget/RadioGroup.html

TextView	attribute Value

android:id "@+id/order_intro_text"

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:layout_marginTop "24dp"

android:layout_marginBottom "6dp"

android:textSize "18sp"

android:text "Choose	a	delivery	method:"

2.	 Extract	the	string	resource	for		"Choose	a	delivery	method:"		to	be		choose_delivery_method	.
3.	 Extract	the	dimension	resources	for	the	margin	values:
4.	 	"24dp"		to		text_margin_top	
5.	 	"6dp"		to		text_margin_bottom	
6.	 	"18sp"		to		intro_text_size	
7.	 Add	a	RadioGroup	to	the	layout	underneath	the	TextView	you	just	added:

<RadioGroup

			android:layout_width="match_parent"

			android:layout_height="wrap_content"

			android:orientation="vertical"

			android:layout_below="@id/order_intro_text">

</RadioGroup>

8.	 Add	the	following	three	RadioButton	elements	within	the	RadioGroup,	using	the	following	attributes.	The
	"onRadioButtonClicked"		entry	for	the		onClick		attribute	will	be	highlighted	until	you	add	that	method	in	the	next	task.

RadioButton	#1	attribute Value

android:id "@+id/sameday"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Same	day	messenger	service"

android:onClick "onRadioButtonClicked"

RadioButton	#2	attribute Value

android:id "@+id/nextday"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Next	day	ground	delivery"

android:onClick "onRadioButtonClicked"

RadioButton	#3	attribute Value

android:id "@+id/pickup"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Pick	up"

android:onClick "onRadioButtonClicked"

Introduction

206

9.	 Extract	the	three	string	resources	for	the		android:text		attributes	to	the	following	names,	so	that	the	strings	can	be
easily	translated:

	same_day_messenger_service	

	next_day_ground_delivery	

	pick_up	

7.3	Add	the	radio	button	click	handler

The		android:onClick		attribute	for	each	radio	button	element	specifies	the		onRadioButtonClicked()		method	to	handle	the
click	event.	Therefore,	you	need	to	add	a	new		onRadioButtonClicked()		method	in	the	OrderActivity	class.

Ordinarily	your	app	would	display	some	message	regarding	which	type	of	delivery	was	chosen.	You	will	accomplish	this
with	a	toast	message	by	creating	a	method	called		displayToast()		in	OrderActivity.

In	the		onRadioButtonClicked()		method	you	will	use	a		switch	case		block	to	check	if	a	radio	button	has	been	clicked.	At	the
end	of	the		switch	case		block,	you	will	add	a		default		statement	that	displays	a		log		message	if	none	of	the	radio	buttons
were	checked.

1.	 Open	strings.xml	and	create	the	following	string	resources:
i.	 A	resource	named		chosen		for	the	string		"Chosen:	"		(include	the	space	after	the	colon	and	the	quotation	marks).
ii.	 A	resource	named	nothing_clicked	for	the	string	"	onRadioButtonClicked:	Nothing	clicked.	"

2.	 Open	OrderActivity	and	add	the	following	statement	to	define		TAG_ACTIVITY		for	the		log		message:

private	static	final	String	TAG_ACTIVITY	=

																																			OrderActivity.class.getSimpleName();

3.	 Add	the	following		displayToast		method	to	OrderActivity:

public	void	displayToast(String	message)	{

			Toast.makeText(getApplicationContext(),	message,

																									Toast.LENGTH_SHORT).show();

}

4.	 Add	the	following		onRadioButtonClicked()		method,	which	checks	to	see	if	a	radio	button	has	been	checked,	and	uses
a		switch	case		block	to	determine	which	radio	button	item	was	selected,	in	order	to	set	the	appropriate		message		for
that	item	to	use	with		displayToast()	:

Introduction

207

public	void	onRadioButtonClicked(View	view)	{

			//	Is	the	button	now	checked?

			boolean	checked	=	((RadioButton)	view).isChecked();

			//	Check	which	radio	button	was	clicked

			switch(view.getId())	{

						case	R.id.sameday:

									if	(checked)

												//	Same	day	service

												displayToast(getString(R.string.chosen)	+

																												getString(R.string.same_day_messenger_service));

									break;

						case	R.id.nextday:

									if	(checked)

												//	Next	day	delivery

												displayToast(getString(R.string.chosen)	+

																												getString(R.string.next_day_ground_delivery));

									break;

						case	R.id.pickup:

									if	(checked)

												//	Pick	up

															displayToast(getString(R.string.chosen)	+

																												getString(R.string.pick_up));

									break;

						default:

									Log.d(TAG_ACTIVITY,	getString(R.string.nothing_clicked));

									break;

			}

}

5.	 Run	the	app.	Tap	an	image	to	see	the	OrderActivity	activity,	which	shows	the	delivery	choices.	Tap	a	delivery	choice,
and	you	will	see	a	toast	message	at	the	bottom	of	the	screen	with	the	choice,	as	shown	in	the	figure	below.

Introduction

208

Introduction

209

Solution	code
Android	Studio	project:	DroidCafe	Part	1

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	You	can	also	perform	an	action	directly	from	the	keyboard	and	replace	the	Return	(Enter)	key	with	a	"send"	key,

such	as	for	dialing	a	phone	number:	

For	this	challenge,	use	the	android:imeOptions	attribute	for	the	EditText	component	with	the		actionSend		value:

android:imeOptions="actionSend"

In	the		onCreate()		method	for	this	main	activity,	you	can	use		setOnEditorActionListener()		to	set	the	listener	for	the
EditText	view	to	detect	if	the	key	is	pressed:

EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

if	(editText	!=	null)

			editText.setOnEditorActionListener(new	TextView.OnEditorActionListener()	{

						...

			});

For	help	setting	the	listener,	see	"Specifying	the	Input	Action"	in	Handling	Keyboard	Input	and	"Specifying	Keyboard
Actions"	in	Text	Fields.

The	next	step	is	to	override		onEditorAction()		and	use	the		IME_ACTION_SEND		constant	in	the	EditorInfo	class	to	respond	to
the	pressed	key.	In	the	example	below,	the	key	is	used	to	call	the		dialNumber()		method	to	dial	the	phone	number:

@Override

public	boolean	onEditorAction(TextView	textView,	int	actionId,	KeyEvent	keyEvent)	{

			boolean	mHandled	=	false;

			if	(actionId	==	EditorInfo.IME_ACTION_SEND)	{

						dialNumber();

						mHandled	=	true;

			}

			return	mHandled;

}

To	finish	the	challenge,	create	the		dialNumber()		method,	which	uses	an	implicit	intent	with		ACTION_DIAL		to	pass	the	phone
number	to	another	app	that	can	dial	the	number.	It	should	look	like	this:

private	void	dialNumber()	{

			EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

			String	mPhoneNum	=	null;

			if	(editText	!=	null)	mPhoneNum	=	"tel:"	+	editText.getText().toString();

			Log.d(TAG,	"dialNumber:	"	+	mPhoneNum);

			Intent	intent	=	new	Intent(Intent.ACTION_DIAL);

			intent.setData(Uri.parse(mPhoneNum));

			if	(intent.resolveActivity(getPackageManager())	!=	null)	{

						startActivity(intent);

			}	else	{

							Log.d("ImplicitIntents",	"Can't	handle	this!");

			}

}

Introduction

210

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart1
https://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions
https://developer.android.com/training/keyboard-input/style.html#Action
https://developer.android.com/guide/topics/ui/controls/text.html#Actions
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html

Summary
In	this	practical,	you	learned	how	to:

Set	up	XML	layout	attributes	to	control	the	keyboard	for	an	EditText	element:
Use	the		textAutoCorrect		value	for	the		android:inputType		attribute	to	change	the	keyboard	so	that	it	suggests
spelling	corrections.
Use	the		textCapSentences		value	for	the		android:inputType		attribute	to	start	each	new	sentence	with	a	capital
letter.
Use	the		textPassword		value	for	the		android:inputType		attribute	to	hide	a	password	when	entering	it.
Use	the		textEmailAddress		value	for	the		android:inputType		attribute	to	show	an	email	keyboard	rather	than	a
standard	keyboard.
Use	the		phone		value	for	the		android:inputType		attribute	to	show	a	phone	keypad	rather	than	a	standard
keyboard.
Challenge:	Use	the		android:imeOptions		attribute	with	the		actionSend		value	to	perform	an	action	directly	from	the
keyboard	and	replace	the	Return	key	with	an	action	key,	such	as	an	implicit	intent	to	another	app	to	dial	a	phone
number.

Use	a	Spinner	input	control	to	provide	a	drop-down	menu,	and	write	code	to	control	it:
Use	an	ArrayAdapter	to	assign	an	array	of	text	values	as	the	spinner	menu	items.
Implement	the		AdapterView.OnItemSelectedListener		interface,	which	requires	also	adding	the		onItemSelected()	
and		onNothingSelected()		callback	methods	to	activate	the	spinner	and	its	listener.
Use	the		onItemSelected()		callback	method	to	retrieve	the	selected	item	in	the	spinner	menu	using
	getItemAtPosition	.

Use		AlertDialog.Builder	,	a	subclass	of	AlertDialog,	to	build	a	standard	alert	dialog,	using		setTitle		to	set	its	title,
	setMessage		to	set	its	message,	and		setPositiveButton		and		setNegativeButton		to	set	its	buttons.
Use	the	standard	date	and	time	pickers:

Add	a	fragment	for	a	date	picker,	and	extend	the	DialogFragment	class	to	implement
	DatePickerDialog.OnDateSetListener		for	a	standard	date	picker	with	a	listener.
Add	a	fragment	for	a	time	picker,	and	extend	the	DialogFragment	class	to	implement
	TimePickerDialog.OnTimeSetListener		for	a	standard	time	picker	with	a	listener.
Implement	the		onDateSet()	,		onTimeSet()	,	and		onCreateDialog()		methods.
Use	the		onFinishDateDialog()		and		onFinishTimeDialog()		methods	to	retrieve	the	selected	date	and	time.

Use	images	in	a	project:
Copy	an	image	into	the	project,	and	define	an	ImageView	element	to	use	it.
Add	the		android:onClick		attribute	to	make	the	ImageView	elements	clickable	like	buttons.	You	can	make	any
View	clickable	with	the		android:onClick		attribute.

Use	radio	buttons:
Create	a	second	activity.
Add	RadioButton	elements	within	a	RadioGroup	in	the	second	activity.
Create	radio	button	handlers.
Launch	the	second	activity	from	an	image	click.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

User	Input	Controls

Learn	more
Android	API	Guide,	"Develop"	section:

Specifying	the	Input	Method	Type

Introduction

211

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/41_c_user_input_controls.html
http://developer.android.com/training/keyboard-input/style.html

Text	Fields
Input	Controls
Spinners
Dialogs
Fragments
Input	Events
Pickers
DateFormat
ImageView
Radio	Buttons	(User	Interface	section)

Material	Design	Specification:
Dialogs	design	guide

Introduction

212

http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/guide/topics/ui/controls.html
http://developer.android.com/guide/topics/ui/controls/spinner.html
https://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/reference/java/text/DateFormat.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/guide/topics/ui/controls/radiobutton.html
https://www.google.com/design/spec/components/dialogs.html

4.2:	Using	an	Options	Menu
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Add	items	to	the	options	menu
Task	2:	Add	icons	for	menu	items
Coding	challenge	#1
Task	3:	Handle	the	selected	menu	item
Coding	challenge	#2
Summary
Related	concept
Learn	more

The	app	bar	(also	called	the	action	bar)	is	a	dedicated	space	at	the	top	of	each	activity	screen.	When	you	create	an	activity
from	a	template	(such	as	Basic	Activity	Template),	an	app	bar	is	automatically	included	for	the	activity	in	a
CoordinatorLayout	root	view	group	at	the	top	of	the	view	hierarchy.

The	options	menu	in	the	app	bar	provides	navigation	to	other	activities	in	the	app,	or	the	primary	options	that	affect	using
the	app	itself—but	not	ones	that	perform	an	action	on	an	element	on	the	screen.	For	example,	your	options	menu	might
provide	the	user	choices	for	navigating	to	other	activities,	such	as	placing	an	order,	or	for	actions	that	have	a	global	impact
on	the	app,	such	as	changing	settings	or	profile	information.

In	this	practical	you'll	learn	about	setting	up	the	app	bar	and	options	menu	in	your	app	(shown	in	the	figure	below).	

Introduction

213

In	the	above	figure:

1.	 App	bar.	The	app	bar	includes	the	app	title,	the	options	menu,	and	the	overflow	button.
2.	 Options	menu	action	icons.	The	first	two	options	menu	items	appear	as	icons	in	the	app	bar.
3.	 Overflow	button.	The	overflow	button	(three	vertical	dots)	opens	a	menu	that	shows	more	options	menu	items.
4.	 Options	overflow	menu.	After	clicking	the	overflow	button,	more	options	menu	items	appear	in	the	overflow	menu.

Options	menu	items	appear	in	the	options	overflow	menu	(see	figure	above).	However,	you	can	place	some	items	as	icons
—as	many	as	can	fit—in	the	app	bar.	Using	the	app	bar	for	the	options	menu	makes	your	app	consistent	with	other	Android
apps,	allowing	users	to	quickly	understand	how	to	operate	your	app	and	have	a	great	experience.

Tip:	To	provide	a	familiar	and	consistent	user	experience,	you	should	use	the	Menu	APIs	to	present	user	actions	and	other
options	in	your	activities.	See	Menus	for	details.

What	you	should	already	KNOW
From	the	previous	chapters,	you	should	be	familiar	with	how	to	do	the	following:

Creating	and	running	apps	in	Android	Studio.
Creating	and	editing	UI	elements	using	the	Layout	Editor,	entering	XML	code	directly,	and	accessing	elements	from
your	Java	code.
Adding	onClick	functionality	to	a	button.

What	you	will	LEARN
Adding	menu	items	to	the	options	menu.
Adding	icons	for	items	in	the	options	menu.
Setting	menu	items	to	show	in	the	action	bar.
Adding	the	event	handlers	for	menu	item	clicks.

What	you	will	DO
Continue	adding	features	to	the	Droid	Cafe	project	from	the	previous	practical.
Add	menu	items	to	the	options	menu.
Add	icons	for	menu	items	to	appear	in	the	action	bar.
Connect	menu	item	clicks	to	event	handlers	that	process	the	click	events.

App	overview
In	the	previous	practical	you	created	an	app	called	Droid	Cafe,	shown	in	the	figure	below,	using	the	Basic	Activity	template.
This	template	also	provides	a	skeletal	options	menu	in	the	app	bar	at	the	top	of	the	screen.	You	will	learn	how	to:

Set	up	the	app	bar.
Modify	the	options	menu.
Add	icons	for	some	of	the	menu	items.
Show	the	icon	for	the	menu	item	in	the	app	bar	rather	than	the	overflow	menu.
Show	the	item	in	the	overflow	menu,	depending	on	the	screen	size	and	orientation.	

Introduction

214

http://developer.android.com/guide/topics/ui/menus.html#PopupMenu

For	this	exercise	you	are	using	the	v7	appcompat	support	library's	Toolbar	as	an	app	bar.	There	are	other	ways	to
implement	an	app	bar.	For	example,	some	themes	set	up	an	ActionBar	as	an	app	bar	by	default.	But	using	the	appcompat
Toolbar	makes	it	easy	to	set	up	an	app	bar	that	works	on	the	widest	range	of	devices,	and	also	gives	you	room	to
customize	your	app	bar	later	on	as	your	app	develops.

To	read	more	about	design	considerations	for	using	the	app	bar,	see	App	Bar	in	the	Material	Design	specification.

To	start	the	project	from	where	you	left	off	in	the	previous	practical,	download:

Android	Studio	project:	DroidCafe	Part	1

Task	1.	Add	items	to	the	options	menu
You	will	open	the	Droid	Cafe	project	from	the	previous	practical,	and	add	menu	items	to	the	options	menu	in	the	app	bar	at
the	top	of	the	screen.

1.1	Examine	the	app	bar	code
1.	 Open	the	Droid	Cafe	project	from	the	previous	practical.	The	project	includes	the	following	layout	files	in	the	res	>

layout	folder:

i.	 activity_main.xml:	The	main	layout	for	MainActivity,	the	first	screen	the	user	sees.

ii.	 content_main.xml:	The	layout	for	the	content	of	the	MainActivity	screen,	which	(as	you	will	see	shortly)	is
included	within	activity_main.xml.

Introduction

215

https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://material.google.com/layout/structure.html#structure-app-bar
https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart1

iii.	 activity_order.xml:	The	layout	for	OrderActivity,	which	you	added	in	the	previous	practical.

2.	 Open	content_main.xml.	In	the	previous	practical,	you	added	TextViews	and	ImageViews	to	the	root	view	group	(which
you	changed	to	RelativeLayout).

The	layout	behavior	for	the		RelativeLayout		is	set	to		@string/appbar_scrolling_view_behavior	,	which	controls	the
scrolling	behavior	of	the	screen	in	relation	to	the	app	bar	at	the	top.	Right-click	(Control-click)	this	string	resource	and
choose	Go	To	>	Declaration	to	see	the	string	resource's	actual	value,	which	is	defined	in	a	file	called	"values.xml".
This	file	is	generated	by	Android	Studio,	not	visible	in	the	Project:	Android	view	and	should	not	be	edited.	The	actual
value	of		@string/appbar_scrolling_view_behavior		in	values.xml	is
	"android.support.design.widget.AppBarLayout$ScrollingViewBehavior"	.

For	more	about	scrolling	behavior,	see	the	Android	Design	Support	Library	blog	entry	in	the	Android	Developers	Blog.
For	design	practices	involving	scrolling	menus,	see	Scrolling	Techniques	in	the	Material	Design	specification.

3.	 Open	activity_main.xml	to	see	the	main	layout,	which	uses	a	CoordinatorLayout	layout	with	an	embedded
AppBarLayout	layout.	The	CoordinatorLayout	and	the	AppBarLayout	tags	require	fully	qualified	names	that	specify
	android.support.design	,	which	is	the	Android	Design	Support	Library.

AppBarLayout	is	a	vertical	LinearLayout	which	uses	the	Toolbar	class	in	the	support	library,	instead	of	the	native
ActionBar,	to	implement	an	app	bar.	The	app	bar	is	a	section	at	the	top	of	the	display	that	can	display	the	activity	title,
navigation,	and	other	interactive	items.	The	native	ActionBar	behaves	differently	depending	on	the	version	of	Android
running	on	the	device.	For	this	reason,	if	you	are	adding	an	options	menu,	you	should	use	the	v7	appcompat	support
library's	Toolbar	as	an	app	bar.	Using	the	Toolbar	makes	it	easy	to	set	up	an	app	bar	that	works	on	the	widest	range	of
devices,	and	also	gives	you	room	to	customize	your	app	bar	later	on	as	your	app	develops.	Toolbar	includes	the	most
recent	features,	and	works	for	any	device	that	can	use	the	support	library.

The	Toolbar	within	this	layout	has	the	id		toolbar	,	and	is	also	specified,	like	the	AppBarLayout,	with	a	fully	qualified
name	(android.support.v7.widget):

<android.support.design.widget.AppBarLayout

			android:layout_width="match_parent"

			android:layout_height="wrap_content"

			android:theme="@style/AppTheme.AppBarOverlay">

			<android.support.v7.widget.Toolbar

						android:id="@+id/toolbar"

						android:layout_width="match_parent"

						android:layout_height="?attr/actionBarSize"

						android:background="?attr/colorPrimary"

						app:popupTheme="@style/AppTheme.PopupOverlay"	/>

</android.support.design.widget.AppBarLayout>

For	more	details	about	the	AppBarLayout	class,	see	AppBarLayout	in	the	Android	Developer	Reference.	For	more
details	about	toolbars,	see	Toolbar	in	the	Android	Developer	Reference.

Tip:	The	activity_main.xml	layout	also	uses	an		include	layout		statement	to	include	the	entire	layout	defined	in
content_main.xml.	This	separation	of	layout	definitions	makes	it	easier	to	change	the	layout's	content	apart	from	the
layout's	toolbar	definition	and	coordinator	layout.	This	is	a	best	practice	for	separating	your	content	(which	may	need	to
be	translated)	from	the	format	of	your	layout.

4.	 Run	the	app.	Notice	the	bar	at	the	top	of	the	screen	showing	the	name	of	the	app	(Droid	Cafe).	It	also	shows	the	action
overflow	button	(three	vertical	dots)	on	the	right	side.	Tap	the	overflow	button	to	see	the	options	menu,	which	at	this
point	has	only	one	menu	option,	Settings.

5.	 Examine	the	AndroidManifest.xml	file.	The		.MainActivity		activity	is	set	to	use	the		NoActionBar		theme:

android:theme="@style/AppTheme.NoActionBar"

Introduction

216

http://android-developers.blogspot.com/2015/05/android-design-support-library.html
https://material.google.com/patterns/scrolling-techniques.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/design/widget/AppBarLayout.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

The		NoActionBar		theme	is	defined	in	the	styles.xml	file	(expand	app	>	res	>values	>	styles.xml	to	see	it).	Styles	are
covered	in	another	lesson,	but	you	can	see	that	the		NoActionBar		theme	sets	the		windowActionBar		attribute	to		false	
(no	window	action	bar),	and	the		windowNoTitle		attribute	to		true		(no	title).

The	reason	these	values	are	set	is	because	you	are	defining	the	app	bar	in	your	layout	(activity_main.xml)	with
AppBarLayout,	rather	than	using	an	ActionBar.	Using	one	of	the	NoActionBar	themes	prevents	the	app	from	using	the
native	ActionBar	class	to	provide	the	app	bar.	The	native	ActionBar	class	behaves	differently	depending	on	what
version	of	the	Android	system	a	device	is	using.	By	contrast,	the	most	recent	features	are	added	to	the	support	library's
version	of	Toolbar	and	available	on	any	device	that	can	use	the	support	library.	For	this	reason,	you	should	use	the
support	library's	Toolbar	class	to	implement	your	activities'	app	bars	instead	of	ActionBar.	Using	the	support	library's
Toolbar	ensures	that	your	app	has	consistent	behavior	across	the	widest	range	of	devices.

6.	 Look	at	MainActivity,	which	extends		AppCompatActivity		and	starts	with	the		onCreate()		method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_main);

				Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

				setSupportActionBar(toolbar);

				...

After	setting	the	content	view	to	the	activity_main.xml	layout,	the		onCreate()		method	sets		toolbar		to	be	the	Toolbar
defined	in	the	activity_main.xml	layout.	It	then	calls	the	activity's		setSupportActionBar()		method,	and	passes		toolbar		to	it,
setting	the		toolbar		defined	in	activity_main.xml	as	the	app	bar	for	the	activity.

For	best	practices	about	adding	the	app	bar	to	your	app,	see	Adding	the	App	Bar	in	Best	Practices	for	User	Interface.

1.2	Add	more	menu	items	to	the	options	menu

You	will	add	the	following	menu	items	to	the	options	menu	of	the	Droid	Cafe	app:

Order:	Go	to	the	Order	Activity	screen	to	see	the	food	order.
Status:	Check	the	status	of	a	food	order.
Favorites:	Show	favorite	foods.
Contact:	Contacting	the	restaurant.	Since	you	don't	need	the	existing	Settings	item,	you	will	change	Settings	to
Contact.

Android	provides	a	standard	XML	format	to	define	menu	items.	Instead	of	building	a	menu	in	your	activity's	code,	you	can
define	a	menu	and	all	of	its	menu	items	in	an	XML	menu	resource.	You	can	then	inflate	the	menu	resource	(load	it	as	a
Menu	object)	in	your	activity	or	fragment:

1.	 Take	a	look	at	menu_main.xml	(expand	res	>	menu	in	the	Project	view).	It	defines	menu	items	with	the		<item>
</item>		tag	within	the		<menu>	</menu>		block.	The	only	menu	item	provided	from	the	template	is		action_settings		(the
Settings	choice),	which	is	defined	as:

<item

				android:id="@+id/action_settings"

				android:orderInCategory="100"

				android:title="@string/action_settings"

				app:showAsAction="never"	/>

In	Android	Studio,	the		android:title		attribute	shows	the	string	value		"Settings"		even	though	the	string	is	defined	as
a	resource.	Android	Studio	displays	the	value	so	that	you	can	see	at-a-glance	what	the	value	is	without	having	to	open
the	strings.xml	resource	file.	If	you	click	on	this	string,	it	changes	to	show	the	string	resource
	"@string/action_settings"	.

2.	 Change	the	following	attributes	of	the		action_settings		item	to	make	it	the		action_contact		item	(don't	change	the
existing		android:orderInCategory		attribute):

Introduction

217

https://developer.android.com/reference/android/support/v7/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/training/appbar/index.html

Attribute Value

android:id "@+id/action_contact"

android:title "Contact"

app:showAsAction "never"

3.	 Extract	the	hard-coded	string		"Contact"		into	the	string	resource		action_contact	.
4.	 Add	a	new	menu	item	using	the		<item>	</item>		tag	within	the		<menu>	</menu>		block,	and	give	the	item	the	following

attributes:

Attribute Value

android:id "@+id/action_order"

android:orderInCategory "10"

android:title "Order"

app:showAsAction "never"

The		android:orderInCategory		attribute	specifies	the	order	in	which	the	menu	items	appear	in	the	menu,	with	the	lowest
number	appearing	higher	in	the	menu.	The	Contact	item	is	set	to	100,	which	is	a	big	number	in	order	to	specify	that	it
shows	up	at	the	bottom	rather	than	the	top.	You	set	the	Order	item	to	10,	which	puts	it	above	Contact,	and	leaves
plenty	of	room	in	the	menu	for	more	items.

5.	 Extract	the	hard-coded	string		"Order"		into	the	string	resource		action_order	.
6.	 Add	two	more	menu	items	the	same	way	with	the	following	attributes:

Status	item	attribute Value

android:id "@+id/action_status"

android:orderInCategory "20"

android:title "Status"

app:showAsAction "never"

Favorites	item	attribute Value

android:id "@+id/action_favorites"

android:orderInCategory "40"

android:title "Favorites"

app:showAsAction "never"

7.	 Extract		"Status"		into	the	resource		action_status	,	and		"Favorites"		into	the	resource		action_favorites	.
8.	 You	will	display	a	toast	message	with	an	action	message	depending	on	which	menu	item	the	user	selects.	Add	the

following	string	names	and	values	in		strings.xml		for	these	messages:

<string	name="action_order_message">You	selected	Order.</string>

<string	name="action_status_message">You	selected	Status.</string>

<string	name="action_favorites_message">You	selected	Favorites.</string>

<string	name="action_contact_message">You	selected	Contact.</string>

9.	 Open	MainActivity,	and	change	the		if		statement	in	the		onOptionsItemSelected()		method	replacing	the	id
	action_settings		with	the	new	id		action_order	:

if	(id	==	R.id.action_order)

Introduction

218

Run	the	app,	and	tap	the	action	overflow	icon,	shown	on	the	left	side	of	the	figure	below,	to	see	the	options	menu,	shown
on	the	right	side	of	the	figure	below.	You	will	soon	add	callbacks	to	respond	to	items	selected	from	this	menu.	

In	the	above	figure:

1.	 Tap	the	overflow	icon	in	the	app	bar	to	see	the	options	menu.
2.	 The	options	menu	drops	down	from	the	app	bar.

Notice	the	order	of	items	in	the	options	menu.	You	used	the		android:orderInCategory		attribute	to	specify	the	priority	of	the
menu	items	in	the	menu:	The	Order	item	is	10,	followed	by	Status	(20)	and	Favorites	(40),	and	Contact	is	last	(100).	The
following	table	shows	the	priority	of	items	in	the	menu:

Menu	item orderInCategory	attribute

Order 10

Status 20

Favorites 40

Contact 100

Task	2.	Add	icons	for	menu	items
Whenever	possible,	you	want	to	show	the	most	frequently	used	actions	using	icons	in	the	app	bar	so	the	user	can	click
them	without	having	to	first	click	the	overflow	icon.	In	this	task,	you'll	add	icons	for	some	of	the	menu	items,	and	show	some
of	menu	items	in	the	app	bar	at	the	top	of	the	screen	as	icons.

In	this	example,	let's	assume	the	Order	and	Status	actions	are	considered	the	most	frequently	used.	Favorites	is
occasionally	used,	and	Contact	is	the	least	frequently	used.	You	can	set	icons	for	these	actions,	and	specify	the	following:

Order	and	Status	should	always	be	shown	in	the	app	bar.
Favorites	should	be	shown	in	the	app	bar	if	it	will	fit;	if	not,	it	should	appear	in	the	overflow	menu.
Contact	should	not	appear	in	the	app	bar;	it	should	only	appear	in	the	overflow	menu.

Introduction

219

2.1	Add	icons	for	menu	items

To	specify	icons	for	actions,	you	need	to	first	add	the	icons	as	image	assets	to	the	drawable	folder.

1.	 Expand	res	in	the	Project	view,	and	right-click	(or	Control-click)	drawable.
2.	 Choose	New	>	Image	Asset.	The	Configure	Image	Asset	dialog	appears.
3.	 Choose	Action	Bar	and	Tab	Items	in	the	drop-down	menu.
4.	 Change	ic_action_name	to	ic_order_white	(for	the	Order	action).	The	Configure	Image	Asset	screen	should	look	as

follows	(see	Create	App	Icons	with	Image	Asset	Studio	for	a	complete	description.)	

5.	 Click	the	clipart	image	(the	Android	logo	next	to	"Clipart:")	to	select	a	clipart	image	as	the	icon.	A	page	of	icons
appears.	Click	the	icon	you	want	to	use	for	the	Order	action	(for	example,	the	shopping	cart	icon	may	be	appropriate).

6.	 Choose	HOLO_DARK	from	the	Theme	drop-down	menu.	This	sets	the	icon	to	be	white	against	a	dark-colored	(or
black)	background.	Click	Next.

7.	 Click	Finish	in	the	Confirm	Icon	Path	dialog.
8.	 Repeat	the	above	steps	for	the	Status	and	Favorites	icons,	naming	them	ic_status_white	and	ic_favorites_white

respectively.	You	may	want	to	use	the	circled-i	icon	for	Status	(typically	used	for	Info),	and	the	heart	icon	for
Favorites.

2.2	Show	the	menu	items	as	icons	in	the	app	bar
To	show	menu	items	as	icons	in	the	app	bar,	use	the		app:showAsAction		attribute	in	menu_main.xml.	The	following	values
for	the	attribute	specify	whether	or	not	the	action	should	appear	in	the	app	bar	as	an	icon:

Introduction

220

http://developer.android.com/tools/help/image-asset-studio.html

	"always"	:	Always	appears	in	the	app	bar.	(If	there	isn't	enough	room	it	may	overlap	with	other	menu	icons.)
	"ifRoom"	:	Appears	in	the	app	bar	if	there	is	room.
	"never"	:	Never	appears	in	the	app	bar;	it's	text	appears	in	the	overflow	menu.

Follow	these	steps	to	show	some	of	the	menu	items	as	icons:

1.	 Open	menu_main.xml	again,	and	add	the	following	attributes	to	the	Order,	Status,	and	Favorites	items	so	that	the
first	two	(Order	and	Status)	always	appear,	and	the	Favorites	item	appears	only	if	there	is	room	for	it:

Order	item	attribute Old	value New	value

android:icon "@drawable/ic_order_white"

app:showAsAction "never" "always"

Status	item	attribute Old	value New	value

android:icon "@drawable/ic_status_white"

app:showAsAction "never" "always"

Favorites	item	attribute Old	value New	value

android:icon "@drawable/ic_favorites_white"

app:showAsAction "never" "ifRoom"

2.	 Run	the	app.	You	should	now	see	at	least	two	icons	in	the	app	bar:	the	icon	for	Order	and	the	icon	for	Status	as
shown	in	the	figure	below	If	your	device	or	the	emulator	is	displaying	in	vertical	orientation,	the	Favorites	and	Contact
options	appear	in	the	overflow	menu.

3.	 Rotate	your	device	to	the	horizontal	orientation,	or	if	you're	running	in	the	emulator,	click	the	Rotate	Left	or	Rotate
Right	icons	to	rotate	the	display	into	the	horizontal	orientation.	You	should	then	see	all	three	icons	in	the	app	bar	for
Order,	Status,	and	Favorites.

Tip:	How	many	action	buttons	will	fit	in	the	app	bar?	It	depends	on	the	orientation	and	the	size	of	the	device	screen.	Fewer
buttons	appear	in	a	vertical	orientation,	as	shown	on	the	left	side	of	the	figure	below,	compared	to	a	horizontal	orientation
as	shown	on	the	right	side	of	the	figure	below.	Action	buttons	may	not	occupy	more	than	half	of	the	main	app	bar's	width.	

Introduction

221

Coding	challenge	#1
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	When	you	click	the	floating	action	button	with	the	email	icon	that	appears	at	the	bottom	of	the	screen,	the
code	in	MainActivity	displays	a	drawer	that	opens	and	closes,	called	a	snackbar.	A	snackbar	provides	feedback	about	an
operation—it	shows	a	brief	message	at	the	bottom	of	the	screen	on	a	smartphone,	or	in	the	lower	left	corner	on	larger
devices.	For	more	information,	see	Snackbar.

Look	at	how	other	apps	implement	the	floating	action	button.	For	example,	the	Gmail	app	provides	a	floating	action	button
to	create	a	new	email	message,	and	the	Contacts	app	provides	one	to	create	a	new	contact.	For	more	information	about
floating	action	buttons,	see	FloatingActionButton.

Now	that	you	know	how	to	add	icons	for	menu	items,	use	the	same	technique	to	add	another	icon,	and	assign	that	icon	to
the	floating	action	button,	replacing	the	email	icon.	For	example,	you	might	want	the	floating	action	button	to	start	a	chat
session;	in	which	case	you	might	want	to	use	an	icon	showing	a	human.

Hint:	The	floating	action	button	is	defined	in	activity_main.xml.

While	adding	the	icon,	also	change	the	text	that	appears	in	the	snackbar	after	tapping	the	floating	action	button.	You	will
find	this	text	in	the		Snackbar.make		statement	in	the	main	activity.	Extract	the	string	resource	for	this	text	to	be
	snackbar_text	.

Task	3.	Handle	the	selected	menu	item
In	this	task,	you'll	add	a	method	to	display	a	message	about	which	menu	item	is	tapped,	and	use	the
onOptionsItemSelected()	method	to	determine	which	menu	item	was	tapped.

3.1	Create	a	method	to	display	the	menu	choice

1.	 Open	MainActivity.
2.	 If	you	haven't	already	added	the	following	method	(in	the	previous	lesson)	for	displaying	a	toast	message,	add	it	now:

public	void	displayToast(String	message)	{

			Toast.makeText(getApplicationContext(),	message,

																										Toast.LENGTH_SHORT).show();

}

The		displayToast()		method	gets	the		message		from	the	appropriate	string	(such	as		action_contact_message).

3.2	Use	the	onOptionsItemSelected	event	handler
The	onOptionsItemSelected()	method	handles	selections	from	the	options	menu.	You	will	add	a		switch	case		block	to
determine	which	menu	item	was	selected,	and	what		message		to	create	for	each	selected	item.	(Rather	than	creating	a
	message		for	each	item,	you	could	implement	an	event	handler	for	each	item	that	performs	an	action,	such	as	starting
another	activity,	as	shown	later	in	this	lesson.)

1.	 Find	the		onOptionsItemSelected()		method.	The		if		statement	in	the	method,	provided	by	the	template,	determines	if
a	certain	menu	item	was	clicked,	using	the	menu	item's		id		(action_order		in	the	below	example):

Introduction

222

http://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html
https://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

				int	id	=	item.getItemId();

				if	(id	==	R.id.action_order)	{

								return	true;

				}

				return	super.onOptionsItemSelected(item);

}

2.	 Replace	the		if		statement	and	the	assignment	to		id		with	the	following		switch	case		block	that	sets	the	appropriate
	message		based	on	the	menu	item's		id	:

		@Override

		public	boolean	onOptionsItemSelected(MenuItem	item)	{

				switch	(item.getItemId())	{

								case	R.id.action_order:

												displayToast(getString(R.string.action_order_message));

												return	true;

								case	R.id.action_status:

												displayToast(getString(R.string.action_status_message));

												return	true;

								case	R.id.action_favorites:

												displayToast(getString(R.string.action_favorites_message));

												return	true;

								case	R.id.action_contact:

												displayToast(getString(R.string.action_contact_message));

												return	true;

								default:

												//	Do	nothing

				}

				return	super.onOptionsItemSelected(item);

		}

3.	 Run	the	app.	You	should	now	see	a	different	toast	message	on	the	screen,	as	shown	on	the	right	side	of	the	figure
below,	based	on	which	menu	item	you	choose.	

In	the	above	figure:

1.	 Selecting	the	Contact	item	in	the	options	menu.
2.	 The	toast	message	that	appears.

Solution	code	(includes	coding	challenge	#1)

Introduction

223

Android	Studio	project:	DroidCafe	Part	2

Coding	challenge	#2
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	2:	In	the	previous	challenge,	you	changed	the	icon	for	the	floating	action	button	that	appears	at	the	bottom	of
the		MainActivity		screen	in	your	app.

For	this	challenge:

1.	 Change	the	icon	for	the	floating	action	button	again,	but	this	time	to	an	appropriate	icon	for	a	map,	such	as	the	world
icon.

2.	 In		MainActivity	,	replace	the	action	to	display	a	snackbar	with	an	implicit	intent	to	launch	the	Maps	app	when	the
floating	action	button	is	tapped.

3.	 Add	the	following	specific	coordinates	(for	Google	headquarters)	and	the	zoom	level	(12)	to	a	string	resource	called
	google_mtv_coord_zoom12	:

<string	name="google_mtv_coord_zoom12">geo:37.422114,-122.086744?z=12</string>

4.	 Add	the	following	method	to	start	the	Maps	app,	which	passes	the	above	string	as		data		using	an	implicit	intent:

public	void	displayMap()	{

				Intent	intent	=	new	Intent();

				intent.setAction(Intent.ACTION_VIEW);

				//	Using	the	coordinates	for	Google	headquarters.

				String	data	=	getString(R.string.google_mtv_coord_zoom12);

				intent.setData(Uri.parse(data));

				if	(intent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(intent);

				}

}

For	examples	of	implicit	intents,	including	opening	the	Maps	app,	see	Common	Implicit	Intents	on	github.

Introduction

224

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart2
https://github.com/codepath/android_guides/wiki/Common-Implicit-Intents

After	tapping	the	floating	action	button	to	go	to	the	Maps	app,	as	shown	in	the	figure	below,	the	user	can	tap	the	Back
button	below	the	screen	to	return	to	your	app.	

Solution	code	(includes	coding	challenge	#2)
Android	Studio	Project:	DroidCafe	Part	3

You	will	finish	the	DroidCafe	app	in	the	next	lesson.

Summary
In	this	practical,	you	learned	how	to	do	the	following:

Set	up	an	options	menu	in	the	app	bar:
Using	the	Basic	Activity	template	to	automatically	set	up	the	options	menu	and	a	floating	action	button.
Using		@string/appbar_scrolling_view_behavior		to	provide	the	standard	scrolling	behavior	of	the	app	bar's	options
menu.
Using	a	CoordinatorLayout	view	group	with	the	AppBarLayout	class	to	create	an	options	menu	in	the	app	bar.
Using	an		include	layout		statement	in	an	XML	layout	file	to	include	an	entire	layout	defined	in	another	XML	file.
Using	the		NoActionBar		theme	to	prevent	the	app	from	using	the	native	ActionBar	class	attributes	for	the	app	bar,
in	order	to	set	the		windowActionBar		attribute	to		false		(no	window	action	bar),	and	the		windowNoTitle		attribute	to
	true		(no	title).
Using	an	activity's		onCreate()		method	to	call	the	activity's		setSupportActionBar()		method	to	set	the	toolbar
defined	in	the	layout	as	the	app	bar	for	the	activity.
Defining	a	menu	and	all	its	items	in	an	XML	menu	resource,	and	then	inflating	the	menu	resource	in	an	activity	or

Introduction

225

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart3

fragment	to	load	it	as	a	Menu	object.
Using	the		android:orderInCategory		attribute	to	specify	the	order	in	which	the	menu	items	appear	in	the	menu,
with	the	lowest	number	appearing	higher	in	the	menu.
Using	the		app:showAsAction		attribute	to	show	menu	items	as	icons	in	the	app	bar.
Adding	event	handlers	for	options	menu	items,	and	using	the		onOptionsItemSelected()		method	to	retrieve	the
selection	from	the	options	menu.

Use	icons	in	a	project:
Adding	icons	to	a	project	and	using	them	to	show	menu	items	in	the	app	bar.
Challenge:	Changing	the	icon	for	a	floating	action	button,	and	changing	the		Snackbar.make		code.

Challenge:	Making	an	implicit	intent	to	launch	the	Maps	app	with	specific	coordinates.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Menus

Learn	more
Android	Developer	Reference:

AppBarLayout
Toolbar
Menus

Android	Developers	Blog:	Android	Design	Support	Library
Material	Design	Spec:

App	Bar
Scrolling	Techniques

Best	Practices	for	User	Interface:	Adding	the	App	Bar
Github:	Common	Implicit	Intents
Images	and	icons:

Image	Asset	Studio
Compare	Icons	for	Drawables
Icons	and	other	downloadable	resources

Introduction

226

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/42_c_menus.html
https://developer.android.com/reference/android/support/design/widget/AppBarLayout.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
http://developer.android.com/guide/topics/ui/menus.html#PopupMenu
http://android-developers.blogspot.com/2015/05/android-design-support-library.html
http://www.google.com/design/spec/layout/structure.html
https://material.google.com/patterns/scrolling-techniques.html
https://developer.android.com/training/appbar/index.html
https://github.com/codepath/android_guides/wiki/Common-Implicit-Intents
http://developer.android.com/tools/help/image-asset-studio.html
http://androiddrawables.com/
http://developer.android.com/design/downloads/index.html

4.3:	Using	the	App	Bar	and	Tabs	for	Navigation
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Add	an	Up	button	for	ancestral	navigation
Task	2:	Use	tab	navigation	with	swipe	views
Coding	challenges
Summary
Related	concept
Learn	more

In	the	early	stages	of	developing	an	app,	you	should	determine	the	paths	users	should	take	through	your	app	in	order	to	do
something,	such	as	placing	an	order	or	browsing	through	content.	Each	path	enables	users	to	navigate	across,	into,	and
back	out	from	the	different	tasks	and	pieces	of	content	within	the	app.

In	this	practical,	you'll	learn	how	to	add	an	Up	button	(a	left-facing	arrow)	to	the	app	bar	of	your	app,	as	shown	below,	to
navigate	from	a	child	screen	up	to	the	parent	screen.	

The	Up	button	is	always	used	to	navigate	to	the	parent	screen	in	the	hierarchy.	It	differs	from	the	Back	button	(the	triangle
at	the	bottom	of	the	screen),	which	provides	navigation	to	whatever	screen	the	user	viewed	previously.

This	practical	also	introduces	tab	navigation,	in	which	tabs	appear	across	the	top	of	a	screen,	providing	navigation	to	other
screens.	Tab	navigation	is	a	very	popular	solution	for	lateral	navigation	from	one	child	screen	to	another	child	screen	that	is
a	sibling,	as	shown	in	the	diagram	below.	Tabs	provide	navigation	to	and	from	the	sibling	screens	Top	Stories,	Tech	News,
and	Cooking	without	having	to	navigate	up	to	the	parent.	Tabs	can	also	provide	navigation	to	and	from	stories,	which	are
sibling	screens	under	the	Top	Stories	parent.

Introduction

227

Tabs	are	most	appropriate	for	four	or	fewer	sibling	screens.	The	user	can	tap	a	tab	to	see	a	different	screen,	or	swipe	left	or
right	to	see	a	different	screen.	

In	the	above	figure:

1.	 Lateral	navigation	from	one	category	screen	to	another
2.	 Lateral	navigation	from	one	story	screen	to	another

What	you	should	already	KNOW
From	the	previous	chapters,	you	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Create	and	edit	UI	elements	using	the	Layout	Editor,	entering	XML	code	directly,	and	accessing	elements	from	your
Java	code.
Add	menu	items	and	icons	to	the	options	menu	in	the	app	bar.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Add	the	Up	button	to	the	app	bar.
Set	up	an	app	with	tab	navigation	and	swipe	views.

What	you	will	DO
Continue	adding	features	to	the	Droid	Cafe	project	from	the	previous	practical.
Provide	the	Up	button	in	the	app	bar	to	navigate	to	the	previous	screen	within	an	activity.
Create	a	new	app	with	tabs	for	navigating	activity	screens	that	can	also	be	swiped.

App	overview

Introduction

228

In	the	previous	practical	you	created	an	app	called	Droid	Cafe	in	three	parts,	using	the	Basic	Activity	template.	This
template	also	provides	an	app	bar	at	the	top	of	the	screen.	You	will	learn	how	to	add	an	Up	button	(a	left-facing	arrow)	to
the	app	bar	for	up	navigation	from	the	second	activity	(OrderActivity)	to	the	main	activity	(MainActivity).	This	will	complete
the	Droid	Cafe	app.

To	start	the	project	from	where	you	left	off	in	the	previous	practical,	download	the	Android	Studio	project	DroidCafe	Part	3.	

The	second	app	you	will	create	for	tab	navigation	will	show	three	tabs	below	the	app	bar	to	navigate	to	sibling	screens.	As
the	user	taps	a	tab,	the	screen	shows	a	content	screen	depending	on	which	tab	is	tapped.	The	user	can	also	swipe	left	and
right	to	visit	the	content	screens.	Swiping	views	is	handled	automatically	by	the	ViewPager	class.	

Introduction

229

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart3

Task	1.	Add	an	Up	button	for	ancestral	navigation
Your	app	should	make	it	easy	for	users	to	find	their	way	back	to	the	app's	main	screen,	which	is	the	parent	activity.	One
way	to	do	this	is	to	provide	an	Up	button	on	the	app	bar	for	all	activities	that	are	children	of	the	parent	activity.

The	Up	button	provides	ancestral	"up"	navigation,	enabling	the	user	to	go	up	from	a	child	page	to	the	parent	page.	The	Up
button	is	the	left-facing	arrow	on	the	left	side	of	the	app	bar,	as	shown	on	the	left	side	of	the	figure	below.

When	the	user	touches	the	Up	button,	the	app	navigates	to	the	parent	activity.	The	diagram	on	the	right	side	of	the	figure
below	shows	how	the	Up	button	is	used	to	navigate	within	an	app	based	on	the	hierarchical	relationships	between	screens.

In	the	above	figure:

1.	 Navigating	from	the	first-level	siblings	to	the	parent.
2.	 Navigating	from	second-level	siblings	to	the	first-level	child	screen	acting	as	a	parent	screen

Tip:	The	Back	button	(the	triangle	at	the	bottom	of	the	screen)	differs	from	the	Up	button.	The	Back	button	provides
navigation	to	whatever	screen	you	viewed	previously.	If	you	have	several	child	screens	that	the	user	can	navigate	through
using	a	lateral	navigation	pattern	(as	described	in	the	next	section),	the	Back	button	would	send	the	user	back	to	the
previous	child	screen,	not	to	the	parent	screen.	Use	an	Up	button	if	you	want	to	provide	ancestral	navigation	from	a	child
screen	back	to	the	parent	screen.	For	more	information	about	Up	navigation,	see	Providing	Up	Navigation.

Introduction

230

http://developer.android.com/training/implementing-navigation/ancestral.html

As	you	learned	previously,	when	adding	activities	to	an	app,	you	can	add	Up-button	navigation	to	a	child	activity	such	as
OrderActivity	by	declaring	the	activity's	parent	to	be	MainActivity	in	the	AndroidManifest.xml	file.	You	can	also	set	the
	android:label		attribute	for	a	title	for	the	activity	screen,	such	as		"Order	Activity"	:

1.	 If	you	don't	already	have	the	Droid	Cafe	app	open	from	the	previous	practical,	download	the	Android	Studio	project
DroidCafe	Part	3	and	rename	the	project	to	DroidCafe.

2.	 Open	the	DroidCafe	project.
3.	 Open	AndroidManifest.xml.
4.	 Change	the	activity	element	for	OrderActivity	to	the	following:

<activity	android:name=".OrderActivity"

		android:label="Order	Activity"

		android:parentActivityName="com.example.android.

																																								droidcafe.MainActivity">

		<meta-data

					android:name="android.support.PARENT_ACTIVITY"

					android:value=".MainActivity"/>

</activity>

5.	 Extract	the	android:label	value		"Order	Activity"		to	a	string	resource	named		title_activity_order	.
6.	 Run	the	app.

Introduction

231

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafePart3

The	Order	Activity	screen	now	includes	the	Up	button	(highlighted	in	the	figure	below)	in	the	app	bar	to	navigate	back	to	the

parent	activity.	

Solution	code:

Android	Studio	project:	DroidCafe

Task	2.	Use	tab	navigation	with	swipe	views
With	lateral	navigation,	you	enable	the	user	to	go	from	one	sibling	to	another	(at	the	same	level	in	a	multitier	hierarchy).	For
example,	if	your	app	provides	several	categories	of	stories	(such	as	Top	Stories,	Tech	News,	and	Cooking,	as	shown	in	the
figure	below),	you	would	want	to	provide	your	users	the	ability	to	navigate	from	one	category	to	the	next,	without	having	to

Introduction

232

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafe

navigate	back	up	to	the	parent	screen.	Another	example	of	lateral	navigation	is	the	ability	to	swipe	left	or	right	in	a	Gmail
conversation	to	view	a	newer	or	older	one	in	the	same	Inbox.	

In	the	above	figure:

1.	 Lateral	navigation	from	one	category	screen	to	another
2.	 Lateral	navigation	from	one	story	screen	to	another

You	can	implement	lateral	navigation	with	tabs	that	represent	each	screen.	Tabs	appear	across	the	top	of	a	screen,	as
shown	on	the	left	side	of	the	figure	above,	in	order	to	provide	navigation	to	other	screens.	Tab	navigation	is	a	very	popular
solution	for	lateral	navigation	from	one	child	screen	to	another	child	screen	that	is	a	sibling—in	the	same	position	in	the
hierarchy	and	sharing	the	same	parent	screen.	Tab	navigation	is	often	combined	with	the	ability	to	swipe	child	screens	left-
to-right	and	right-to-left.

The	primary	class	used	for	displaying	tabs	is	TabLayout	in	the	Android	Design	Support	Library.	It	provides	a	horizontal
layout	to	display	tabs.	You	can	show	the	tabs	below	the	app	bar,	and	use	the	PagerAdapter	class	to	populate	screens
"pages"	inside	of	a	ViewPager.	ViewPager	is	a	layout	manager	that	lets	the	user	flip	left	and	right	through	screens.	This	is	a
common	pattern	for	presenting	different	screens	of	content	within	an	activity—use	an	adapter	to	fill	the	content	screen	to
show	in	the	activity,	and	a	layout	manager	that	changes	the	content	screens	depending	on	which	tab	is	selected.

You	supply	an	implementation	of	a	PagerAdapter	to	generate	the	screens	that	the	view	shows.	ViewPager	is	most	often
used	in	conjunction	with	Fragment.	By	using	fragments,	you	have	a	convenient	way	to	manage	the	lifecycle	of	each	screen
"page".

To	use	classes	in	the	Android	Support	Library,	add		com.android.support:design:xx.xx.x	(in	which		xx.xx.x		is	the	newest
version)	to	the	build.gradle	(Module:	app)	file.

The	following	are	standard	adapters	for	using	fragments	with	the	ViewPager:

FragmentPagerAdapter:	Designed	for	navigating	between	sibling	screens	(pages)	representing	a	fixed,	small	number
of	screens.
FragmentStatePagerAdapter:	Designed	for	paging	across	a	collection	of	screens	(pages)	for	which	the	number	of
screens	is	undetermined.	It	destroys	fragments	as	the	user	navigates	to	other	screens,	minimizing	memory	usage.	The
app	for	this	practical	challenge	uses	FragmentStatePagerAdapter.

2.1	Create	the	layout	for	tab	navigation

1.	 Create	a	new	project	using	the	Empty	Activity	template.	Name	the	app	Tab	Experiment.

Introduction

233

https://developer.android.com/reference/android/support/design/widget/TabLayout.html
https://developer.android.com/reference/android/support/v4/view/PagerAdapter.html
https://developer.android.com/reference/android/support/v4/view/ViewPager.html
https://developer.android.com/reference/android/support/v4/view/PagerAdapter.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/support/v4/app/FragmentPagerAdapter.html
https://developer.android.com/reference/android/support/v4/app/FragmentStatePagerAdapter.html

2.	 Edit	the	build.gradle	(Module:	app)	file,	and	add	the	following	lines	(if	they	are	not	already	added)	to	the
	dependencies		section:

compile	'com.android.support:design:25.0.1'

compile	'com.android.support:support-v4:25.0.1'

If	Android	Studio	suggests	a	version	with	a	higher	number,	edit	the	above	lines	to	update	the	version.	Also,	if	Android
Studio	suggests	a	newer	version	of		compileSdkVersion	,		buildToolsVersion	,	and/or		targetSdkVersion	,	edit	them	to
update	the	version.

3.	 In	order	to	use	a	Toolbar	rather	than	an	action	bar	and	app	title,	add	the	following	statements	to	the	res	>	values	>
styles.xml	file	to	hide	the	action	bar	and	the	title:

<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

	...						

	<item	name="windowActionBar">false</item>

	<item	name="windowNoTitle">true</item>

</style>

4.	 Open	the	activity_main.xml	layout	file.	In	the	Layout	Editor,	click	the	Text	tab	at	the	bottom	of	the	screen	and	change
the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.

5.	 In	the	activity_main.xml	layout,	remove	the	TextView	supplied	by	the	template,	and	add	a	Toolbar,	a	TabLayout,	and	a
ViewPager	within	the	root	layout.

As	you	type	the		app:popupTheme		attribute	for		Toolbar		as	shown	below,		app		will	be	in	red	if	you	didn't	add	the
following	statement	to		RelativeLayout	:

<RelativeLayout	xmlns:app="http://schemas.android.com/apk/res-auto"

You	can	click	on		app		and	press	Option-Return,	and	Android	Studio	automatically	adds	the	statement.

Depending	on	your	version	of	Android	Studio,	your	layout	code	will	look	something	like	the	following:

Solution	code:

Introduction

234

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				android:id="@+id/activity_main"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingBottom="@dimen/activity_vertical_margin"

				android:paddingLeft="@dimen/activity_horizontal_margin"

				android:paddingRight="@dimen/activity_horizontal_margin"

				android:paddingTop="@dimen/activity_vertical_margin"

				tools:context="com.example.android.tabexperiment.MainActivity">

				<android.support.v7.widget.Toolbar

								android:id="@+id/toolbar"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_alignParentTop="true"

								android:background="?attr/colorPrimary"

								android:minHeight="?attr/actionBarSize"

								android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"

								app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>

				<android.support.design.widget.TabLayout

								android:id="@+id/tab_layout"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_below="@id/toolbar"

								android:background="?attr/colorPrimary"

								android:minHeight="?attr/actionBarSize"

								android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

			<android.support.v4.view.ViewPager

								android:id="@+id/pager"

								android:layout_width="match_parent"

								android:layout_height="fill_parent"

								android:layout_below="@id/tab_layout"/>

</RelativeLayout>

2.2	Create	a	layout	and	class	for	each	fragment
1.	 Add	a	fragment	representing	each	tabbed	screen:	TabFragment1,	TabFragment2,	and	TabFragment3.	To	add	each

fragment:

i.	 Click	com.example.android.tabexperiment	in	the	project	view.

ii.	 Choose	File	>	New	>	Fragment	>	Fragment	(Blank).

iii.	 Name	the	fragment	TabFragment1.

iv.	 Check	the	"Create	layout	XML?"	option,	and	change	the	Fragment	Layout	Name	for	the	XML	file	to
tab_fragment1.

v.	 Uncheck	the	"Include	fragment	factory	methods?"	and	the	"include	interface	callbacks?"	options.	You	don't	need
these	methods.

vi.	 Click	Finish.

vii.	 Repeat	the	above	steps,	using	TabFragment2	and	TabFragment3	for	Step	C,	and	tab_fragment2	and
tab_fragment3	for	Step	D.

Each	fragment	(TabFragment1,	TabFragment2,	and	TabFragment3)	is	created	with	its	class	definition	set	to	extend
	Fragment	.	Also,	each	fragment	inflates	the	layout	associated	with	the	screen	(tab_fragment1	,		tab_fragment2	,	and
	tab_fragment3),	using	the	familiar	resource-inflate	design	pattern	you	learned	in	a	previous	chapter	with	the	options
menu.

Introduction

235

For	example,	TabFragment1	looks	like	this:

public	class	TabFragment1	extends	Fragment	{

										@Override

										public	View	onCreateView(LayoutInflater	inflater,

																			ViewGroup	container,	Bundle	savedInstanceState)	{

										return	inflater.inflate(R.layout.tab_fragment1,	container,	false);

										}

}

Android	Studio	automatically	includes	the	following	import	statements:

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

2.	 Edit	each	fragment	layout	XML	file	(tab_fragment1,	tab_fragment2,	and	tab_fragment3):

i.	 Change	the	Root	Tag	to		RelativeLayout	.

ii.	 Add	a		TextView		with	text	such	as	"These	are	the	top	stories".

iii.	 Set	the	text	appearance	with		android:textAppearance="?android:attr/textAppearanceLarge"	.

iv.	 Repeat	the	above	steps	for	each	fragment	layout	XML	file,	entering	different	text	for	the	TextView	in	step	B.

3.	 Examine	each	fragment	layout	XML	file.	For	example,	tab_fragment1	should	look	like	this:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent">

				<TextView

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="These	are	the	top	stories:"

								android:textAppearance="?android:attr/textAppearanceLarge"/>

</RelativeLayout>

4.	 In	the	fragment	layout	XML	file	tab_fragment1,	extract	the	string	for		"These	are	the	top	stories:"		into	the	string
resource		tab_1	.	Do	the	same	for	the	strings	in	tab_fragment2,	and	tab_fragment3.

2.3	Add	a	PagerAdapter

The	adapter-layout	manager	pattern	lets	you	provide	different	screens	of	content	within	an	activity—use	an	adapter	to	fill
the	content	screen	to	show	in	the	activity,	and	a	layout	manager	that	changes	the	content	screens	depending	on	which	tab
is	selected.

1.	 Add	a	new		PagerAdapter		class	to	the	app	that	extends	FragmentStatePagerAdapter	and	defines	the	number	of	tabs
(mNumOfTabs):

public	class	PagerAdapter	extends	FragmentStatePagerAdapter	{

				int	mNumOfTabs;

				public	PagerAdapter(FragmentManager	fm,	int	NumOfTabs)	{

													super(fm);

													this.mNumOfTabs	=	NumOfTabs;

				}

}

Introduction

236

https://developer.android.com/reference/android/support/v4/app/FragmentStatePagerAdapter.html

While	entering	the	above	code,	Android	Studio	automatically	imports:

import	android.support.v4.app.Fragment;

import	android.support.v4.app.FragmentManager;

import	android.support.v4.app.FragmentStatePagerAdapter;

If	FragmentManager	in	the	above	code	is	in	red,	a	red	lightbulb	icon	should	appear	when	you	click	on	it.	Click	the
lightbulb	icon	and	choose	Import	class.	Import	choices	appear.	Select	the	following	import	choice:

FragmentManager	(android.support.v4)

Choosing	the	above	imports	the	following:

import	android.support.v4.app.FragmentManager;

Also,	Android	Studio	underlines	the	class	definition	for	PagerAdapter	and,	if	you	click	on	PagerAdapter,	displays	a	red
bulb	icon.	Click	the	icon	and	choose	Implement	Methods,	and	then	click	OK	to	implement	the	already	selected
	getItem()		and		getCount()		methods.

2.	 Change	the	newly	added		getItem()		method	to	the	following,	which	uses	a		switch	case	block	to	return	the	fragment
to	show	based	on	which	tab	is	clicked

@Override

public	Fragment	getItem(int	position)	{

								switch	(position)	{

												case	0:

																return	new	TabFragment1();

												case	1:

																return	new	TabFragment2();

												case	2:

																return	new	TabFragment3();

												default:

																return	null;

								}

}

3.	 Change	the	newly	added		getCount()		method	to	the	following	to	return	the	number	of	tabs:

		@Override

		public	int	getCount()	{

						return	mNumOfTabs;

		}

2.4	Inflate	the	Toolbar	and	TabLayout

Since	you	are	using	tabs	that	fit	underneath	the	app	bar,	you	have	set	up	the	app	bar	and		Toolbar		in	the	activity_main.xml
layout	in	the	first	step	of	this	task.	Now	you	need	to	inflate	the		Toolbar		(using	the	same	method	described	in	a	previous
chapter	about	the	options	menu),	and	create	an	instance	of		TabLayout		to	position	the	tabs.

1.	 Inflate	the		Toolbar		in	the		onCreate()		method	in	MainActivity.java:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

			setSupportActionBar(toolbar);

			//	Create	an	instance	of	the	tab	layout	from	the	view.

			...

}

Introduction

237

In	the	above	code,		Toolbar		is	in	red,	and	a	red	lightbulb	icon	should	appear.	Click	the	icon	and	choose	Import	class.
Import	choices	appear.	Select	Toolbar	(android.support.v7.widget.Toolbar),	and	the	following	import	statement
appears	in	your	code:

import	android.support.v7.widget.Toolbar;

2.	 Open	strings.xml,	and	create	the	following	string	resources:

<string	name="tab_label1">Top	Stories</string>

<string	name="tab_label2">Tech	News</string>

<string	name="tab_label3">Cooking</string>

3.	 At	the	end	of	the		onCreate()		method,	create	an	instance	of	the	tab	layout	from	the		tab_layout		element	in	the	layout,
and	set	the	text	for	each	tab	using	addTab():

...

//	Create	an	instance	of	the	tab	layout	from	the	view.

TabLayout	tabLayout	=	(TabLayout)	findViewById(R.id.tab_layout);

//	Set	the	text	for	each	tab.

tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label1));

tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label2));

tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label3));

//	Set	the	tabs	to	fill	the	entire	layout.

tabLayout.setTabGravity(TabLayout.GRAVITY_FILL);

//	Use	PagerAdapter	to	manage	page	views	in	fragments.

...

2.5	Use	PagerAdapter	to	manage	screen	views

1.	 Below	the	code	you	added	to	the		onCreate()		method	in	the	previous	task,	add	the	following	code	to	use
	PagerAdapter		to	manage	screen	(page)	views	in	the	fragments:

...

//	Using	PagerAdapter	to	manage	page	views	in	fragments.

//	Each	page	is	represented	by	its	own	fragment.

//	This	is	another	example	of	the	adapter	pattern.

final	ViewPager	viewPager	=	(ViewPager)	findViewById(R.id.pager);

final	PagerAdapter	adapter	=	new	PagerAdapter

																(getSupportFragmentManager(),	tabLayout.getTabCount());

viewPager.setAdapter(adapter);

//	Setting	a	listener	for	clicks.

...

2.	 At	the	end	of	the		onCreate()		method,	set	a	listener	(TabLayoutOnPageChangeListener)	to	detect	if	a	tab	is	clicked,
and	create	the		onTabSelected()		method	to	set	the		ViewPager		to	the	appropriate	tabbed	screen.	The	code	should	look
as	follows:

Introduction

238

https://developer.android.com/reference/android/support/design/widget/TabLayout.html#addTab(android.support.design.widget.TabLayout.Tab)
https://developer.android.com/reference/android/support/design/widget/TabLayout.TabLayoutOnPageChangeListener.html

...

//	Setting	a	listener	for	clicks.

viewPager.addOnPageChangeListener(new

																TabLayout.TabLayoutOnPageChangeListener(tabLayout));

tabLayout.addOnTabSelectedListener(new	TabLayout.OnTabSelectedListener()	{

			@Override

			public	void	onTabSelected(TabLayout.Tab	tab)	{

						viewPager.setCurrentItem(tab.getPosition());

			}

			@Override

			public	void	onTabUnselected(TabLayout.Tab	tab)	{

			}

			@Override

						public	void	onTabReselected(TabLayout.Tab	tab)	{

						}

});

}

3.	 Run	the	app.	Tap	each	tab	to	see	each	"page"	(screen).	You	should	also	be	able	to	swipe	left	and	right	to	visit	the
different	"pages".

e

Solution	code
Android	Studio	Project:	Tab	Experiment	(including	coding	challenge	1)

Android	Studio	Project:	NavDrawer	Experiment	(coding	challenge	2)

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	When	you	created	the	layout	for	tab	navigation	in	the	first	step	of	the	previous	lesson,	you	established	a
	Toolbar		for	the	app	bar	in	the	activity_main.xml	layout	file.	Add	an	options	menu	to	the	app	bar	as	a	challenge.

To	start,	you	will	want	to	create	the	menu_main.xml	file,	and	add	menu	items	for	the	options	menu.	You	must	add	at	least
one	menu	item,	such	as	Settings.

You	can	inflate	the	options	menu	in	the		Toolbar		by	adding	the	onCreateOptionsMenu()	method,	as	you	did	in	a	previous
lesson	on	using	the	options	menu.

Finally	you	can	detect	which	options	menu	item	is	checked	by	using	the	onOptionsItemSelected()	method.

Challenge	2:	Create	a	new	app	with	a	navigation	drawer.	When	the	user	taps	a	navigation	drawer	choice,	close	the	drawer
and	display	a	toast	message	showing	which	choice	was	selected.

A	navigation	drawer	is	a	panel	that	usually	displays	navigation	options	on	the	left	edge	of	the	screen,	as	shown	on	the	right
side	of	the	figure	below.	It	is	hidden	most	of	the	time,	but	is	revealed	when	the	user	swipes	a	finger	from	the	left	edge	of	the
screen	or	touches	the	navigation	icon	in	the	app	bar,	as	shown	on	the	left	side	of	the	figure	below.

Introduction

239

https://github.com/google-developer-training/android-fundamentals/tree/master/TabExperiment
https://github.com/google-developer-training/android-fundamentals/tree/master/NavDrawerExperiment
https://developer.android.com/reference/android/app/Activity.html#onCreateOptionsMenu(android.view.Menu)
https://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)

In	the	above	figure:

1.	 Navigation	icon	in	the	app	bar
2.	 Navigation	drawer
3.	 Navigation	drawer	menu	item

To	make	a	navigation	drawer	in	your	app,	you	need	to	do	the	following:

1.	 Create	the	following	layouts:
A	navigation	drawer	as	the	activity	layout's	root	view.
A	navigation	view	for	the	drawer	itself.
An	app	bar	layout	that	will	include	a	navigation	icon	button.
A	content	layout	for	the	activity	that	displays	the	navigation	drawer.
A	layout	for	the	navigation	drawer	header.

2.	 Populate	the	navigation	drawer	menu	with	item	titles	and	icons.
3.	 Set	up	the	navigation	drawer	and	item	listeners	in	the	activity	code.
4.	 Handle	the	navigation	menu	item	selections.

To	create	a	navigation	drawer	layout,	use	the	DrawerLayout	APIs	available	in	the	Support	Library.	For	design
specifications,	follow	the	design	principles	for	navigation	drawers	in	the	Navigation	Drawer	design	guide.

To	add	a	navigation	drawer,	use	a		DrawerLayout		as	the	root	view	of	your	activity's	layout.	Inside	the		DrawerLayout	,	add
one	view	that	contains	the	main	content	for	the	screen	(your	primary	layout	when	the	drawer	is	hidden)	and	another	view,
typically	a	NavigationView,	that	contains	the	contents	of	the	navigation	drawer.

Introduction

240

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://developer.android.com/tools/support-library/index.html
https://developer.android.com/design/patterns/navigation-drawer.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.html

Tip:	To	make	your	layouts	simpler	to	understand,	use	the		include		tag	to	include	an	XML	layout	within	another	XML	layout.
The	figure	below	is	a	visual	representation	of	the	activity_main.xml	layout	and	its	included	XML	layouts:	

In	the	above	figure:

1.	 DrawerLayout	is	the	root	view	of	the	activity's	layout.
2.	 The	included		app_bar_main		uses	a	CoordinatorLayout	as	its	root,	and	defines	the	app	bar	layout	with	a	Toolbar	which

will	include	the	navigation	icon	to	open	the	drawer.
3.	 The	NavigationView	defines	the	navigation	drawer	layout	and	its	header,	and	adds	menu	items	to	it.

Summary
Add	Up-button	navigation	to	a	child	activity	by	declaring	the	activity's	parent	in	the	AndroidManifest.xml	file.
Set	up	tab	navigation:

Tabs	are	a	good	solution	for	"lateral	navigation"	between	sibling	views.
The	primary	class	used	for	tabs	is	TabLayout	in	the	design	support	library.
You	should	use	the	adapter	pattern	when	populating	tabs	(pages)	with	data.
A	ViewPager	is	a	layout	manager	that	allows	the	user	to	flip	left	and	right	through	pages	of	data.
ViewPager	is	most	often	used	in	conjunction	with	fragments.
There	are	two	standard	adapters	for	using	ViewPager:	FragmentPagerAdapter	and	FragmentStatePagerAdapter.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Screen	Navigation

Introduction

241

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.html
https://developer.android.com/reference/android/support/design/widget/TabLayout.html
https://developer.android.com/reference/android/support/v4/app/FragmentPagerAdapter.html
https://developer.android.com/reference/android/support/v4/app/FragmentStatePagerAdapter.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/43_c_screen_navigation.html

Learn	more
Android	developer	documentation:

Providing	Up	Navigation
TabLayout
Creating	Swipe	Views	with	Tabs
Navigation	Drawer
DrawerLayout
Support	Library

Android	Developers	Blog:	Android	Design	Support	Library
Other

AndroidHive:	Android	Material	Design	working	with	Tabs
Truiton:	Android	Tabs	Example	–	With	Fragments	and	ViewPager

Introduction

242

http://developer.android.com/training/implementing-navigation/ancestral.html
https://developer.android.com/reference/android/support/design/widget/TabLayout.html
https://developer.android.com/training/implementing-navigation/lateral.html
https://developer.android.com/design/patterns/navigation-drawer.html
https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://developer.android.com/tools/support-library/index.html
http://android-developers.blogspot.com/2015/05/android-design-support-library.html
http://www.androidhive.info/2015/09/android-material-design-working-with-tabs/
http://www.truiton.com/2015/06/android-tabs-example-fragments-viewpager/

4.4:	Create	a	Recycler	View
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	Overview
Task	1.	Create	and	configure	a	WordList	project
Task	2:	Create	a	dataset
Task	3:	Create	a	RecyclerView
Task	4:	Add	onClick	to	list	items
Task	5:	Add	a	FAB	to	insert	items
Coding	challenge
Summary
Related	concept
Learn	more

Displaying	and	manipulating	a	scrollable	list	of	similar	data	items,	as	you	did	in	the	scrolling	view	practical,	is	a	common
feature	of	apps.	For	example,	contacts,	playlists,	photos,	dictionaries,	shopping	lists,	an	index	of	documents,	or	a	listing	of
saved	games	are	all	examples	of	scrollable	lists.

Earlier	in	this	class,	you	used	ScrollView	to	perform	scrolling	of	other	Views.	ScrollView	is	easy	to	use,	but	it	is	not
recommended	for	production	use,	especially	for	long	lists	of	scrollable	items.

RecyclerView	is	a	subclass	of	ViewGroup	and	is	a	more	resource-efficient	way	to	display	scrollable	lists.	Instead	of	creating
a	view	for	each	item,	whether	or	not	it's	visible,	RecyclerView	creates	a	limited	number	of	list	items	and	reuses	them	for
visible	content.

In	this	series	of	practicals	you	will	use	a	RecyclerView	to:

Display	a	scrollable	list	of	items.
Add	a	click	handler	to	each	item.
Add	items	to	the	list	using	a	floating	action	button	(FAB),	the	pink	button	in	the	screenshot	below.	A	floating	action
buttons	can	be	used	for	common	actions,	or	a	promoted	action,	that	is,	an	action	that	you	want	the	user	to	take.

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with	how	to:

Create	a	Hello	World	app	with	Android	Studio.
Implement	different	layouts	for	apps.
Create	and	using	string	resources.
Add	an	onClick	handler	to	a	view.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Use	the	RecyclerView	class	to	display	items	in	a	scrollable	list.
Dynamically	add	items	to	the	RecyclerView	as	they	become	visible	through	scrolling.
Perform	an	action	when	the	user	taps	a	specific	item.
Show	a	floating	action	button	and	perform	an	action	when	the	user	taps	it.

Introduction

243

https://material.google.com/components/buttons-floating-action-button.html

What	you	will	DO
Create	a	new	application	that	uses	a	RecyclerView	to	display	a	list	of	items	as	a	scrollable	list	and	associate	click	behavior
with	the	list	items.	Use	a	floating	action	button	to	let	the	user	add	items	to	the	RecyclerView.

App	Overview
The	"RecyclerView"	app	will	display	a	long	list	of	words.

Introduction

244

http://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

Introduction

245

Tapping	an	item	marks	it	clicked.
Tapping	the	floating	action	button	adds	an	item.
There	is	no	user	input	of	words	for	this	app.

Task	1.	Create	and	configure	a	new	project
In	this	task,	you	will	create	and	configure	a	new	project	for	the	RecyclerView	sample	app.

1.1.	Create	the	project

1.	 Start	Android	Studio	and	create	a	new	project	with	the	following	parameters:

Attribute Value

Application	Name RecyclerView

Company	Name com.example.android	or	your	own	domain

Phone	and	Tablet	Minimum	SDK API15:	Android	4.0.3	IceCreamSandwich

Template Empty	Activity

Generate	Layout	file	box Checked

2.	 Run	your	app	on	an	emulator	or	hardware	device.	You	should	see	the	"RecyclerView"	title	and	"Hello	World"	in	a	blank
view.

1.2.	Add	support	libraries	to	the	build	file
In	order	to	use	the	RecyclerView	and	the	floating	action	button	(FAB),	you	need	to	add	the	respective	Android	Support
Libraries	to	your	build.

Why:	Android	Support	libraries	provide	backward-compatible	versions	of	Android	framework	APIs,	additional	UI
components	and	a	set	of	useful	utilities.	The	RecyclerView	class	is	located	in	the	Android	Support	package;	two
dependencies	must	be	included	in	the	Gradle	build	process	to	use	it.

Follow	these	steps	and	refer	to	the	screenshot:

1.	 In	Android	Studio,	in	your	new	project,	make	sure	you	are	in	the	Project	pane	(1)	and	in	the	Android	view	(2).
2.	 In	the	hierarchy	of	files,	find	the	Gradle	Scripts	folder	(3).
3.	 Expand	Gradle	Scripts,	if	necessary,	and	open	the	build.gradle	(Module:	app)	file	(4).	

Introduction

246

http://developer.android.com/tools/support-library/index.html

4.	 Towards	the	end	of	the	build.gradle	(Module:	app)	file,	find	the	dependencies	section.
5.	 Add	these	two	dependencies	as	the	last	two	lines	inside	the	dependencies	section:

compile	'com.android.support:recyclerview-v7:23.1.1'

compile	'com.android.support:design:23.1.1'

There	is	probably	an	existing	line	like	this	one,	but	the	number	may	be	different:		compile
'com.android.support:appcompat-v7:23.1.1'	

Add	your	lines	below	that	line.
Match	the	version	number	of	your	lines	to	the	version	number	of	that	existing	line.
Make	sure	the	version	numbers	of	all	the	libraries	are	the	same	and	match	up	with	the		compiledSdkVersion		at	the
top	of	the	file.	If	these	don't	match,	you	will	get	a	build	time	error.

6.	 If	prompted,	sync	your	app	now.
7.	 Run	your	app.	You	should	see	the	same	"RecyclerView"	app	displaying	"Hello	World".	If	you	get	gradle	errors,	sync

your	project.	You	do	not	need	to	install	additional	plugins.

Solution:

This	is	an	example	of	the	dependencies	section	of	the	build.gradle	file.	Your	file	may	be	slightly	different	and	your	entries
may	have	a	different	version	number.

dependencies	{

			compile	fileTree(dir:	'libs',	include:	['*.jar'])

			testCompile	'junit:junit:4.12'

			compile	'com.android.support:appcompat-v7:23.1.1'

			compile	'com.android.support:recyclerview-v7:23.1.1'

			compile	'com.android.support:design:23.1.1'

}

Task	2.	Create	a	dataset

Introduction

247

Before	you	can	display	anything,	you	need	data	to	display.	In	a	more	sophisticated	app,	your	data	could	come	from	internal
storage	(a	file,	SQLite	database,	saved	preferences),	from	another	app	(Contacts,	Photos),	or	from	the	internet	(cloud
storage,	Google	Sheets,	or	any	data	source	with	an	API).	For	this	exercise,	you	will	simulate	data	by	creating	it	in	the	main
activities		onCreate()		method.

Why:	Storing	and	retrieving	data	is	a	topic	of	its	own	covered	in	the	data	storage	chapter.	You	will	have	an	opportunity	to
extend	your	app	to	use	real	data	in	that	later	lesson.

2.1.	Add	code	to	create	data

In	this	task	you	will	dynamically	create	a	linked	list	of	twenty	word	strings	that	end	in	increasing	numbers,	such	that	["Word
1",	"Word	2",	"Word	3",	….].

You	must	use	a		LinkedList		for	this	practical.	Refer	to	the	solution	code,	if	you	need	help.

1.	 Open	the	MainActivity.java	file.
2.	 Add	a	private	member	variable	for	the	mWordList	linked	list.
3.	 Add	an	integer	counter	mCount	variable	to	track	the	word's	number.
4.	 Add	code	that	populates	mWordList	with	words.	Concatenate	the	string	"Word"	with	the	value	of	mCount,	then

increase	the	count.
5.	 Since	you	cannot	display	the	words	yet	for	testing,	add	a	log	statement	that	verifies	that	words	are	correctly	added	to

the	linked	list.
6.	 Run	your	app	to	make	sure	there	are	no	errors.

The	app	UI	has	not	changed,	but	you	should	see	a	list	of	log	messages	in	logcat,	such	as:		android.example.com.wordlist
D/WordList:	Word	1	

Solution:

Class	variables:

private	final	LinkedList<String>	mWordList	=	new	LinkedList<>();

private	int	mCount	=	0;

In	the	onCreate	method	of	MainActivity:

for	(int	i	=	0;	i	<	20;	i++)	{

			mWordList.addLast("Word	"	+	mCount++);

			Log.d("WordList",	mWordList.getLast());

}

Task	3.	Create	a	RecyclerView
In	this	practical,	you	will	display	data	in	a	RecyclerView.	Since	there	are	several	parts	to	creating	a	working	RecyclerView,
make	sure	you	immediately	fix	any	errors	that	you	see	in	Android	Studio.

To	display	your	data	in	a	RecyclerView,	you	need	the	following	parts:

Data.	You	will	use	the	mWordList.
A	RecyclerView.	The	scrolling	list	that	contains	the	list	items.
Layout	for	one	item	of	data.	All	list	items	look	the	same.
A	layout	manager.	The	layout	manager	handles	the	organization	(layout)	of	user	interface	components	in	a	view.	You
have	already	used	the	LinearLayout	in	a	previous	practical	where	the	Android	system	handles	the	layout	for	you.
RecyclerView	requires	an	explicit	layout	manager	to	manage	the	arrangement	of	list	items	contained	within	it.	This
layout	could	be	vertical,	horizontal,	or	a	grid.	You	will	use	a	vertical	linear	layout	manager	provided	by	Android.
An	adapter.	The	adapter	connects	your	data	to	the	RecyclerView.	It	prepares	the	data	in	a	view	holder.	You	will	create
an	adapter	that	inserts	into	and	updates	your	generated	words	in	your	views.

Introduction

248

A	view	holder.	Inside	your	adapter,	you	will	create	a	ViewHolder	class	that	contains	the	view	information	for	displaying
one	item	from	the	item's	layout.

The	diagram	below	shows	the	relationship	between	the	data,	the	adapter,	the	view	holder,	and	the	layout	manager.	

Implementation	steps	overview

To	implement	these	pieces,	you	will	need	to:

1.	 Create	the	XML	layout	for	the	"RecyclerView"	app	(activity_main.xml).
2.	 Create	the	XML	layout	used	to	lay	out	one	list	item,	which	is	WordListItem	(wordlist_item.xml).
3.	 Create	an	adapter	(WordListAdapter)	with	a	view	holder	(WordViewHolder).	Implement	the	method	that	takes	the	data,

places	it	in	a	view	holder,	and	let's	the	layout	manager	know	to	display	it.
4.	 In	the	onCreate	method	of	MainActivity,	create	a	RecyclerView	and	initialize	it	with	the	adapter	and	a	standard	layout

manager.	Let's	do	these	one	at	a	time.

3.1.	Create	the	main	layout	in	activity_main.xml
In	the	previous	apps,	you	used	LinearLayout	to	arrange	your	views.	In	order	to	accommodate	the	RecyclerView	and	the
floating	action	button	that	you	will	add	later,	you	need	to	use	a	different	view	group	called	a	coordinator	layout.
CoordinatorLayout	is	more	flexible	than	LinearLayout	when	arranging	views.	For	example,	views	like	the	floating	action
button	can	overlay	other	views.

In	main_activity.xml,	replace	the	code	created	by	the	Empty	Activity	with	code	for	a	CoordinatorLayout,	and	then	add	a
RecyclerView:

1.	 Open	build.gradle	(Module:app)	and	verify	that	the	recycler	view	dependency	exists.

compile	'com.android.support:recyclerview-v7:24.1.1'

2.	 Open	activity_main.xml.
3.	 Select	all	the	code	in	activity_main.xml	and	replace	it	with	this	code:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical">

</android.support.design.widget.CoordinatorLayout>

4.	 Inspect	the	code	and	note	the	following:
The	properties	specified	for	this	view	group	are	the	same	as	for	LinearLayout,	because	some	basic	properties,
such	as	layout_width	and	layout_height,	are	required	for	all	views	and	view	groups.
Because	CoordinatorLayout	is	in	the	support	library,	you	have	to	specify	the	full	path	to	the	support	library.	You	will
have	to	do	the	same	for	the	RecyclerView.

5.	 Add	the	RecyclerView	code	inside	the	CoordinatorLayout:

Introduction

249

http://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html

You	need	to	specify	the	full	path,	because	RecyclerView	is	part	of	the	support	library.

<android.support.v7.widget.RecyclerView>

</android.support.v7.widget.RecyclerView>

6.	 Give	your	RecyclerView	the	following	properties:

Attribute Value

android:id "@+id/recyclerview"

android:layout_width match_parent

android:layout_height match_parent

7.	 Run	your	app,	and	make	sure	there	are	no	errors	displayed	in	logcat.	You	will	only	see	a	blank	screen,	because	you
haven't	put	any	items	into	the	RecyclerView	yet.

Solution:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical">

				<android.support.v7.widget.RecyclerView

								android:id="@+id/recyclerview"

								android:layout_width="match_parent"

								android:layout_height="match_parent">

				</android.support.v7.widget.RecyclerView>

</android.support.design.widget.CoordinatorLayout>

3.2.	Create	the	layout	for	one	list	item

The	adapter	needs	the	layout	for	one	item	in	the	list.	All	the	items	use	the	same	layout.	You	need	to	specify	that	list	item
layout	in	a	separate	layout	resource	file,	because	it	is	used	by	the	adapter,	separately	from	the	RecyclerView.

Create	a	simple	word	item	layout	using	a	vertical	LinearLayout	with	a	TextView:

1.	 Right-click	the	app/res/layout	folder	and	choose	New	>	Layout	resource	file.
2.	 Name	the	file		wordlist_item		and	click	OK.
3.	 In	Text	mode,	change	the	LinearLayout	that	was	created	with	the	file	to	match	with	the	following	attributes.	Extract

resources	as	you	go.

Attribute Value

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:orientation "vertical"

android:padding "6dp"

4.	 Add	a	TextView	for	the	word	to	the	LinearLayout:

Introduction

250

Attribute Value

android:id "@+id/word"

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:textSize "24sp"

android:textStyle "bold"

3.3	Create	a	style	from	the	TextView	attributes

You	can	use	styles	to	allow	elements	to	share	groups	of	display	attributes.	An	easy	way	to	create	a	style	is	to	extract	the
style	of	a	UI	element	that	you	already	created.	Extract	the	style	information	for	the	word	text	view:

1.	 While	you	have	wordlist_item.xml	open,	hover	the	mouse	over	the	TextView	section	you	just	created	and	Right-click	>
Refactor	>	Extract	>	Style.

2.	 In	the	Extract	Android	Style	dialog,
Name	your	style	word_title.
Leave	all	boxes	checked.
Check	the	Launch	'Use	Style	Where	Possible'	box.
Click	OK.

3.	 When	prompted,	apply	the	style	to	the	Whole	Project.
4.	 Find	and	examine	the	word_title	style	in		values/styles.xml	.
5.	 Go	back	to	wordlist_item.xml.	The	text	view	now	references	the	style	instead	of	using	individual	styling	properties.
6.	 Run	your	app.	Since	you	have	removed	the	default	"Hello	World"	text	view,	you	should	see	the	"RecyclerView"	title	and

a	blank	view.

Solution:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:orientation="vertical"

				android:padding="6dp">

				<TextView

								android:id="@+id/word"

								style="@style/word_title"	/>

</LinearLayout>

3.4.	Create	an	adapter	with	a	view	holder
Android	uses	adapters	(from	the	Adapter	class)	to	connect	data	with	their	views.	There	are	many	different	kinds	of	adapters
available.	You	can	also	write	your	own	custom	adapters.	In	this	task	you	will	create	an	adapter	that	associates	your	list	of
words	with	word	list	item	views.

To	connect	data	with	views,	the	adapter	needs	to	know	about	the	views	into	which	it	will	place	the	data.	Therefore,	the
adapter	contains	a	view	holder	(from	the	ViewHolder	class)	that	describes	an	item	view	and	its	position	within	the
RecyclerView.

In	this	task	you	will	build	an	adapter	with	a	view	holder	that	bridges	the	gap	between	the	data	in	your	word	list	and	the
RecyclerView	that	displays	it.

1.	 Right-click		java/com.android.example.recyclerview		and	select	New	>	Java	Class.
2.	 Name	the	class	WordListAdapter.
3.	 Give	WordListAdapter	the	following	signature:

Introduction

251

http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

public	class	WordListAdapter	extends

				RecyclerView.Adapter<WordListAdapter.WordViewHolder>		{}

WordListAdapter	extends	a	generic	adapter	for	RecyclerView	to	use	a	view	holder	that	is	specific	for	your	app	and
defined	inside	WordListAdapter.	WordViewHolder	shows	an	error,	because	you	have	not	defined	it	yet.

4.	 Click	on	the	class	declaration	(WordListAdapter)	and	then	click	on	the	red	light	bulb	on	the	left	side	of	the	pane.
Choose	Implement	methods.	This	brings	up	a	dialog	box	that	asks	you	to	choose	which	methods	to	implement.
Select	all	three	methods	and	click	OK.
This	creates	empty	placeholders	for	all	the	methods	that	you	must	implement.	Note	how	onCreateViewHolder	and
onBindViewHolder	both	reference	the	WordViewHolder,	which	hasn't	been	implemented	yet.

3.5	Create	the	view	holder

1.	 Inside	the	WordListAdapter	class,	add	a	new	WordViewHolder	inner	class	with	this	signature:

class	WordViewHolder	extends	RecyclerView.ViewHolder	{}

2.	 You	will	see	an	error	about	a	missing	default	constructor.	You	can	see	details	about	the	errors	by	hovering	your	mouse
cursor	over	the	red-underlined	source	code	or	over	any	red	horizontal	line	on	the	right	margin	of	the	open-files	pane.

3.	 Add	variables	to	the	WordViewHolder	inner	class	for	the	text	view	and	the	adapter:

public	final	TextView	wordItemView;

final	WordListAdapter	mAdapter;

4.	 In	the	inner	class	WordViewHolder,	add	a	constructor	that	initializes	the	view	holder's	text	view	from	the	XML	resources
and	sets	its	adapter:

public	WordViewHolder(View	itemView,	WordListAdapter	adapter)	{

			super(itemView);

			wordItemView	=	(TextView)	itemView.findViewById(R.id.word);

			this.mAdapter	=	adapter;

}

5.	 Run	your	app	to	make	sure	you	have	no	errors.	Your	will	still	see	only	a	blank	view.	Take	note	of	the	E/RecyclerView:
No	adapter	attached;	skipping	layout	warning	in	logcat.

3.6	Storing	your	data	in	the	adapter

1.	 To	hold	your	data	in	the	adapter,	create	a	private	linked	list	of	strings	in	WordListAdapter	and	call	it	mWordList.

private	final	LinkedList<String>	mWordList;

2.	 You	can	now	fill	in	the	getItemCount()	method	to	return	the	size	of		mWordList	.

@Override

public	int	getItemCount()	{

			return	mWordList.size();

}

Next,	WordListAdapter	needs	a	constructor	that	initializes	the	word	list	from	the	data.	To	create	a	view	for	a	list	item,
the	WordListAdapter	needs	to	inflate	the	XML	for	a	list	item.	You	use	a	layout	inflater	for	that	job.	A	LayoutInflator	reads
a	layout	XML	description	and	converts	it	into	the	corresponding	views.

3.	 Create	a	member	variable	for	the	inflater	in	WordListAdapter.

private	LayoutInflater	mInflater;

4.	 Implement	the	constructor	for	WordListAdapter.	The	constructor	needs	to	have	have	a	context	parameter,	and	a	linked
list	of	words	with	the	app's	data.	The	method	needs	to	instantiate	a	layout	inflater	for		mInflater		and	set		mWordList		to

Introduction

252

http://developer.android.com/reference/android/view/LayoutInflater.html

the	passed	in	data.

public	WordListAdapter(Context	context,	LinkedList<String>	wordList)	{

			mInflater	=	LayoutInflater.from(context);

			this.mWordList	=	wordList;

}

5.	 Fill	out	the	onCreateViewHolder()	method	with	the	code	below.	The	onCreateViewHolder	method	is	similar	to	the
onCreate	method.	It	inflates	the	item	layout,	and	returns	a	view	holder	with	the	layout	and	the	adapter.

@Override

public	WordViewHolder	onCreateViewHolder(ViewGroup	parent,	int	viewType)	{

			View	mItemView	=	mInflater.inflate(R.layout.wordlist_item,	parent,	false);

			return	new	WordViewHolder(mItemView,	this);

}

6.	 Fill	out	the	onBindViewHolder	method	with	the	code	below.	The	onBindViewHolder	method	connects	your	data	to	the
view	holder.

@Override

public	void	onBindViewHolder(WordViewHolder	holder,	int	position)	{

			String	mCurrent	=	mWordList.get(position);

			holder.wordItemView.setText(mCurrent);

}

7.	 Run	your	app	to	make	sure	there	are	no	errors.	You	will	still	see	the	"E/RecyclerView:	No	adapter	attached;	skipping
layout"	warning.	You	will	fix	that	in	the	next	task.

3.7.	Create	the	RecyclerView	in	the	Main	Activity
Now	that	you	have	an	adapter	with	a	view	holder,	you	can	finally	create	a	RecyclerView	and	connect	all	the	pieces	to
display	your	data.

1.	 Open	MainActivity.java
2.	 Add	member	variables	to	MainActivity	for	the	RecyclerView	and	the	adapter.

private	RecyclerView	mRecyclerView;

private	WordListAdapter	mAdapter;

3.	 In	the	onCreate	method	of	MainActivity,	add	the	following	code	that	creates	the	RecyclerView	and	connects	it	with	an
adapter	and	the	data.	Read	the	code	comments!	Note	that	you	must	insert	this	code	after	the	mWordList	initialization.

//	Get	a	handle	to	the	RecyclerView.

mRecyclerView	=	(RecyclerView)	findViewById(R.id.recyclerview);

//	Create	an	adapter	and	supply	the	data	to	be	displayed.

mAdapter	=	new	WordListAdapter(this,	mWordList);

//	Connect	the	adapter	with	the	RecyclerView.

mRecyclerView.setAdapter(mAdapter);

//	Give	the	RecyclerView	a	default	layout	manager.

mRecyclerView.setLayoutManager(new	LinearLayoutManager(this));

4.	 Run	your	app.	You	should	see	your	list	of	words	displayed,	and	you	can	scroll	the	list.

Task	4.	Make	the	list	interactive
Looking	at	lists	of	items	is	interesting,	but	it's	a	lot	more	fun	and	useful	if	your	user	can	interact	with	them.

To	see	how	the	RecyclerView	can	respond	to	user	input,	you	will	programmatically	attach	a	click	handler	to	each	item.
When	the	item	is	tapped,	the	click	handler	is	executed,	and	that	item's	text	will	change.

Introduction

253

4.1.	Make	items	respond	to	clicks

1.	 Open	the	WordListAdapter.java	file.
2.	 Change	the	WordViewHolder	class	signature	to	implement	View.onClickListener.

class	WordViewHolder	extends	RecyclerView.ViewHolder	implements	View.OnClickListener

3.	 Click	on	the	class	header	and	on	the	red	light	bulb	to	implement	stubs	for	the	required	methods,	which	in	this	case	is
just	the	onClick()	method.

4.	 Add	the	following	code	to	the	body	of	the	onClick()	method.

//	Get	the	position	of	the	item	that	was	clicked.

int	mPosition	=	getLayoutPosition();

//	Use	that	to	access	the	affected	item	in	mWordList.

String	element	=	mWordList.get(mPosition);

//	Change	the	word	in	the	mWordList.

mWordList.set(mPosition,	"Clicked!	"	+	element);

//	Notify	the	adapter,	that	the	data	has	changed	so	it	can

//	update	the	RecyclerView	to	display	the	data.

mAdapter.notifyDataSetChanged();

5.	 Connect	the	onClickListener	with	the	view.	Add	this	code	to	the	WordViewHolder	constructor	(below	the	"this.mAdapter
=	adapter"	line):

itemView.setOnClickListener(this);

6.	 Run	your	app.	Click	on	items	to	see	their	text	change.

Solution	code:	WordListAdapter.java	and	MainActivity.java

Task	5.	Add	a	FAB	to	insert	items
There	are	multiple	ways	in	which	you	can	add	additional	behaviors	to	the	list	and	list	items.	One	way	is	to	use	a	floating
action	button	(FAB).	For	example,	in	Gmail,	the	FAB	is	used	to	compose	a	new	email.	In	this	task	you	will	implement	a	FAB
to	add	an	item	to	the	word	list.

Why?	You	have	already	seen	that	you	can	change	the	content	of	list	items.	The	list	of	items	that	a	RecyclerView	displays
can	be	modified	dynamically--	it's	not	just	a	static	list	of	items.

For	this	practical,	you	will	generate	a	new	word	to	insert	into	the	list.	For	a	more	useful	application,	you	would	get	data	from
your	users.

5.1.	Add	a	Floating	Action	Button	(FAB)

The	FAB	is	a	standard	control	from	the	Material	Design	Specification	and	is	part	of	the	Android	Design	Support	Library.	You
will	learn	more	in	the	chapter	about	Material	Design.	These	UI	controls	have	predefined	properties.	To	create	a	FAB	for
your	app,	add	the	following	code	inside	the	coordinator	layout	of	activity_main.xml.

<android.support.design.widget.FloatingActionButton

			android:id="@+id/fab"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:layout_gravity="bottom|end"

			android:layout_margin="16dp"

			android:clickable="true"

			android:src="@drawable/ic_add_24dp"	/>

Note	the	following:

<code>@+id/fab	</code>It	is	customary	to	give	the	FAB	the	"fab"	id.

Introduction

254

https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView/app/src/main/java/com/example/android/recyclerview

	android:layout_gravity="bottom|end".		The	FAB	is	commonly	placed	at	the	bottom	and	at	the	end	of	the
reading/writing	flow.
	android:src="@drawable/ic_add_black_24dp".		Is	marked	red	by	Android	Studio	because	the	resource	is	missing.

Android	provides	an	icon	library	for	standard	Android	icons.	ic_add_black_24dp	is	one	of	the	standard	icons.	You	have	to
add	it	to	your	drawable	resources	to	use	it.

1.	 Right-click	your	drawable	folder.
2.	 Select	New	>	Vector	Asset
3.	 Make	sure	the	Asset	Type	is	Material	Icon.
4.	 Click	the	icon	button	next	to	Icon.
5.	 In	the	Content	section	find	the	+	sign.	The	resource	name	is	ic_add_black_24dp.
6.	 Leave	everything	else	unchecked	and	click	Next.
7.	 Click	Finish.
8.	 Run	your	app.

Note:	Because	this	is	a	vector	drawing,	it	is	stored	as	an	XML	file.	Vector	drawings	are	automatically	scaled,	so	you	do
not	need	to	keep	around	a	bitmap	for	each	screen	resolution.	Learn	more:	Android	Vector	Asset	Studio.

5.2.	Add	behavior	to	the	FAB
In	this	task	you'll	add	to	the	FAB	an	onClick	listener	that	does	the	following:

Adds	a	word	to	the	end	of	the	list	of	words.
Notifies	the	adapter	that	the	data	has	changed.
Scrolls	to	the	inserted	item.
In	MainActivity.java,	at	the	end	of	the	onCreate()	method,	add	the	following	code:

//	Add	a	floating	action	click	handler	for	creating	new	entries.

FloatingActionButton	fab	=	(FloatingActionButton)	findViewById(R.id.fab);

fab.setOnClickListener(new	View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

							int	wordListSize	=	mWordList.size();

							//	Add	a	new	word	to	the	end	of	the	wordList.

							mWordList.addLast("+	Word	"	+	wordListSize);

							//	Notify	the	adapter,	that	the	data	has	changed	so	it	can

							//	update	the	RecyclerView	to	display	the	data.

							mRecyclerView.getAdapter().notifyItemInserted(wordListSize);

							//	Scroll	to	the	bottom.

							mRecyclerView.smoothScrollToPosition(wordListSize);

				}

});

Run	your	app.	To	test	your	app	do	the	following:
1.	 Scroll	the	list	of	words.
2.	 Click	on	items.
3.	 Add	items	by	clicking	on	the	FAB.
4.	 What	happens	if	you	rotate	the	screen?	You	will	learn	in	a	later	lesson	how	to	preserve	the	state	of	an	app	when

the	screen	is	rotated.

Solution	code
Android	Studio	project:	RecyclerView

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Introduction

255

http://developer.android.com/tools/help/vector-asset-studio.html
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView

Challenge:	Creating	a	click	listener	for	each	item	in	the	list	is	easy,	but	it	can	hurt	the	performance	of	your	app	if	you	have
a	lot	of	data.	Research	how	you	could	implement	this	more	efficiently.	This	is	an	advanced	challenge.	Start	by	thinking
about	it	conceptually,	and	then	search	for	an	implementation	example.

Summary
RecyclerView	is	a	resource-efficient	way	to	display	a	scrollable	list	of	items.
To	use	RecyclerView,	you	associate	the	data	to	the	Adapter/ViewHolder	that	you	create	and	to	the	layout	manager	of
your	choice.
Click	listeners	can	be	created	to	detect	mouse	clicks	in	a	RecyclerView.
Android	support	libraries	contain	backward-compatible	versions	of	the	Android	framework.
Android	support	libraries	contain	a	range	of	useful	utilities	for	your	apps.
Build	dependencies	are	added	to	the	build.gradle	(Module	app)	file.
Layouts	can	be	specified	as	a	resource	file.
A	LayoutInflater	reads	a	layout	resource	file	and	creates	the	View	objects	from	that	file.
A	Floating	Action	Button	(FAB)	can	dynamically	modify	the	items	in	a	RecyclerView.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

RecyclerView

Learn	more
CoordinatorLayout
RecyclerView
Android	Support	Library.
Creating	Lists	and	Cards
RecyclerView	Animations	and	Behind	the	Scenes	(Android	Dev	Summit	2015)

Introduction

256

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/44_c_recyclerview.html
http://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
http://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/training/material/lists-cards.html
https://www.youtube.com/watch?v=imsr8NrIAMs

5.1:	Drawables,	Styles,	and	Themes
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Create	the	Scorekeeper	Project
Task	2:	Create	a	Drawable	resource
Task	3:	Apply	styles	to	your	views
Task	4:	Update	the	theme	from	the	menu	bar
Coding	challenge
Summary
Related	concepts
Learn	more

In	this	chapter,	you	will	learn	how	to	reduce	your	code,	increase	its	readability	and	ease	of	maintenance	by	applying
common	styles	to	your	views,	use	drawable	resources,	and	apply	themes	to	your	application.

What	you	should	already	KNOW
From	the	previous	chapters	you	should	be	familiar	with	basic	concepts	of	the	Activity	lifecycle,	and	how	to:

Create	and	run	apps	in	Android	Studio.
Create	and	edit	UI	elements	using	the	Layout	Editor,	XML,	and	code.
Add	onClick	functionality	to	a	button.
Update	views	at	runtime.
Add	menu	items	with	onClick	functionality.
Pass	data	between	activities	using	Intents.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Define	a	style.
Apply	a	style	to	a	view.
Apply	a	theme	to	an	activity	or	application	both	in	XML	and	programmatically.
Use	drawable	resources.

What	you	will	DO
Create	a	new	Android	app	and	add	buttons	and	TextView	views	to	the	layout.
Create	drawable	resources	in	XML	and	use	them	as	backgrounds	for	your	buttons.
Apply	styles	to	the	UI	elements	of	the	application.
Add	a	menu	item	that	changes	the	theme	of	the	application	to	a	low	contrast	"night	mode."

App	Overview

Introduction

257

The	"Scorekeeper"	application	consists	of	two	sets	of	buttons	and	two	text	views	used	to	keep	track	of	the	score	for	any
point-based	game	with	two	players.

Introduction

258

Introduction

259

Introduction

260

Task	1:	Create	The	Scorekeeper	App
In	this	section,	you	will	create	your	Android	Studio	project,	modify	the	layout,	and	add	onClick	functionality	to	its	buttons.

1.1	Create	the	"Scorekeeper"	Project

1.	 Start	Android	Studio	and	create	a	new	Android	Studio	Project.
Name	your	project	"Scorekeeper".
Accept	the	defaults	for	the	Company	Domain	and	Project	location.

2.	 Accept	the	default	Minimum	SDK.
3.	 Choose	the	Empty	Activity	template.
4.	 Accept	the	default	name	for	the	activity,	make	sure	Generate	Layout	File	is	checked	and	click	Finish.

1.2	Create	the	layout	for	the	main	activity

Define	the	root	view:

1.	 Open	the	layout	file	for	the	main	activity.
2.	 Delete	the	TextView	that	says	"Hello	World."
3.	 Change	the	root	view	to	a	LinearLayout	and	add	the	following	attributes	(without	removing	the	existing	attributes):

Attribute Value

android:orientation "vertical"

Define	the	score	containers:

1.	 Inside	the	LinearLayout,	add	two	RelativeLayout	view	groups	(one	to	contain	the	score	for	each	team)	with	the
following	attributes:

Attribute Value

android:layout_width "match_parent"

android:layout_height "0dp"

android:layout_weight "1"

You	may	be	surprised	to	see	that	the	layout_height	attribute	is	set	to	0dp	in	these	views.	This	is	because	we	are	using
the	"layout_weight"	attribute	to	determine	how	much	space	these	views	take	up	in	the	parent	layout.	See	the
LinearLayout	Documentation	for	more	information.

Add	views	to	your	UI

1.	 Add	two	ImageButton	views	(one	for	increasing	the	score	and	one	for	decreasing	the	score)	and	a	TextView	for
displaying	the	score	in	between	the	buttons	to	each	RelativeLayout.

2.	 Add		android:id		attributes	to	the	score	TextViews	and	all	of	the	ImageButtons.
3.	 Add	one	more	TextView	to	each	RelativeLayout	above	the	score	to	represent	the	Team	Names.	

Introduction

261

http://developer.android.com/guide/topics/ui/layout/linear.html#Weight
http://developer.android.com/reference/android/widget/ImageButton.html

Add	vector	assets

1.	 Select	File	>	New	>	Vector	Asset	to	open	the	Vector	Asset	Studio.
2.	 Click	on	the	icon	to	change	it	to	a	list	of	material	icon	files.	Select	the	Content	category.
3.	 Choose	the	plus	icon	and	click	OK.
4.	 Rename	the	resource	file	"ic_plus"	and	check	the	Override	checkbox	next	to	size	options.
5.	 Change	the	size	of	the	icon	to	40dp	x	40dp.
6.	 Click	Next	and	then	Finish.
7.	 Repeat	this	process	to	add	a	"minus"	icon	and	name	the	file	"ic_minus".

Add	attributes	to	your	views

1.	 Change	the	score	text	views	to	read	"0"	and	the	team	text	views	to	read	"Team	1"	and	"Team	2".
2.	 Add	the	following	attributes	to	your	left	image	buttons:

android:src="@drawable/ic_minus"

android:contentDescription="Minus	Button"

3.	 Add	the	following	attributes	to	your	right	image	buttons:

android:src="@drawable/ic_plus"

android:contentDescription="Plus	Button"

4.	 Extract	all	of	your	string	resources.	This	process	removes	all	of	your	strings	from	the	Java	code	and	puts	them	in	the
string.xml	file.	This	allows	for	your	app	to	be	easily	localized	into	different	languages.	To	learn	how	to	extract	string
resources,	see	the	Extracting	Resources	section	in	the	Appendix.

Introduction

262

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html

Introduction

263

Solution	Code:

Note:	Your	code	may	be	a	little	different	as	there	are	multiple	ways	to	achieve	the	same	layout.

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:orientation="vertical"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			tools:context="com.example.android.scorekeeper.MainActivity">

			<RelativeLayout

							android:layout_width="match_parent"

							android:layout_height="0dp"

							android:layout_weight="1">

							<TextView

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentTop="true"

											android:layout_centerHorizontal="true"

											android:text="@string/team_1"/>

							<ImageButton

									android:id="@+id/decreaseTeam1"

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentLeft="true"

											android:layout_alignParentStart="true"

											android:layout_centerVertical="true"

											android:contentDescription="@string/minus_button"

											android:src="@drawable/ic_minus"	/>

							<TextView

											android:id="@+id/score_1"

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_centerHorizontal="true"

											android:layout_centerVertical="true"

											android:text="@string/initial_count"/>

							<ImageButton

											android:id="@+id/increaseTeam1"

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentEnd="true"

											android:layout_alignParentRight="true"

											android:layout_centerVertical="true"

											android:contentDescription="@string/plus_button"

											android:src="@drawable/ic_plus"/>

			</RelativeLayout>

			<RelativeLayout

							android:layout_width="match_parent"

							android:layout_height="0dp"

							android:layout_weight="1">

							<TextView

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentTop="true"

											android:layout_centerHorizontal="true"

											android:text="@string/team_2"/>

							<ImageButton

											android:id="@+id/decreaseTeam2"

Introduction

264

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentLeft="true"

											android:layout_alignParentStart="true"

											android:layout_centerVertical="true"

											android:contentDescription="@string/minus_button"

											android:src="@drawable/ic_minus"/>

							<TextView

											android:id="@+id/score_2"

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_centerHorizontal="true"

											android:layout_centerVertical="true"

											android:text="@string/initial_count"/>

							<ImageButton

											android:id="@+id/increaseTeam2"

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:layout_alignParentEnd="true"

											android:layout_alignParentRight="true"

											android:layout_centerVertical="true"

											android:contentDescription="@string/plus_button"

											android:src="@drawable/ic_plus"/>

			</RelativeLayout>

</LinearLayout>

1.3	Initialize	your	TextViews	and	score	count	variables
In	order	to	keep	track	of	the	scores,	you	will	need	two	things:

Integer	variables	so	you	can	keep	track	of	the	scores.
A	reference	to	your	score	TextViews	in	MainActivity	so	you	can	update	the	scores.
In	the		onCreate()		method	of	MainActivity,	find	your	score	TextViews	by	id	and	assign	them	to	member	variables.
Create	two	integer	member	variables,	representing	the	score	of	each	team,	and	initialize	them	to	0.

1.4	Implement	the	onClick	functionality	for	your	buttons

1.	 In	your	MainActivity	implement	two	onClick	methods:		increaseScore()		and		decreaseScore()	.

Note:	onClick	methods	all	have	the	same	signature	-	they	return	void	and	take	a	View	as	an	argument.
2.	 The	left	buttons	should	decrement	the	score	TextView,	while	the	right	ones	should	increment	it.

Solution	Code:

Note:	You	must	also	add	the		android:onClick		attribute	to	every	button	in	the	activity_main.xml	file.	You	can	identify	which
button	was	clicked	by	calling		view.getId()	in	the	onClick	methods.		

Introduction

265

/**

*	Method	that	handles	the	onClick	of	both	the	decrement	buttons

*	@param	view	The	button	view	that	was	clicked

*/

public	void	decreaseScore(View	view)	{

			//Get	the	ID	of	the	button	that	was	clicked

			int	viewID	=	view.getId();

			switch	(viewID){

							//If	it	was	on	Team	1

							case	R.id.decreaseTeam1:

											//Decrement	the	score	and	update	the	TextView

											mScore1--;

											mScoreText1.setText(String.valueOf(mScore1));

											break;

							//If	it	was	Team	2

							case	R.id.decreaseTeam2:

											//Decrement	the	score	and	update	the	TextView

											mScore2--;

											mScoreText2.setText(String.valueOf(mScore2));

			}

}

/**

*	Method	that	handles	the	onClick	of	both	the	increment	buttons

*	@param	view	The	button	view	that	was	clicked

*/

public	void	increaseScore(View	view)	{

			//Get	the	ID	of	the	button	that	was	clicked

			int	viewID	=	view.getId();

			switch	(viewID){

							//If	it	was	on	Team	1

							case	R.id.increaseTeam1:

											//Increment	the	score	and	update	the	TextView

											mScore1++;

											mScoreText1.setText(String.valueOf(mScore1));

											break;

							//If	it	was	Team	2

							case	R.id.increaseTeam2:

											//Increment	the	score	and	update	the	TextView

											mScore2++;

											mScoreText2.setText(String.valueOf(mScore2));

			}

}

Task	2:	Create	a	Drawable	resource
You	now	have	a	functioning	scorekeeper	application!	However,	the	layout	is	dull	and	does	not	communicate	the	function	of
the	buttons.	In	order	to	make	it	more	clear,	the	standard	grey	background	of	the	buttons	can	be	changed.

In	Android,	graphics	are	often	handled	by	a	resource	called	a	Drawable.	In	the	following	exercise	you	will	learn	how	to
create	a	certain	type	of	drawable	called	a	ShapeDrawable,	and	apply	it	to	your	buttons	as	a	background.

For	more	information	on	Drawables,	see	Drawable	Resource	Documentation.

2.1	Create	a	Shape	Drawable

A	ShapeDrawable	is	a	primitive	geometric	shape	defined	in	an	xml	file	by	a	number	of	attributes	including	color,	shape,
padding	and	more.	It	defines	a	vector	graphic,	which	can	scale	up	and	down	without	losing	any	definition.

1.	 Right	click	on	the	drawable	folder	in	your	resources	directory.
2.	 Choose	New	>	Drawable	resource	file.
3.	 Name	the	file	"button_background"	and	click	OK.
4.	 Remove	all	of	the	code	except:

Introduction

266

http://developer.android.com/guide/topics/resources/drawable-resource.html
https://developer.android.com/reference/android/graphics/drawable/ShapeDrawable.html

<?xml	version="1.0"	encoding="utf-8"?>

5.	 Add	the	following	code	which	creates	an	oval	shape	with	an	outline:

<shape

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:shape="oval">

								<stroke

												android:width="2dp"

												android:color="@color/colorPrimary"/>

</shape>

2.2	Apply	the	shape	drawable	as	a	background
1.	 Open	the	layout	file	for	your	main	activity.
2.	 For	all	of	the	buttons,	add	the	drawable	as	the	background:		android:background="@drawable/button_background"	.	Note

that	the	background	automatically	scales	to	fit	the	size	of	the	view.
3.	 The	size	of	the	buttons	needs	to	be	such	that	it	renders	properly	on	all	devices.	Change	the	"layout_height"	and

"layout_width"	attributes	for	each	button	to	70dp,	which	is	a	good	size	on	most	devices.	It	is	not	best	practice	to	use
hard-coded	dimensions,	but	using	weights	with	nested	linear	layouts	to	achieve	the	desired	size	is	too	much	detail	for
this	practical.

android:layout_width="70dp"

android:layout_height="70dp"

4.	 Extract	the	dimension	resource	so	you	can	access	it	in	one	location.	For	information	on	how	to	do	this,	see	the
Appendix.

5.	 Run	your	app.

Task	3:	Style	your	views
As	you	continue	to	add	views	and	attributes	to	your	layout,	your	code	will	start	to	become	large	and	repetitive,	especially
when	you	apply	the	same	attributes	to	many	similar	elements.	A	style	can	specify	common	properties	such	as	padding,	font
color,	font	size,	and	background	color.	Attributes	that	are	layout-oriented	such	as	height,	width	and	relative	location	should
remain	in	the	layout	resource	file.

In	the	following	exercise,	you	will	learn	how	to	create	styles	and	apply	them	to	multiple	views	and	layouts,	allowing	common
attributes	to	be	updated	simultaneously	from	one	location.

Note:	Styles	are	meant	for	attributes	that	modify	the	look	of	the	view.	Layout	parameters	such	as	height,	weight	and
relative	location	should	stay	in	the	layout	file.

3.1	Create	button	styles

In	Android,	styles	can	inherit	properties	from	other	styles.	You	can	declare	a	parent	for	your	style	using	an	optional	"parent"
parameter	and	has	the	following	properties:

Any	style	attributes	defined	by	the	parent	style	are	automatically	included	in	the	child	style.
A	style	attribute	defined	in	both	the	parent	and	child	style	uses	the	child	style's	definition	(the	child	overrides	the
parent).
A	child	style	can	include	additional	attributes	that	the	parent	does	not	define.

For	example,	all	four	buttons	in	this	example	share	a	common	background	drawable	but	with	different	icons	for	plus	and
minus.	Furthermore,	the	two	increment	buttons	share	the	same	icon,	as	do	the	two	decrement	buttons.	You	can	therefore
create	3	styles:

1.	 A	score	button	style	for	all	of	the	buttons,	which	includes	the	default	properties	of	an	ImageButton	view	and	also	the

Introduction

267

drawable	background.
2.	 A	minus	button	style	for	the	decrement	buttons,	which	inherits	the	attributes	of	the	previous	style	and	also	includes	the

minus	icon.
3.	 A	plus	button	style	for	the	decrement	buttons,	again	inheriting	from	the	score	button	style	and	also	includes	the	plus

icon.

These	styles	are	represented	in	the	figure	below.	

Do	the	following:

1.	 In	your	resources	directory,	locate	and	open	the	"values/styles.xml"	file.	This	is	where	all	of	your	style	code	will	be
located.	The	"AppTheme"	style	is	always	automatically	added,	and	you	can	see	that	it	extends	from
"Theme.AppCompat.Light.DarkActionBar".

Introduction

268

<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

Note	the	"parent"	attribute,	which	is	how	you	specify	your	parent	style	using	XML.	The	name	attribute,	in	this	case
"AppTheme",	defines	the	name	of	the	style.	The	parent	attribute,	in	this	case
"Theme.AppCompat.Light.DarkActionBar",	declares	the	parent	style	attributes	which	"AppTheme"	inherits.	In	this	case
it	is	the	Android	default	theme,	with	a	light	background	and	a	dark	action	bar.	A	theme	is	a	style	that	is	applied	to	an
entire	activity	or	application,	instead	of	a	single	view.	This	allows	for	a	consistent	style	throughout	an	entire	activity	or
application	(such	as	a	consistent	look	and	feel	for	the	App	Bar	in	every	part	of	your	application).

2.	 In	between	the		<resources>		tags,	add	a	new	style	with	the	following	attributes	to	create	a	common	style	for	all
buttons:

Set	the	parent	style	to	"Widget.AppCompat.Button"	to	retain	the	default	attributes	of	a	button.
Add	an	attribute	that	changes	the	background	of	the	drawable	to	the	one	you	created	in	the	previous	task.

<style	name="ScoreButtons"	parent="Widget.AppCompat.Button">

				<item	name="android:background">@drawable/button_background</item>

</style>

3.	 Create	the	style	for	the	plus	buttons	by	extending	the	"ScoreButtons"	style:

<style	name="PlusButtons"	parent="ScoreButtons">

				<item	name="android:src">@drawable/ic_plus</item>

				<item	name="android:contentDescription">@string/plus_button</item>

</style>

Note:	The	contentDescription	attribute	is	for	visually	impaired	users.	It	acts	as	a	label	that	certain	accessibility	devices
use	to	read	out	loud	to	provide	some	context	about	the	meaning	of	the	UI	element.

4.	 Create	the	style	for	the	minus	buttons:

<style	name="MinusButtons"	parent="ScoreButtons">

				<item	name="android:src">@drawable/ic_minus</item>

				<item	name="android:contentDescription">@string/minus_button</item>

</style>

5.	 In	the	layout	file	for	the	main	activity,	remove	all	of	the	attributes	that	you	defined	in	the	styles	for	each	button	and
replace	them	with	the	appropriate	style:

style="@style/MinusButtons"

style="@style/PlusButtons"

Note:	The	style	attribute	does	not	use	the	"android:"	namespace,	because	it	is	part	of	the	default	XML	attributes.

3.2	Create	TextView	styles

The	team	name	and	score	display	text	views	can	also	be	styled	since	they	have	common	colors	and	fonts.	Do	the
following:

1.	 Add	the	following	attribute	to	all	TextViews:

android:textAppearance="@style/TextAppearance.AppCompat.Headline"

2.	 Right-click	anywhere	in	the	first	score	TextView	attributes	and	choose	Refactor	>	Extract	>	Style…
3.	 Name	the	style	"ScoreText"	and	check	the	textAppearance	box	(the	attribute	you	just	added)	as	well	as	the	Launch

'Use	Styles	Where	Possible'	refactoring	after	the	style	is	extracted	(using	the	checkboxes).	This	will	scan	the
layout	file	for	views	with	the	same	attributes	and	apply	the	style	for	you.	Do	not	extract	the	attributes	that	are	related	to
the	layout.

4.	 Choose	OK.
5.	 Make	sure	the	scope	is	set	to	the	activity_main.xml	layout	file	and	click	OK.

Introduction

269

6.	 A	pane	at	the	bottom	of	Android	Studio	will	open	if	the	same	style	is	found	in	other	views.	Select	Do	Refactor	to	apply
the	new	style	to	the	views	with	the	same	attributes.

7.	 Run	your	app.	There	should	be	no	change	except	that	all	of	your	styling	code	is	now	in	your	resources	file	and	your
layout	file	is	shorter.

Solution	Code:

styles.xml

<resources>

			<!--	Base	application	theme.	-->

			<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

							<!--	Customize	your	theme	here.	-->

							<item	name="colorPrimary">@color/colorPrimary</item>

							<item	name="colorPrimaryDark">@color/colorPrimaryDark</item>

							<item	name="colorAccent">@color/colorAccent</item>

			</style>

			<style	name="ScoreButtons"	parent="AppTheme">

							<item	name="android:background">@drawable/button_background</item>

			</style>

			<style	name="PlusButtons"	parent="ScoreButtons">

							<item	name="android:src">@drawable/ic_plus</item>

							<item	name="android:contentDescription">@string/plus_button</item>

			</style>

			<style	name="MinusButtons"	parent="ScoreButtons">

							<item	name="android:src">@drawable/ic_minus</item>

							<item	name="android:contentDescription">@string/minus_button</item>

			</style>

			<style	name="ScoreText">

							<item	name="android:textAppearance">@style/TextAppearance.AppCompat.Headline</item>

			</style>

</resources>

activity_main.xml

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:tools="http://schemas.android.com/tools"

			android:layout_width="match_parent"

			android:layout_height="match_parent"

			android:orientation="vertical"

			android:paddingBottom="@dimen/activity_vertical_margin"

			android:paddingLeft="@dimen/activity_horizontal_margin"

			android:paddingRight="@dimen/activity_horizontal_margin"

			android:paddingTop="@dimen/activity_vertical_margin"

			android:weightSum="2"

			tools:context="com.example.android.scorekeeper.MainActivity">

			<RelativeLayout

							android:layout_width="match_parent"

							android:layout_height="0dp"

							android:layout_weight="1">

							<TextView

											android:layout_height="wrap_content"

											android:layout_width="wrap_content"

											android:layout_alignParentTop="true"

											android:layout_centerHorizontal="true"

											android:text="@string/team_1"

											style="@style/ScoreText"	/>

							<ImageButton

											android:id="@+id/decreaseTeam1"

											android:layout_height="@dimen/button_size"

											android:layout_width="@dimen/button_size"

Introduction

270

											android:layout_alignParentLeft="true"

											android:layout_alignParentStart="true"

											android:layout_centerVertical="true"

											android:onClick="decreaseScore"

											style="@style/MinusButtons"/>

							<TextView

											android:layout_height="wrap_content"

											android:layout_width="wrap_content"

											android:layout_centerVertical="true"

											android:layout_centerHorizontal="true"

											android:id="@+id/score_1"

											android:text="@string/initial_count"

											style="@style/ScoreText"	/>

							<ImageButton

											android:id="@+id/increaseTeam1"

											android:layout_height="@dimen/button_size"

											android:layout_width="@dimen/button_size"

											android:layout_alignParentRight="true"

											android:layout_alignParentEnd="true"

											android:layout_centerVertical="true"

											android:onClick="increaseScore"

											style="@style/PlusButtons"/>

			</RelativeLayout>

			<RelativeLayout

							android:layout_width="match_parent"

							android:layout_height="0dp"

							android:layout_weight="1">

							<TextView

											android:layout_height="wrap_content"

											android:layout_width="wrap_content"

											android:layout_alignParentTop="true"

											android:layout_centerHorizontal="true"

											android:text="@string/team_2"

											style="@style/ScoreText"	/>

							<ImageButton

											android:id="@+id/decreaseTeam2"

											android:layout_height="@dimen/button_size"

											android:layout_width="@dimen/button_size"

											android:layout_alignParentLeft="true"

											android:layout_alignParentStart="true"

											android:layout_centerVertical="true"

											android:onClick="decreaseScore"

											style="@style/MinusButtons"/>

							<TextView

											android:layout_height="wrap_content"

											android:layout_width="wrap_content"

											android:layout_centerVertical="true"

											android:layout_centerHorizontal="true"

											android:id="@+id/score_2"

											android:text="@string/initial_count"

											style="@style/ScoreText"	/>

							<ImageButton

											android:id="@+id/increaseTeam2"

											android:layout_height="@dimen/button_size"

											android:layout_width="@dimen/button_size"

											android:layout_alignParentRight="true"

											android:layout_alignParentEnd="true"

											android:layout_centerVertical="true"

											android:onClick="increaseScore"

											style="@style/PlusButtons"/>

			</RelativeLayout>

</LinearLayout>

Introduction

271

3.3	Updating	the	styles

The	power	of	using	styles	becomes	apparent	when	you	want	to	make	changes	to	several	elements	of	the	same	style.	You
can	make	the	text	bigger,	bolder	and	brighter,	and	change	the	icons	to	the	color	of	the	button	backgrounds.

Make	the	following	changes	in	your	styles.xml	file:

1.	 Add	or	modify	each	of	the	following	attributes	in	the	specified	style	block:

Attribute Style	Block

@color/colorPrimary ScoreButtons

@style/TextAppearance.AppCompat.Display3 ScoreText

Note:	The		colorPrimary		value	is	automatically	generated	by	Android	Studio	when	you	create	the	project	and	can	be
found	in	the	values/colors.xml	file.	The		TextAppearance.AppCompat.Display3		attribute	is	a	predefined	text	style	supplied
by	Android.

2.	 Create	a	new	style	called	"TeamText"	with	the	following	attribute:

<item	name="android:textAppearance">@style/TextAppearance.AppCompat.Display1</item>

3.	 Change	the	style	attribute	of	the	team	name	TextViews	to	the	newly	created	TeamText	style	in	activity_main.xml.
4.	 Run	your	app.	With	only	these	adjustments	to	the	style.xml	file,	all	of	the	views	updated	to	reflect	the	changes.

Task	4:	Themes	and	Final	Touches
You've	seen	that	views	with	similar	characteristics	can	be	styled	together	in	the	"styles.xml"	file.	But	what	if	you	want	to
define	styles	for	an	entire	activity,	or	even	application?	It's	possible	to	accomplish	this	by	using	"Themes".	To	set	a	theme
for	an	Activity	or	set	of	Activities,	you	need	to	modify	the	AndroidManifest.xml	file.

In	this	task,	you	will	add	the	"night	mode"	theme	to	your	app,	which	will	allow	the	users	to	use	a	low	contrast	version	of	your
app	that	is	easier	on	the	eyes	at	night	time,	as	well	as	make	a	few	polishing	touches	to	the	User	Interface.

4.1	Explore	themes
1.	 In	the	Android	manifest	file,	find	the		<application>		tag	and	change	the		android:theme	attribute	to:

android:theme="@style/Theme.AppCompat.Light.NoActionBar"

This	is	a	predefined	theme	that	removes	the	action	bar	from	your	activity.

2.	 Run	your	app.	The	toolbar	disappears!

3.	 Change	the	theme	of	the	application	back	to	AppTheme,	which	is	a	child	of	the
Theme.Appcompat.Light.DarkActionBar	theme	as	can	be	seen	in	styles.xml.

To	apply	a	theme	to	an	activity	instead	of	the	entire	application,	place	the	theme	attribute	in	the	activity	tag	instead	of	the
application	tag.	For	more	information	on	Themes	and	Styles,	see	the	Style	and	Theme	Guide.

4.2	Add	theme	button	to	the	menu
One	use	for	setting	a	theme	for	your	application	is	to	provide	an	alternate	visual	experience	for	browsing	at	night.	In	such
conditions,	it	is	often	better	to	have	a	low	contrast,	dark	layout.	The	Android	framework	provides	a	theme	that	is	designed
exactly	for	this:	The	DayNight	theme.	This	theme	has	several	built	in	options	that	allow	you	to	control	the	colors	in	your	app
programmatically:	either	by	setting	it	to	change	automatically	by	time,	or	by	user	command.
In	this	exercise	you	will	add	a	menu	button	that	will	toggle	the	application	between	the	regular	theme	and	a	"night-mode"
theme.

Introduction

272

http://developer.android.com/guide/topics/ui/themes.html

1.	 Right	click	on	the	"res"	directory	and	choose	New	>	Android	resource	file.
2.	 Name	the	file	"main_menu",	change	the	Resource	Type	to	Menu,	and	click	OK.
3.	 Add	a	menu	item	with	the	following	attributes:

<item

				android:id="@+id/night_mode"

				android:title="@string/night_mode"/>

4.	 Navigate	to	"strings.xml"	and	create	two	string	resources:

<string	name="night_mode">Night	Mode</string>

<string	name="day_mode">Day	Mode</string>

5.	 Press	Ctrl	-	O	to	open	the	Override	Method	menu	in	your	main	activity	Java	file,	and	select	the
onCreateOptionsMenu	method	located	under	the	"android.app.Activity"	category.	Click	OK.

6.	 Inflate	the	menu	you	just	created	within	the		onCreateOptionsMenu()		method:

getMenuInflater().inflate(R.menu.main_menu,	menu);

4.3	Change	the	theme	from	the	menu

The	DayNight	theme	uses	the	AppCompatDelegate	class	to	set	the	night	mode	options	in	your	activity.	To	learn	more	about
this	theme,	visit	this	blog	post.

1.	 In	your	styles.xml	file,	modify	the	parent	of	AppTheme	to	"Theme.AppCompat.DayNight.DarkActionBar.
2.	 Override	the		onOptionsItemSelected()		method	in	MainActivity,	and	check	which	menu	item	was	clicked:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

			//Check	if	the	correct	item	was	clicked

			if(item.getItemId()==R.id.night_mode){}

}

3.	 In	response	to	a	click	on	the	menu	button,	you	can	verify	the	current	night	mode	setting	by	calling
	AppCompatDelegate.getDefaultNightMode()	.

4.	 If	the	night	mode	is	enabled,	change	it	to	the	disabled	state:

//Get	the	night	mode	state	of	the	app

int	nightMode	=	AppCompatDelegate.getDefaultNightMode();

//Set	the	theme	mode	for	the	restarted	activity

if(nightMode	==	AppCompatDelegate.MODE_NIGHT_YES)	{

			AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_NO);

}

5.	 Otherwise,	enable	it:

else	{

			AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_YES);

}

6.	 The	theme	can	only	change	while	the	activity	is	being	created,	so	call		recreate()		for	the	theme	change	to	take	effect.
7.	 Your		onOptionsItemSelected()		method	should	return	true,	since	the	item	click	was	handled.
8.	 Run	your	app.	The	"Night	Mode"	menu	item	should	now	toggle	the	theme	of	your	activity.	You	may	notice	that	the	label

for	your	menu	item	always	reads	"Night	Mode",	which	may	be	confusing	to	your	user	if	the	app	is	already	in	the	dark
theme.

9.	 Add	the	following	code	in	the	onCreateOptionsMenu	method:

Introduction

273

https://medium.com/@chrisbanes/appcompat-v23-2-daynight-d10f90c83e94#.ub2ptykn9

@Override

public	boolean	onCreateOptionsMenu(Menu	menu)	{

			//Inflate	the	menu	from	XML

			getMenuInflater().inflate(R.menu.main_menu,	menu);

			//Change	the	label	of	the	menu	based	on	the	state	of	the	app

			int	nightMode	=	AppCompatDelegate.getDefaultNightMode();

			if(nightMode	==	AppCompatDelegate.MODE_NIGHT_YES){

							menu.findItem(R.id.night_mode).setTitle(R.string.day_mode);

			}	else{

							menu.findItem(R.id.night_mode).setTitle(R.string.night_mode);

			}

			return	true;

}

10.	 Run	your	app.	The	menu	button	label	now	changes	with	the	theme.

4.4	SaveInstanceState

You	learned	in	previous	lessons	that	you	must	be	prepared	for	your	activity	to	be	destroyed	and	recreated	at	unexpected
times,	for	example	when	your	screen	is	rotated.	In	this	application,	the	TextViews	containing	the	scores	are	reset	to	the
initial	value	of	0	when	the	device	is	rotated.	To	fix	this,	Do	the	following:

1.	 Override	the		onSaveInstanceState()		method	in	MainActivity	to	preserve	the	values	of	the	two	score	TextViews:

@Override

protected	void	onSaveInstanceState(Bundle	outState)	{

			//Save	the	scores

			outState.putInt(STATE_SCORE_1,	mScore1);

			outState.putInt(STATE_SCORE_2,	mScore2);

			super.onSaveInstanceState(outState);

}

2.	 In	the		onCreate()		method	of	MainActivity.java,	check	if	there	is	a	savedInstanceState.	If	there	is,	restore	the	scores	to
the	text	views:

if	(savedInstanceState	!=	null)	{

				mScore1	=	savedInstanceState.getInt(STATE_SCORE_1);

				mScore2	=	savedInstanceState.getInt(STATE_SCORE_2);

				//Set	the	score	text	views

				mScoreText1.setText(String.valueOf(mScore1));

				mScoreText2.setText(String.valueOf(mScore2));

}

That's	it!	Congratulations,	you	now	have	a	styled	Scorekeeper	Application.

Solution	code
Android	Studio	project:	Scorekeeper

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Right	now,	your	buttons	do	not	behave	intuitively	because	they	do	not	change	their	appearance	when	they	are
pressed.	Android	has	another	type	of	drawable	called	StateListDrawable	which	allows	for	a	different	graphic	to	be	used
depending	on	the	state	of	the	object.

Introduction

274

https://github.com/google-developer-training/android-fundamentals/tree/master/Scorekeeper

For	this	challenge	problem,	create	a	drawable	resource	that	changes	the	background	of	the	button	to	the	same	color	as	the
border	when	the	state	of	the	button	is	"pressed".	You	should	also	set	the	color	of	the	text	inside	the	buttons	to	a	selector
that	makes	it	white	when	the	button	is	"pressed".

Summary
A	ShapeDrawable	is	a	primitive	geometric	shape	defined	in	an	xml	file	by	a	number	of	attributes	including	color,	shape,
padding	and	more.

Drawables	enhance	the	look	of	an	application.
A	Style	can	specify	common	properties	such	as	height,	padding,	font	color,	font	size,	background	color,	et	al.

Using	styles	can	reduce	the	amount	of	common	code	for	your	UI	components.
Style	should	not	include	layout-related	information.
Styles	can	be	applied	to	View,	Activities	or	Applications.

Style	applied	to	Activities	or	Applications	must	be	defined	in	the	Android	Manifest	XML	file.
Styles	can	be	inherited	by	identifying	the	parent	style	using	XML.

When	you	apply	a	style	to	a	collection	of	Views	in	an	Activity	or	in	your	entire	application,	that	is	known	as	a	Theme
Android:theme	is	the	attribute	you	need	to	set	a	style	on	a	collection	of	Views	in	an	Activity	or	Application.
The	Android	platform	supplies	a	large	collection	of	styles	and	themes.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Drawables,	Styles	and	Themes

Learn	more
Developer	Documentation:

LinearLayout	Guide
Drawable	Resource	Guide
Styles	and	Themes	Guide
DayNight	Theme	Guide

Videos

Udacity	-	Themes	and	Styles

Introduction

275

https://developer.android.com/reference/android/graphics/drawable/ShapeDrawable.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/51_c_drawables,_styles,_and_themes.html
http://developer.android.com/guide/topics/ui/layout/linear.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/topics/ui/themes.html
https://medium.com/@chrisbanes/appcompat-v23-2-daynight-d10f90c83e94#.ub2ptykn9
https://www.udacity.com/course/viewer#!/c-ud862/l-4222899149/m-4789788637

5.2:	Material	Design:	Lists,	Cards	and	Colors
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Download	the	starter	code
Task	2:	Add	a	CardView	and	images
Task	3:	Make	your	CardView	swipeable,	movable,	and	clickable
Task	4:	Add	the	FAB	and	choose	a	Material	Design	color	palette
Coding	challenge
Summary
Related	concept
Learn	more

This	chapter	introduces	concepts	from	Google's	Material	Design	guidelines,	a	series	of	best	practices	for	creating	visually
appealing	and	intuitive	applications.	You	will	learn	how	to	add	and	use	the	CardView	and	Floating	Action	Button	Views,
efficiently	use	images,	as	well	as	employ	design	best	practices	to	make	your	user's	experience	delightful.

What	you	should	already	KNOW
From	the	previous	chapters	you	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Create	and	edit	elements	using	the	Layout	Editor,	XML,	and	programmatically.
Use	a	RecyclerView	to	display	a	list.

What	you	will	LEARN
Recommended	use	of	material	widgets	(Floating	Action	Button,	CardView).
How	to	efficiently	use	images	in	your	app.
Recommended	best	practices	for	designing	intuitive	layouts	using	bold	colors.

What	you	will	DO
Modify	an	application	to	follow	Material	Design	guidelines.
Add	images	and	styling	to	a	RecyclerView	list.
Implement	an	ItemTouchHelper	to	add	Drag	and	Drop	functionality	to	your	app.

App	overview
The	"Material	Me!"	app	is	a	mock	sports	news	application	with	very	poor	design	implementation.	You	will	fix	it	up	to	meet
the	design	guidelines	to	create	a	delightful	user	experience!	Below	are	some	screenshots	of	the	app	before	and	after	the
Material	Design	improvements.

Introduction

276

https://www.google.com/design/spec/material-design/introduction.html

Introduction

277

Introduction

278

Task	1:	Download	the	starter	code
The	complete	starter	app	project	for	this	practical	is	available	at	MaterialMe-Starter.	In	this	task	you	will	load	the	project	into
Android	Studio	and	explore	some	of	the	app's	key	features.

1.1	Open	and	run	the	Material	Me	project

1.	 Download	and	unzip	the	MaterialMe-Starter	file.
2.	 Open	the	app	in	Android	Studio.
3.	 Build	and	run	the	app.

The	app	shows	a	list	of	sports	names	with	some	placeholder	news	text	for	each	sport.	The	current	layout	and	style	of	the
app	makes	it	nearly	unusable:	each	row	of	data	is	not	clearly	separated	and	there	is	no	imagery	or	color	to	engage	the
user.

1.2	Explore	the	app

1.	 Before	making	modifications	to	the	app,	explore	its	current	structure.	It	contains	the	following	elements:

Sport.java

This	class	represents	the	data	model	for	each	row	of	data	in	the	RecyclerView.	Right	now	it	contains	a	field	for	the
title	of	the	sport	and	a	field	for	some	information	about	the	sport.

SportsAdapter.java

This	is	the	adapter	for	the	RecyclerView.	It	uses	an	ArrayList	of	Sport	objects	as	its	data	and	populates	each	row
with	this	data.

MainActivity.java

The	MainActivity	initializes	the	RecyclerView	and	adapter,	and	creates	the	data	from	resource	files.

strings.xml

This	resource	file	contains	all	of	the	data	for	the	application,	including	the	titles	and	information	for	each	sport.

list_item.xml

This	layout	file	defines	each	row	of	the	RecyclerView.	It	consists	of	three	TextViews,	one	for	each	piece	of	data
(the	title	and	the	info	for	each	sport)	and	one	used	as	a	label.

Task	2:	Add	a	CardView	and	images
One	of	the	fundamental	principles	of	Material	Design	is	the	use	of	bold	imagery	to	enhance	the	user	experience.	Adding
images	to	the	RecyclerView	list	items	is	a	good	start	for	creating	a	dynamic	and	captivating	user	experience.

When	presenting	information	that	has	mixed	media	(like	images	and	text),	the	Material	Design	guidelines	recommend	using
a	CardView,	which	is	a	FrameLayout	with	some	extra	features	(such	as	elevation	and	rounded	corners)	that	give	it	a
consistent	look	and	feel	across	many	different	applications	and	platforms.	CardView	is	a	UI	component	found	in	the	Android
Support	Libraries.

In	this	section,	you	will	move	each	list	item	into	a	CardView	and	add	an	Image	to	make	the	app	comply	with	Material
guidelines.

2.1	Add	the	CardView

Introduction

279

https://github.com/google-developer-training/android-fundamentals-starter-apps/tree/master/MaterialMe-Starter
https://github.com/google-developer-training/android-fundamentals-starter-apps/tree/master/MaterialMe-Starter
https://developer.android.com/reference/android/support/v7/widget/CardView.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiV3qvfyojQAhViVWMKHS1HD38QFggcMAA&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fwidget%2FFrameLayout.html&usg=AFQjCNFNC0cFe0ShkPbdNybqUo4jOAUHew&bvm=bv.137132246,d.cGc

CardView	is	not	included	in	the	default	Android	SDK,	so	you	must	be	add	it	as	a	build.gradle	dependency.	Do	the	following:

1.	 In	your	app	level	build.gradle	file,	add	the	following	line	to	the	dependencies	block:

compile	'com.android.support:cardview-v7:24.1.1'

Note:	The	version	of	the	support	library	may	have	changed	since	the	writing	of	this	practical.	Update	it	to	it's	most
current	version	and	sync	your	gradle	files.

2.	 In	the	list_item.xml	file,	surround	the	root	LinearLayout	with	a	CardView	with	the	following	attributes:

Attribute Value

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:layout_margin "8dp"

Note:	You	will	need	to	move	the	schema	declaration	(xmlns:android="http://schemas.android.com/apk/res/android")
from	the	LinearLayout	to	the	Cardview	which	is	now	the	top	level	View	of	your	layout	file.

3.	 Run	the	app.	Now	each	row	item	is	contained	inside	a	CardView,	which	is	elevated	above	the	bottom	layer	and	casts	a
shadow.

2.2	Download	the	images

The	CardView	is	not	intended	to	be	used	exclusively	with	plain	text:	it	is	best	for	displaying	a	mixture	of	content.	You	have
is	a	good	opportunity	to	make	this	sports	information	app	more	exciting	by	adding	banner	images	to	every	row!

Using	images	is	resource	intensive	for	your	app:	the	Android	framework	has	to	load	the	entire	image	into	memory	at	full
resolution,	even	if	the	app	only	displays	a	small	thumbnail	of	the	image.

In	this	section	you	will	learn	how	to	use	the	Glide	library	to	load	large	images	efficiently,	without	draining	your	resources	or
even	crashing	your	app	due	to	'Out	of	Memory'	exceptions.

1.	 Download	the	banner	images	zip	file.
2.	 Copy	these	files	into	the	res	>	drawable	directory	of	your	app.

Note:	Copy	the	files	using	your	file	explorer,	not	Android	Studio.	Navigate	to	the	directory	where	all	your	Android
Projects	are	stored	(It's	called	/AndroidStudioProjects),	and	go	to	MaterialMe/app/src/main/res/drawable	and	paste	the
images	here.
You	will	need	an	array	with	the	path	to	each	image	so	that	you	can	include	it	in	the	Sports	java	object.	To	do	this:

3.	 Define	an	array	that	contains	all	of	the	paths	to	the	drawables	as	items	in	your	string.xml	file.	Be	sure	to	that	they	are	in
the	same	order	as	the	sports	titles	array:

<array	name="sports_images">

			<item>@drawable/img_baseball</item>

			<item>@drawable/img_badminton</item>

			<item>@drawable/img_basketball</item>

			<item>@drawable/img_bowling</item>

			<item>@drawable/img_cycling</item>

			<item>@drawable/img_golf</item>

			<item>@drawable/img_running</item>

			<item>@drawable/img_soccer</item>

			<item>@drawable/img_swimming</item>

			<item>@drawable/img_tabletennis</item>

			<item>@drawable/img_tennis</item>

</array>

2.3	Modify	the	Sport	object

The	Sport.java	object	will	need	to	include	the	drawable	resource	that	correpsonds	to	the	sport.	To	achieve	that:

1.	 Add	an	integer	member	variable	to	the	Sport	object	that	will	contain	the	drawable	resource:

Introduction

280

https://github.com/google-developer-training/android-fundamentals-starter-apps/blob/master/5_2_P_starter_images.zip

private	final	int	imageResource;

2.	 Modify	the	constructor	so	that	it	takes	an	integer	as	a	parameter	and	assigns	it	to	the	member	variable:

public	Sport(String	title,	String	info,	int	imageResource)	{

			this.title	=	title;

			this.info	=	info;

			this.imageResource	=	imageResource;

}

3.	 Create	a	getter	for	the	resource	integer:

public	int	getImageResource()	{

			return	imageResource;

}

2.4	Fix	the	initializeData()	method

In	MainActivity.java,	the		initializeData()		method	is	now	broken,	because	the	constructor	for	the	Sport	object	demands
the	image	resource	as	the	third	parameter.

A	convenient	data	structure	to	use	would	be	a	TypedArray.	A	TypedArray	allows	you	to	store	an	array	of	other	XML
resources.	By	using	a	TypedArray,	you	will	be	able	to	obtain	the	image	resources	as	well	as	the	sports	title	and	information
by	using	indexing	in	the	same	loop.

1.	 In	the		initializeData()		method,	get	the	TypedArray	of	resource	id's	by	calling		getResources().obtainTypedArray()	,
passing	in	the	name	of	the	array	of	drawable	resources	you	defined	in	your	strings.xml	file:

TypedArray	sportsImageResources	=

				getResources().obtainTypedArray(R.array.sports_images);

You	can	access	an	element	at	index	i	in	the	TypedArray	by	using	the	appropriate	"get"	method,	depending	on	the	type
of	resource	in	the	array.	In	this	specific	case,	it	contains	resource	ID's,	so	you	use	the		getResourceId()		method.

2.	 Fix	the	code	in	the	loop	that	creates	the	Sports	objects,	adding	the	appropriate	drawable	resource	ID	as	the	third
parameter	by	calling		getResourceId()		on	the	TypedArray:

for(int	i=0;i<sportsList.length;i++){

			mSportsData.add(new	Sport(sportsList[i],sportsInfo[i],				

							sportsImageResources.getResourceId(i,0)));

}

3.	 Clean	up	the	data	in	the	typed	array	once	you	have	created	the	Sport	data	ArrayList:

sportsImageResources.recycle();

2.5	Add	an	ImageView	to	the	list	items

1.	 Change	the	LinearLayout	inside	the	list_item.xml	file	to	a	RelativeLayout,	and	delete	the	orientation	attribute.
2.	 Add	an	ImageView	with	the	following	attributes:

Attribute Value

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:id "@+id/sportsImage"

android:adjustViewBounds "true"

The		adjustViewBounds		attribute	makes	the	ImageView	adjust	its	boundaries	to	preserve	the	aspect	ratio	of	the	image.

Introduction

281

https://developer.android.com/reference/android/content/res/TypedArray.html

3.	 Add	the	following	attributes	to	the	existing	TextViews:

TextView	id:	title Attribute Value

android:layout_alignBottom "@id/sportsImage"

android:theme "@style/ThemeOverlay.AppCompat.Dark"

TextView	id:	newsTitle Attribute Value

android:layout_below "@id/sportsImage"

android:textColor "?android:textColorSecondary"

TextView	id:	subTitle android:layout_below "@id/newsTitle"

Note:	The	question	mark	in	the	above	textColor	attribute	("?android:textColorSecondary")	means	that	the	framework
will	apply	the	value	from	the	currently	applied	theme.	In	this	case,	this	attribute	is	inherited	from	the
"Theme.AppCompat.Light.DarkActionBar"	theme,	which	defines	it	as	a	light	gray	color,	often	used	for	subheadings.

2.6	Load	the	images	using	Glide

After	downloading	the	images	and	setting	up	the	ImageView,	the	next	step	is	to	modify	the	SportsAdapter	to	load	an	image
into	the	ImageView	in		onBindViewHolder()	.	If	you	take	this	approach,	you	will	find	that	your	app	crashes	due	to	"Out	of
Memory"	errors.	The	Android	framework	has	to	load	the	image	into	memory	each	time	at	full	resolution,	no	matter	what	the
display	size	of	the	ImageView	is.

There	are	a	number	of	ways	to	reduce	the	memory	consumption	when	loading	images,	but	one	of	the	easiest	approaches
is	to	use	an	Image	Loading	Library	like	Glide,	which	you	will	do	in	this	step.	Glide	uses	background	processing,	as	well
some	other	complex	processing,	to	reduce	the	memory	requirements	of	loading	images.	It	also	includes	some	useful
features	like	showing	placeholder	images	while	the	desired	images	are	loaded.

Note:	You	can	learn	more	about	reducing	memory	consumption	in	your	app	in	the	Displaying	Bitmaps	guide.
1.	 Add	the	following	dependency	for	Glide,	in	your	app	level	build.gradle	file:

compile	'com.github.bumptech.glide:glide:3.5.2'

2.	 Add	a	variable	in	the	SportsAdapter	class,	ViewHolder	class	for	the	ImageView,	and	initialize	it	in	the	ViewHolder
constructor:

mSportsImage	=	(ImageView)	itemView.findViewById(R.id.sportsImage);

3.	 Add	the	following	line	of	code	to		onBindViewHolder()		to	get	the	image	resource	from	the	Sport	object	and	load	it	into
the	ImageView	using	Glide:

Glide.with(mContext).load(currentSport.getImageResource()).into(holder.mSportsImage);

That's	all	takes	to	load	an	image	with	Glide.	Glide	also	has	several	additional	features	that	let	you	resize,	transform
and	load	images	in	a	variety	of	ways.	Head	over	to	the	Glide	github	page	to	learn	more.

4.	 Run	the	app,	your	list	items	should	now	have	bold	graphics	that	make	the	user	experience	dynamic	and	exciting!

Task	3:	Make	your	CardView	swipeable,	movable,	and
clickable
When	users	see	cards	in	an	app,	they	have	expectations	about	the	way	the	cards	behave.	The	Material	Design	guidelines
say	that:

A	card	can	be	dismissed,	usually	by	swiping	it	away.
A	list	of	cards	can	be	reordered	by	holding	down	and	dragging	the	cards.

Introduction

282

https://github.com/bumptech/glide
https://developer.android.com/training/displaying-bitmaps/load-bitmap.html
https://github.com/bumptech/glide
https://material.google.com/components/cards.html

Tapping	on	card	will	provide	further	details.

You	will	now	implement	these	behaviors	in	your	app.

3.1	Implement	swipe	to	dismiss

The	Android	SDK	includes	a	class	called	ItemTouchHelper	that	is	used	to	define	what	happens	to	RecyclerView	list	items
when	the	user	performs	various	touch	actions,	such	as	swipe,	or	drag	and	drop.	Some	of	the	common	use	cases	are
already	implemented	in	a	set	of	methods	in	ItemTouchHelper.SimpleCallback.

ItemTouchHelper.SimpleCallback	lets	you	define	which	directions	are	supported	for	swiping	and	moving	list	items,	and
implement	the	swiping	and	moving	behavior.

Do	the	following:

1.	 Create	a	new	ItemTouchHelper	object,	in	the		onCreate()		method	of	MainActivity.java.	For	its	argument,	create	a	new
instance	of	ItemTouchHelper.SimpleCallback	and	press	Enter	to	make	Android	Studio	fill	in	the	required	methods:
	onMove()		and		onSwiped()	.

Note:	If	the	required	methods	were	not	automatically	added,	click	on	the	red	light	bulb	and	select	Implement
methods.

2.	 The	SimpleCallback	constructor	will	be	underlined	in	red	because	you	have	not	yet	provided	the	required	parameters:
the	direction	that	you	plan	to	support	for	moving	and	swiping	list	items,	respectively.

Because	we	are	only	implementing	swipe	to	dismiss	at	the	moment,	you	should	pass	in		0		for	the	supported	move
directions	and		ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT		for	the	supported	swipe	directions:

ItemTouchHelper	helper	=	new	ItemTouchHelper(new	ItemTouchHelper

				.SimpleCallback(0,	ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT)	{}

3.	 You	must	now	implement	the	desired	behavior	in		onSwiped()	.	In	this	case,	swiping	the	card	left	or	right	should	delete	it
from	the	list.	Call		remove()		on	the	data	set,	passing	in	the	appropriate	index	by	getting	the	position	from	the
ViewHolder:

mSportsData.remove(viewHolder.getAdapterPosition());

4.	 To	allow	the	RecyclerView	to	animate	the	deletion	properly,	you	must	also	call		notifyItemRemoved()	,	again	passing	in
the	appropriate	index	by	getting	the	position	from	the	ViewHolder:

mAdapter.notifyItemRemoved(viewHolder.getAdapterPosition());

5.	 After	creating	the	new	ItemTouchHelper	object	in	the	Main	Activity's		onCreate()		method,	call		attachToRecyclerView()	
on	the	ItemTouchHelper	instance	to	add	it	to	your	RecyclerView:

helper.attachToRecyclerView(mRecyclerView);

6.	 Run	your	app,	you	can	now	swipe	list	items	left	and	right	to	delete	them!

3.2	Implement	drag	and	drop
You	can	also	implement	drag	and	drop	functionality	using	the	same	SimpleCallback.	The	first	argument	of	the
SimpleCallback	determines	which	directions	the	ItemTouchHelper	supports	for	moving	the	objects	around.	Do	the	following:

1.	 Change	the	first	argument	of	the	SimpleCallback	from	0	to	include	every	direction,	since	we	want	to	be	able	to	drag
and	drop	anywhere:

Introduction

283

https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.html
https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.SimpleCallback.html

ItemTouchHelper	helper	=	new	ItemTouchHelper(new	ItemTouchHelper

.SimpleCallback(ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT	|

ItemTouchHelper.DOWN	|	ItemTouchHelper.UP,	ItemTouchHelper.LEFT	|

ItemTouchHelper.RIGHT)	{}

2.	 In	the		onMove()		method,	get	the	original	and	target	index	from	the	2nd	and	3rd	argument	passed	in	(corresponding	to
the	original	and	target	viewholders).

int	from	=	viewHolder.getAdapterPosition();

int	to	=	target.getAdapterPosition();

3.	 Swap	the	items	in	the	dataset	by	calling		Collections.swap()		and	pass	in	the	dataset,	and	the	initial	and	final	indexes:

Collections.swap(mSportsData,	from,	to);

4.	 Notify	the	adapter	that	the	item	was	moved,	passing	in	the	old	and	new	indexes:

mAdapter.notifyItemMoved(from,	to);

5.	 Run	your	app.	You	can	now	delete	your	list	items	by	swiping	them	left	or	right,	or	reorder	them	using	a	long	press	to
activate	Drag	and	Drop	mode.

3.3	Implement	the	detail	view

According	to	Material	Design	guidelines,	a	card	is	used	to	provide	an	entry	point	to	more	detailed	information.	You	may	find
yourself	tapping	on	the	cards	to	see	more	information	about	the	sports,	because	that	is	how	you	expect	cards	to	behave.	In
this	section,	you	will	add	a	detail	activity	that	will	be	launched	when	any	list	item	is	pressed.	For	this	practical,	the	detail
activity	will	contain	the	name	and	image	of	the	list	item	you	clicked,	but	will	contain	only	generic	placeholder	detail	text,	so
you	don't	have	to	create	custom	detail	for	each	list	item.

1.	 Create	a	new	activity	by	going	to	File	>	New	>	Activity	>	Empty	Activity.
2.	 Call	it	DetailActivity,	accept	all	of	the	defaults.
3.	 In	the	newly	created	layout	file:

i.	 Change	the	root	view	group	to	RelativeLayout,	as	you've	done	in	previous	exercises.
ii.	 Remove	the	padding	from	the	RelativeLayout	element.

4.	 Copy	all	of	the	TextView	and	ImageView	views	from	the	list_item.xml	file	to	the	activity_detail.xml	file.
5.	 Add	the	word	"Detail"	to	every	reference	to	an	id,	in	order	to	differentiate	it	from	list_item	ids.	For	example,	change	the

ImageView	ID	from	sportsImage	to	sportsImageDetail,	as	well	as	any	references	to	this	ID	for	relative	placement	such
	layout_below.	

6.	 For	the	subTitleDetail	textview,	remove	the	placeholder	text	string	and	paste	a	paragraph	of	generic	text	to	substitute
detail	text	(For	example,	a	few	paragraphs	of	Lorem	Ispum).

7.	 Change	the	padding	on	the	TextViews	to	16dp.
8.	 Wrap	the	entire	activity_detail.xml	in	a	ScrollView	and	change	the	layout_height	attribute	of	the	RelativeLayout	to

"wrap_content".

Note:	The	attributes	for	the	ScrollView	might	appear	red	at	first.	This	is	because	you	must	first	add	an	attribute	that
defines	the	Android	namespace.	This	is	the	attribute	that	shows	up	in	all	of	your	layout	files	by	default:
	xmlns:android="http://schemas.android.com/apk/res/android"	.	
Simply	move	this	declaration	to	the	top	level	view	and	the	red	should	go	away.

9.	 In	the	SportsAdapter	class,	make	the	ViewHolder	inner	class	implement	View.OnClickListener,	and	implement	the
required	method	(onClick()).

10.	 Set	the	OnClickListener	to	the	itemview	in	the	constructor:

itemView.setOnClickListener(this);

11.	 In	the		onClick()		method,	get	the	Sport	object	for	the	item	that	was	clicked	using		getAdapterPosition()	:

Introduction

284

https://material.google.com/components/cards.html#cards-content
http://www.lipsum.com/

Sport	currentSport	=	mSportsData.get(getAdapterPosition());

12.	 Create	an	Intent	that	launches	the	Detail	activity,	and	put	the	title	and	image	resource	as	extras	in	the	Intent:

Intent	detailIntent	=	new	Intent(mContext,	DetailActivity.class);

detailIntent.putExtra("title",	currentSport.getTitle());

detailIntent.putExtra("image_resource",	currentSport.getImageResource());

13.	 Call		startActivity()		on	the	mContext	variable,	passing	in	the	new	Intent.
14.	 In	DetailActivity.java,	initialize	the	ImageView	and	title	TextView	in		onCreate()	:

TextView	sportsTitle	=	(TextView)findViewById(R.id.titleDetail);

ImageView	sportsImage	=	(ImageView)findViewById(R.id.sportsImageDetail);

15.	 Get	the	title	from	the	incoming	Intent	and	set	it	to	the	TextView:

sportsTitle.setText(getIntent().getStringExtra("title"));

16.	 Use	Glide	to	load	the	image	into	the	ImageView:

Glide.with(this).load(getIntent().getIntExtra("image_resource",0))

.into(sportsImage);

17.	 Run	the	app.	Tapping	on	a	list	item	now	launches	the	detail	activity.

Task	4:	Add	the	FAB	and	choose	a	Material	Design	color
palette
One	of	the	principles	behind	Material	Design	is	using	consistent	elements	across	applications	and	platforms	so	that	users
recognize	patterns	and	know	how	to	use	them.	You	have	already	used	one	such	element:	the	Floating	Action	Button.	The
FAB	is	a	circular	button	that	floats	above	the	rest	of	the	UI.	It	is	used	to	promote	a	particular	action	to	the	user,	one	that	is
very	likely	to	be	used	in	a	given	activity.	In	this	task,	you	will	create	a	FAB	that	resets	the	dataset	to	it's	original	state.

4.1	Add	the	FAB

The	Floating	Action	Button	is	part	of	the	Design	Support	Library.

1.	 Add	the	following	line	of	code	to	the	app	level	build.gradle	file	to	add	the	design	support	library	dependency:

compile	'com.android.support:design:24.2.1'

2.	 Use	the	vector	asset	studio	to	download	an	icon	to	use	in	the	FAB.	The	button	will	reset	the	contents	of	the

RecyclerView	so	this	icon	should	do:	 .	Change	the	name	to	ic_reset.
3.	 In	activity_main.xml,	add	a	Floating	Action	Button	view	with	the	following	parameters:

Introduction

285

https://material.google.com/components/buttons-floating-action-button.html
https://developer.android.com/topic/libraries/support-library/index.html

Attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:layout_alignParentBottom "true"

android:layout_alignParentRight "true

android:layout_margin "16dp"

android:src "@drawable/ic_reset"

android:onClick resetSports

4.	 Define	the		resetSports()		method	in	MainActivity.java	to	simply	call	initializeData()	to	reset	the	data.
5.	 Run	the	app.	You	can	now	reset	the	data	by	pushing	the	FAB.

Note:	Because	the	activity	is	destroyed	and	recreated	when	the	configuration	changes,	rotating	the	device	resets	the
data	in	this	implementation.	In	order	for	the	changes	to	be	persistent	(as	in	the	case	of	reordering	or	removing	data),
you	would	have	to	implement		onSaveInstanceState()		or	write	the	changes	to	a	persistent	source	(like	a	database	or
SharedPreferences).

4.2	Choose	a	Material	Design	palette

If	you	run	your	app	you	may	notice	that	the	FAB	has	a	color	that	you	didn't	define	anywhere.	Also,	the	App	bar	(the	bar	that
contains	the	title	of	your	app)	has	a	color	that	you	did	not	explicitly	set.	Where	are	these	colors	defined?

1.	 Navigate	to	your	styles.xml	file	(located	in	the	values	directory).	The	AppTheme	style	defines	three	colors	by	default:
colorPrimary,	colorPrimaryDark	and	colorAccent.	These	styles	are	defined	by	values	from	the	colors.xml	file.	Material
Design	recommends	picking	at	least	these	three	colors	for	your	app:

2.	 A	primary	color.	This	one	is	automatically	used	to	color	your	App	bar.
3.	 A	primary	dark	color.	A	darker	shade	of	the	same	color.	This	is	used	for	the	status	bar	above	the	app	bar,	among	other

things.
4.	 An	accent	color.	A	color	that	contrasts	well	with	the	primary	color.	This	is	used	for	various	highlights,	but	it	is	also	the

default	color	of	the	FAB.	You	can	use	the	Material	Color	Guide	to	pick	some	colors	to	experiment	with.
5.	 Pick	a	color	from	the	guide	to	use	as	your	primary	color.	It	should	be	within	the	300-700	range	so	that	you	can	still	pick

a	proper	accent	and	dark	color.	Modify	the	colorPrimary	hex	value	in	your	colors.xml	file	to	match	the	color	you	picked.
6.	 Pick	a	darker	shade	of	the	same	color	to	use	as	your	primary	dark	color.	Again,	modify	the	colors.xml	hex	value	for

colorPrimaryDark	to	match.
7.	 Pick	an	accent	color	for	your	FAB	from	the	colors	whose	values	start	with	an	A,	and	whose	color	contrasts	well	with	the

primary	color	(like	Orange	A200).	Change	the	colorAccent	value	in	colors.xml	to	match.
8.	 Add	the	android:tint	attribute	to	the	FAB	and	set	it	equal	to	#FFFFFF	(white)	in	order	to	change	the	icon	color	to	white.
9.	 Run	the	app.	The	App	Bar	and	FAB	changed	to	reflect	the	new	color	palette!

Note:	If	you	want	to	change	the	color	of	the	FAB	to	something	other	than	theme	colors,	use	the		app:backgroundTint	
attribute.	Note	that	this	uses	the	app:	namespace	and	Android	Studio	will	prompt	you	to	add	a	statement	to	define	the
namespace.

Solution	code
Android	Studio	project:	MaterialMe

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Introduction

286

https://material.google.com/style/color.html#color-color-palette
https://github.com/google-developer-training/android-fundamentals/tree/master/MaterialMe

Challenge	1:	This	challenge	consists	of	several	small	improvements	to	your	application:

Add	real	details	to	the	Sport	object	and	pass	the	details	to	the	detail	view.
Implement	a	way	to	ensure	that	the	state	of	the	app	is	persistent	across	orientation	changes.

Challenge	2:	Create	an	application	with	4	images	arranged	in	a	grid	in	the	center	of	your	layout.	Make	the	first	three	solid
colored	backgrounds	with	different	shapes	(square,	circle,	line),	and	the	fourth	the	Android	Material	Design	Icon.	Make
each	of	these	images	respond	to	clicks	as	follows:

1.	 One	of	the	colored	blocks	relaunches	the	Activity	using	the	Explode	animation	for	both	the	enter	and	exit	transitions.
2.	 Relaunch	the	Activity	from	another	colored	block,	this	time	using	the	Fade	transition.
3.	 Touching	the	third	colored	block	starts	an	in	place	animation	of	the	view	(such	as	a	rotation).
4.	 Finally,	touching	the	android	icon	starts	a	secondary	activity	with	a	Shared	Element	Transition	swapping	the	Android

block	with	one	of	the	other	blocks.

Introduction

287

https://design.google.com/icons/#ic_android
http://developer.android.com/reference/android/transition/Explode.html
http://developer.android.com/reference/android/transition/Fade.html

Introduction

288

Note:	You	must	set	your	minimum	SDK	level	to	21	or	higher	in	order	to	implement	shared	element	transitions.

Summary
A	CardView	is	a	good	layout	when	presenting	information	that	has	mixed	media	(such	as	images	and	text)
CardView	is	a	UI	component	found	in	the	Android	Support	Libraries
CardView	was	not	designed	just	for	text	child	Views.
Loading	images	directly	into	ImageView	is	very	memory	intensive.	All	images	are	loaded	at	full-resolution.
Use	an	image	loading	library,	such	as	Glide,	to	efficiently	load	images	into	your	app
The	Android	SDK	has	a	class	called	ItemTouchHelper	which	assists	in	obtaining	tap,	swipe	or	drag-and-drop
information	for	your	UI.
A	Floating	Action	Button	(FAB)	focuses	the	user	on	a	particular	action	and	"floats"	about	your	UI.
Material	Design	suggest	3	colors	for	your	app:	a	primary	color,	a	primary	dark	color	and	an	accent	color.
The	Material	Design	guidelines	are	a	set	of	guiding	principles	that	aim	to	create	consistent,	intuitive	and	playful
applications.
Material	Design	promotes	the	use	of	bold	imagery	and	colors	to	enhance	user	experience.
It	also	promotes	consistent	elements	across	platforms	(such	as	CardView	and	the	FAB).
Material	Design	should	be	used	for	meaningful,	intuitive	motion	like	dismissable	or	rearrangeable	cards.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Material	Design

Learn	more
Material	Design	Guidelines
Material	Palette	Generator
Cards	and	Lists	Guide
Floating	Action	Button	Reference
Defining	Custom	Animations
View	Animation

Introduction

289

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/52_c_material_design.html
https://www.google.com/design/spec/material-design/introduction.html
http://www.materialpalette.com/
http://developer.android.com/training/material/lists-cards.html
http://developer.android.com/reference/android/support/design/widget/FloatingActionButton.html
http://developer.android.com/training/material/animations.html
http://developer.android.com/guide/topics/graphics/view-animation.html

5.3:	Supporting	Landscape,	Multiple	Screen	Sizes	and
Localization
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Support	Landscape	Orientation
Task	2:	Support	Tablets
Task	3:	Localize	your	App
Coding	challenges
Summary
Related	concept
Learn	more

After	using	the	Material	Me!	application	you	created	in	the	last	practical,	you	may	notice	that	it	is	not	optimized	for	use	when
the	orientation	for	the	device	is	rotated	from	portrait	mode	to	landscape	mode.	Likewise,	if	you	are	testing	on	a	tablet,	the
font-sizes	are	too	small	and	the	space	is	not	used	efficiently.	The	Android	framework	has	a	way	to	solve	both	of	these
issues.	Resource	qualifiers	allow	the	Android	Runtime	to	use	alternate	resource	files	(.xml)	depending	on	the	device
configuration,	such	as,	the	orientation,	the	locale	and	other	"qualifiers".	For	a	full	list	of	available	qualifiers,	visit	the
Providing	Resources	guide.	In	this	practical	you	will	optimize	the	use	of	space	in	the	Material	sports	app	so	that	your	app
works	well	in	landscape	mode,	as	well	as	on	a	tablet.

What	you	should	already	KNOW
From	the	previous	chapters	you	should	be	able	to:

Locate	and	edit	resource	files.
Extract	resources.
Instantiate	a	virtual	phone	or	tablet	using	the	emulator.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Provide	alternate	resources	for	landscape	mode.
Provide	alternate	resources	for	tablets.
Provide	alternate	resources	for	different	locales.

What	you	will	DO
In	this	practical	you	will:

Update	the	Material	Me!	application	for	better	use	of	space	in	landscape	mode.
Add	an	alternative	layout	for	tablets.
Localize	the	content	of	your	app.

App	Overview

Introduction

290

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

The	improved	Material	Me!	application	will	include	improved	layouts	when	used	in	landscape	mode,	on	a	tablet,	and	offer
localized	content	for	users	outside	of	the	US.	

Introduction

291

This	practical	builds	on	the	"Material	Me!"	app	from	the	previous	practical.

1.	 Continue	on	your	version	of	the	"Material	Me!"	application,	or	download	it	here.

Task	1:	Support	Landscape	Orientation

Introduction

292

https://github.com/google-developer-training/android-fundamentals/tree/master/MaterialMe

You	may	recall	that	when	the	user	changes	the	orientation	of	the	device,	the	Android	framework	destroys	and	recreates	the
current	activity.	The	new	orientation	often	has	different	layout	requirements	than	the	original	one.	For	example,	the	Material
Me!	application	looks	good	in	portrait	mode,	but	does	not	make	optimal	use	of	the	screen	in	landscape	mode.	With	the
larger	width	in	landscape	mode,	the	image	in	each	list	item	overwhelms	the	text	providing	a	poor	user	experience.

In	this	task,	you	will	create	an	alternative	resource	file	that	will	change	the	appearance	of	the	app	when	it	is	used	in
landscape	orientation.

1.1	Change	to	a	GridLayoutManager
Layouts	that	contain	list	items	often	look	unbalanced	in	landscape	mode	when	the	list	items	include	full-width	images.	One
good	solution	is	to	use	a	grid,	instead	of	a	linear	list	when	displaying	the	CardViews	in	landscape	mode.	Recall	that	the
items	in	a	RecyclerView	list	are	placed	using	a	LayoutManager;	until	now,	you	have	been	using	the	LinearLayoutManager
which	lays	out	each	item	in	a	vertical	or	horizontal	scrolling	list.	GridLayoutManager	is	another	layout	manager	that	displays
items	in	a	grid,	rather	than	a	list.	When	you	create	a	GridLayoutManager,	you	supply	two	parameters:	the	application
context,	and	an	integer	representing	the	number	of	columns.	You	can	change	the	number	of	columns	programmatically,
which	gives	you	flexibility	in	designing	responsive	layouts.	In	this	case,	the	number	of	columns	integer	should	be	1	in
portrait	orientation	(single	column)	and	2	when	in	landscape	mode.	Notice	when	the	number	of	columns	is	1,	a
GridLayoutManager	behaves	similar	to	a	LinearLayoutManager.

1.	 Create	a	new	resources	file	called	integers.xml.	Navigate	to	your	resources	directory,	right-click	on	the	values	directory
name	and	select	New	>	Values	resource	file.

2.	 Name	the	file	integers.xml	and	click	OK.
3.	 Create	an	integer	constant	between	the		<resources>		tags	called	"grid_column_count"	and	set	it	equal	to	1:

<integer	name="grid_column_count">1</integer>

4.	 Create	another	values	resource	file,	again	called	integers.xml	but	with	different	characteristics.

Note	the	"Available	qualifiers"	option	in	the	dialog	for	creating	the	resource	file.	These	characteristics	are	called
"resource	qualifiers"	and	are	used	to	label	resource	configurations	for	various	situations.

5.	 Select	Orientation,	and	press	the	>>	symbol	in	the	middle	of	the	dialog	to	access	this	qualifier.
6.	 Change	the	Screen	orientation	selector	to	Landscape,	and	notice	how	the	directory	name	"values-land"	is

automatically	changed.	This	is	the	essence	of	resource	qualifiers:	the	directory	name	tells	Android	when	to	use	that
specific	layout	file.	In	this	case,	that	is	when	the	phone	is	rotated	to	landscape	mode.

Introduction

293

https://developer.android.com/reference/android/support/v7/widget/LinearLayoutManager.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjFqOW75YrQAhVmzFQKHX8jD0YQFggbMAA&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fsupport%2Fv7%2Fwidget%2FGridLayoutManager.html&usg=AFQjCNFYo1e3s1qzjsWJ4dOSrSs3MgHdjg&bvm=bv.137132246,d.cGw

7.	 Click	OK	to	generate	the	new	layout	file.
8.	 Copy	the	integer	constant	you	created	into	this	new	resource	file,	but	change	the	value	to	2.

You	should	now	have	two	individual	integers.xml	files.	In	the	"Android"	project	view	in	Android	Studio,	these	should	be
grouped	into	an	"integers.xml"	folder,	with	each	file	inside	labeled	with	the	qualifier	you	selected	("land"	in	this	case).

1.2	Modify	MainActivity

1.	 In		onCreate()		in	MainActivity,	get	the	integer	from	the	integers.xml	resource	file:

int	gridColumnCount	=	getResources().getInteger(R.integer.grid_column_count);

The	Android	Runtime	will	take	care	of	deciding	which	integers.xml	file	to	use,	depending	on	the	state	of	the	device.

2.	 Change	the	LinearLayoutManager	to	a	GridLayoutManager,	passing	in	the	context	and	the	newly	created	integer:

mRecyclerView.setLayoutManager(new	GridLayoutManager(this,	gridColumnCount));

3.	 Run	the	app	and	rotate	the	device.	The	number	of	columns	changes	automatically	with	the	orientation	of	the	device.

When	using	the	application	in	landscape	mode,	you	will	notice	that	the	swipe	to	dismiss	functionality	is	no	longer	intuitive,
since	the	items	are	now	in	a	grid	and	not	a	list.	You	can	use	the		gridColumnCount		variable	to	disable	the	swipe	action	when
there	is	more	than	one	column:

int	swipeDirs;

if(gridColumnCount	>	1){

			swipeDirs	=	0;

}	else	{

			swipeDirs	=	ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT;

}

ItemTouchHelper	helper	=	new	ItemTouchHelper(new	ItemTouchHelper.SimpleCallback

							(ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT	|	ItemTouchHelper.DOWN

															|	ItemTouchHelper.UP,	swipeDirs)

Task	2	:	Support	Tablets

Introduction

294

2.1	Make	the	Layout	Adapt	to	Tablets

In	this	step,	you	will	create	different	resource	qualifiers	to	maximize	screen	use	for	tablet	sized	devices,	increasing	the
column	count	to	2	for	portrait	orientation	and	3	for	landscape	orientation.	The	resource	qualifier	you	need	depends	on	your
specific	requirements.	There	are	several	qualifiers	that	you	can	use	to	select	the	correct	conditions:

"smallest	width"	-	This	qualifier	is	used	most	frequently	to	select	for	tablets.	It	is	defined	by	the	smallest	width	of	the
device	(regardless	of	orientation),	which	removes	the	ambiguity	when	talking	about	"height"	and	"width"	since	some
devices	are	traditionally	held	in	landscape	mode,	and	others	in	portrait.	Anything	with	a	smallest	width	of	at	least	600dp
is	considered	a	tablet.
"available	width"	-	The	available	width	is	the	effective	width	of	the	device,	regardless	of	the	orientation.	The	available
width	changes	when	the	device	is	rotated,	since	the	effective	height	and	width	of	the	device	are	switched.
"available	height"	-	Same	as	"available	width",	except	it	uses	the	effective	height	instead	of	the	effective	width.

To	start	this	task:

1.	 Create	an	integers.xml	file	which	uses	the	"smallest	width"	qualifier	with	the	value	set	to	600.	Android	uses	this	file
whenever	the	app	runs	on	a	tablet.

2.	 Copy	the	code	from	the	integers.xml	file	with	the	landscape	resource	qualifier	(it	has	a	grid	count	of	2)	and	paste	it	in
the	new	integers.xml	file.

3.	 Create	a	third	integers.xml	file	that	includes	both	the	smallest	screen	width	of	600dp	qualifier,	and	the	landscape
orientation	qualifier.	Android	uses	this	file	when	the	app	runs	on	a	tablet	in	landscape	mode.

Note:	Android	will	look	for	the	resource	file	with	the	most	specific	resource	qualifier	first,	then	move	on	to	a	more
generic	one.	For	example,	if	a	value	is	defined	in	the	integers.xml	file	with	both	the	landscape	and	smallest	width
qualifier,	it	will	override	the	value	in	the	integers.xml	file	with	just	the	landscape	qualifier.	For	more	information	about
resource	qualifiers,	visit	the	Providing	Resources	Guide.

4.	 Change	the	grid_column_count	variable	to	3	in	the	landscape,	tablet	integers.xml	file.

Introduction

295

http://developer.android.com/guide/topics/resources/providing-resources.html

generic	one.	For	example,	if	a	value	is	defined	in	the	integers.xml	file	with	both	the	landscape	and	smallest	width
qualifier,	it	will	override	the	value	in	the	integers.xml	file	with	just	the	landscape	qualifier.	For	more	information	about
resource	qualifiers,	visit	the	Providing	Resources	Guide.

4.	 Change	the	grid_column_count	variable	to	3	in	the	landscape,	tablet	integers.xml	file.

5.	 Create	a	virtual	tablet	emulator.	Run	the	app	on	a	tablet	emulator	as	well	as	a	phone	emulator	and	rotate	both	of	the
devices	into	landscape	mode.	With	these	resource	qualifier	files,	the	app	uses	the	screen	real	estate	much	more
effectively.

2.2	Update	the	tablet	list	item	styles

At	this	point,	your	app	changes	the	number	of	columns	in	a	GridLayoutManager	to	fit	the	orientation	of	the	device	and
maximize	the	use	of	the	screen.	However,	all	the	TextViews	that	appeared	correctly-sized	on	a	phone's	screen	now	appear
too	small	for	the	larger	screen	of	a	tablet.	To	fix	this,	you	will	extract	the	TextAppearance	styles	from	the	layout	resource
files	into	the	styles	resource	file.	You	will	also	create	additional	styles.xml	files	for	tablets	using	resource	qualifiers.

Note:	You	could	also	create	alternative	layout	files	with	the	proper	resource	qualifiers,	and	change	the	styles	of	the
TextViews	in	those.	However,	this	would	require	more	code	duplication,	since	most	of	the	layout	information	is	the	same	no
matter	what	device	you	use,	so	you	will	only	extract	the	attributes	that	will	change.
Create	the	Styles

1.	 In	the	styles.xml	file,	create	the	following	styles:

Name Parent

SportsTitle TextAppearance.AppCompat.Headline

SportsDetailText TextAppearance.AppCompat.Subhead

Create	a	styles.xml	file	for	tablets

Now	you	will	create	the	file	where	you	will	define	styles	for	tablets.

1.	 Create	a	new	styles.xml	resource	file	that	uses	the	Smallest	Screen	Width	qualifier	with	a	value	of	600.
2.	 Copy	the	"SportsTitle"	and	"SportsDetailText"	styles	from	the	original	styles.xml	file	into	the	new,	qualified	styles.xml

file.
3.	 Change	the	parent	of	the	"SportsTitle"	style	to		"TextAppearance.AppCompat.Display1"	
4.	 The	Android	pre-defined		Display1		style	uses	the	textColorSecondary	value	from	the	current	theme

(ThemeOverlay.AppCompat.Dark),	which	in	this	case	is	a	light	gray	color.	The	light	gray	color	does	not	show	up	well	on
the	banner	images	in	your	app.	To	correct	this	add	an		"android:textColor"		attribute	to	the	"SportsTitle"	style	and	set	it
to		"?android:textColorPrimary"	.'

Note:	The	question	mark	tells	Android	Runtime	to	find	the	value	in	the	theme	applied	to	the	View.	In	this	example	the
theme	is		ThemeOverlay.AppCompat.Dark		in	which	the		textColorPrimary		attribute	is	white.

5.	 Change	the	parent	of	"SportsDetailText"	style	to		"TextAppearance.AppCompat.Headline"	.

Update	the	style	of	the	text	views	in	list_item.xml

1.	 Back	in	the	list_item.xml	file,	change	the	style	attribute	of	the	"title"	Textview	to		"@style/SportsDetailTitle"	
2.	 Change	the	style	attribute	of	the	"newsTitle"	and	"subTitle"	TextViews	to	"@style/SportsDetailText"	.
3.	 Run	your	app.	Each	list	item	now	has	a	larger	text	size	on	the	tablet.

2.3	Update	the	tablet	sports	detail	styles
You	have	now	fixed	the	display	for	the	MainActivity,	which	lists	all	the	Sports	CardViews.	The	DetailActivity	still	has	the
same	font	sizes	on	tablets	and	phones.

1.	 Create	the	following	style	in	each	styles.xml	file:

Introduction

296

styles.xml	(sw600dp)

Name Parent

SportsDetailTitle TextAppearance.AppCompat.Display3

styles.xml	(not	qualified)

Name Parent

SportsDetailTitle TextAppearance.AppCompat.Headline

2.	 Change	the	style	of	both	the	"newsTitleDetail"	and	"subTitleDetail"	TextViews	in	the	activity_detail.xml	layout	file	to	the
"SportsDetailText"	style	you	created	in	the	previous	step.

3.	 Run	your	app.	All	of	the	text	is	now	larger	on	the	tablet,	which	greatly	improves	the	user	experience	of	your	application.

Task	3:	Localize	your	App
A	"locale"	represents	a	specific	geographic,	political	or	cultural	region	of	the	world.	Resource	qualifiers	can	be	used	to
provide	alternate	resources	based	on	the	users'	locale.	Just	as	for	orientation	and	screen	width,	Android	provides	the	ability
to	include	separate	resource	files	for	different	locales.	In	this	step,	you	will	modify	your	strings.xml	file	to	be	a	little	more
international.

3.1	Add	a	localized	strings.xml	file

You	may	have	noticed	that	the	sports	information	contained	in	this	app	is	designed	for	users	from	the	US.	It	uses	the	term
"soccer"	to	represent	a	sport	known	as	"football"	everywhere	else	in	the	world.	In	order	to	make	your	app	more
internationalized,	you	can	provide	a	locale	specific	strings.xml	file	to	the	US	users	which	uses	"soccer",	while	all	other
locales	will	use	"football".

1.	 Create	a	new	values	resource	file.
2.	 Call	the	file	strings.xml	and	select	Locale	from	the	list	of	available	qualifiers.
3.	 In	the	"Language:"	section,	select	en:	English.
4.	 In	the	"Specific	Region	Only:"	section,	select	US:	United	States.	This	will	create	a	specific	values	directory	for	the	US

locale,	called	"values-en-rUS".
5.	 Copy	the	entirety	of	the	generic	strings.xml	file	to	the	new	locale	specific	strings.xml	file.
6.	 In	the	generic	strings.xml	file,	change	the	"Soccer"	item	in	the	sports_titles	array	to	"Football",	as	well	as	changing	the

relevant	item	in	"sports_info"	array.
7.	 Run	the	app.	Depending	on	the	language	setting	on	your	device,	you	will	see	either	"Soccer"	or	"Football".

Note:	To	change	the	locale	setting	on	your	device,	go	to	the	device	settings,	then	choose	Language	&	input	and
change	the	Language	setting.	If	you	pick	English	(United	States)	the	app	will	have	"Soccer"	as	the	string,	otherwise	it
will	say	"Football".

Solution	code
Android	Studio	project:	MaterialMe-Resource

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	It	turns	out	that	several	countries	other	than	the	US	use	"soccer"	instead	of	"football".	Research	these
countries	and	add	localized	strings	resources	for	them.

Introduction

297

https://github.com/google-developer-training/android-fundamentals/tree/master/MaterialMe-Resource

Challenge	2:	Use	the	localization	techniques	you	learned	in	Task	3	in	combination	with	Google	translate	to	translate	all	of
the	strings	in	your	app	into	a	different	language.

Summary
GridLayoutManager	is	a	layout	manager	that	handles	2-dimensional	scrolling	lists.
You	can	dynamically	change	the	number	of	columns	in	a	GridLayoutManager.
The	Android	Runtime	uses	alternative	configuration	files	for	various	runtime	environments	such	as	device	layout,
screen	dimensions,	locale,	country,	keyboard,	etc.
Alternative	resources	are	located	in	files	named	with	resource	qualifiers	as	part	of	their	names.
The	format	for	these	directories	is		<resources_name>-<qualifier>	.
Any	file	in	your	"res"	directory	can	be	qualified	this	way.
Some	common	qualifiers	are:

orientation:	land,	portrait
smallest	width:	sw600dp
locale:	en-rGB,	fr
screen	density:	ldpi,	mpdi,	xhdpi,	xxhdpi,	xxxhdpi
mobile	country	code:	mcc310	(US),	mcc208	(France)
and	more!

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Providing	Resources	for	Adaptive	Layouts

Learn	more
Developer	Documentation:

Supporting	Multiple	Screens
Providing	Resources

Introduction

298

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/53_c_providing_resources_for_adaptive_layouts.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/topics/resources/providing-resources.html

6.1:	Use	Espresso	to	test	your	UI
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	Overview
Task	1:	Set	up	Espresso	in	your	project
Task	2:	Test	for	switching	activities	and	entering	text
Task	3:	Test	the	display	of	spinner	selections
Task	4:	Record	a	test	of	a	RecyclerView
Coding	challenge
Summary
Related	concept
Learn	more

When	you,	as	a	developer,	test	user	interactions	within	your	app,	it	helps	to	ensure	that	your	app's	users	don't	encounter
unexpected	results	or	have	a	poor	experience	when	interacting	with	your	app.

You	can	test	the	user	interface	for	a	complex	app	manually	by	running	the	app	and	trying	the	user	interface.	But	you	can't
possibly	cover	all	permutations	of	user	interactions	and	all	of	the	app's	functionality.	You	would	also	have	to	repeat	these
manual	tests	on	many	different	device	configurations	in	an	emulator,	and	on	many	different	hardware	devices.

When	you	automate	tests	of	UI	interactions,	you	free	yourself	up	for	other	work.	You	can	use	suites	of	automated	tests	to
perform	all	of	the	UI	interactions	automatically,	which	makes	it	easier	to	run	tests	for	different	device	configurations.	It	is	a
good	idea	to	get	into	the	habit	of	creating	user	interface	(UI)	tests	as	you	code	to	verify	that	the	UI	of	your	app	is	functioning
correctly.

Espresso	is	a	testing	framework	for	Android	that	makes	it	easy	to	write	reliable	user	interface	(UI)	tests	for	an	app.	The
framework,	which	is	part	of	the	Android	Support	Repository,	provides	APIs	for	writing	UI	tests	to	simulate	user	interactions
within	the	app—everything	from	clicking	buttons	and	navigating	views	to	choosing	menu	selections	and	entering	data.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Create	and	edit	UI	elements	using	the	Layout	Editor,	entering	XML	code	directly,	and	accessing	UI	elements	from	your
Java	code.
Add	onClick	functionality	to	a	button.
Build	the	TwoActivities	app	from	a	previous	lesson.
Build	the	PhoneNumberSpinner	app	from	a	previous	lesson.
Build	the	RecyclerView	app	from	a	previous	lesson.

What	you	will	LEARN
During	this	practical,	you	will	learn	to:

Set	up	Espresso	in	your	app	project.
Write	an	Espresso	test	that	tests	for	user	input	and	checks	for	the	correct	output.
Write	an	Espresso	test	to	find	a	spinner,	click	one	of	its	items,	and	check	for	the	correct	output.
Use	the	Record	Espresso	Test	function	in	Android	Studio.

Introduction

299

What	you	will	DO
In	this	practical	application	you	will:

Modify	a	project	to	create	Espresso	tests.
Test	the	app's	text	input	and	output.
Test	clicking	a	spinner	item	and	check	its	output.
Record	an	Espresso	test	of	a	RecyclerView.

App	Overview
You	will	modify	the	TwoActivities	project	to	set	up	Espresso	in	the	project	for	testing.	You	will	then	test	the	app’s
functionality,	which	enables	a	user	to	enter	text	into	a	text	field	and	click	the	Send	button,	as	shown	on	the	left	side	of	the
figure	below,	and	view	that	text	in	a	second	activity,	as	shown	on	the	right	side	of	the	figure	below.	

Tip:	For	an	introduction	to	testing	Android	apps,	see	Test	Your	App.

Android	Studio	project:	TwoActivities

Task	1:	Set	up	Espresso	in	your	project
To	use	Espresso,	you	must	already	have	the	Android	Support	Repository	installed	with	Android	Studio.	You	must	also
configure	Espresso	in	your	project.

In	this	task	you	check	to	see	if	the	repository	is	installed.	If	it	is	not,	you	will	install	it.	You	then	will	configure	Espresso	in	the
TwoActivities	project	created	previously.

1.1	Check	for	the	Android	Support	Repository

1.	 Start	Android	Studio,	and	choose	Tools	>	Android	>	SDK	Manager.
2.	 Click	the	SDK	Tools	tab,	and	look	for	the	Support	Repository.

If	"Installed"	appears	in	the	Status	column,	you're	all	set.	Click	Cancel.
If	"Not	installed"	appears,	or	an	update	is	available:

i.	 Click	the	checkbox	next	to	Android	Support	Repository.	A	download	icon	should	appear	next	to	the	checkbox.

ii.	 Click	one	of	the	following:

Apply	to	start	installing	the	repository	and	remain	in	SDK	Manager	to	make	other	changes.
OK	to	install	the	repository	and	quit	the	SDK	Manager.

1.2	Configure	Espresso	for	the	project
When	you	start	a	project	for	the	phone	and	tablet	form	factor	using	API	15:	Android	4.0.3	(Ice	Cream	Sandwich)	as	the
minimum	SDK,	Android	Studio	version	2.2	and	newer	automatically	includes	the	dependencies	you	need	to	use
Espresso.To	execute	tests,	Espresso	and	UI	Automator	use	JUnit	as	their	testing	framework.	JUnit	is	the	most	popular	and

Introduction

300

http://d.android.com/tools/testing/testing_android.html
https://github.com/google-developer-training/android-fundamentals/tree/master/TwoActivities
http://junit.org/junit4/

widely-used	unit	testing	framework	for	Java.	Your	test	class	using	Espresso	or	UI	Automator	should	be	written	as	a	JUnit	4
test	class.	If	you	do	not	have	JUnit,	you	can	get	it	at	http://junit.org/junit4/.

Note:	The	most	current	Junit	revision	is	JUnit	5.	However	for	the	purposes	of	using	Espresso	or	UI	Automator,	version	4.12
is	recommended.
If	you	have	created	your	project	in	a	previous	version	of	Android	Studio,	you	may	have	to	add	the	dependencies	and
instrumentation	yourself.	To	add	the	dependencies	yourself,	follow	these	steps:

1.	 Open	the	TwoActivities	project,	or	if	you	prefer,	make	a	copy	of	the	project	first	and	then	open	the	copy.	See	Copy	and
rename	a	project	in	the	Appendix	for	instructions.

2.	 Open	your	build.gradle	(Module:	app)	file.

Note:	Do	not	make	changes	to	the	build.gradle	(Project:	yourappname)	file.
3.	 Check	if	the	following	is	included	(along	with	other	dependencies)	in	the		dependencies		section	of	the	project's

build.gradle	(Module:	app)	file:

androidTestCompile

	('com.android.support.test.espresso:espresso-core:2.2.2',	{

				exclude	group:	'com.android.support',	module:	'support-annotations'

				})

testCompile	'junit:junit:4.12'

Note:	If	the	file	doesn't	include	the	above	dependency	statements,	enter	them	into	the		dependencies		section.
4.	 Android	Studio	2.2	also	adds	the	following	instrumentation	statement	to	the	end	of	the		defaultConfig		section	of	a	new

project:

testInstrumentationRunner

													"android.support.test.runner.AndroidJUnitRunner"

Note:	If	the	file	doesn't	include	the	above	instrumentation	statement,	enter	it	at	the	end	of	the		defaultConfig		section.
Instrumentation	is	a	set	of	control	methods,	or	hooks,	in	the	Android	system.	These	hooks	control	an	Android
component	independently	of	the	component's	normal	lifecycle.	They	also	control	how	Android	loads	apps.	Using
instrumentation	makes	it	possible	for	tests	to	invoke	methods	in	the	app,	and	modify	and	examine	fields	in	the	app,
independently	of	the	app's	normal	lifecycle.

5.	 If	you	modified	the	build.gradle	(Module:	app)	file,	click	the	Sync	Now	link	in	the	notification	about	Gradle	files	in	top
right	corner	of	the	window.

1.3	Turn	off	animations	on	your	test	device

To	let	Android	Studio	communicate	with	your	device,	you	must	first	turn	on	USB	Debugging	on	your	device,	as	described	in
an	earlier	chapter.

Android	phones	and	tablets	display	animations	when	moving	between	apps	and	screens.	The	animations	are	attractive
when	using	the	device,	but	they	slow	down	performance,	and	may	also	cause	unexpected	results	or	may	lead	your	test	to
fail.	So	it's	a	good	idea	to	turn	off	animations	on	your	physical	device.	To	turn	off	animations	on	your	test	device,	tap	on	the
Settings	icon	on	your	physical	device.	Look	for	Developer	Options.	Now	look	for	the	Drawing	section.	In	this	section,	turn
off	the	following	options:

Window	animation	scale
Transition	animation	scale
Animator	duration	scale

Tip:	You	should	also	keep	in	mind	that	instrumenting	a	system,	such	as	in	executing	unit	tests,	can	alter	the	timing	of
specific	functions.	For	this	reason,	it	is	useful	to	keep	unit	testing	and	actual	debugging	separate.	Unit	testing	uses	an	API
based	Espresso	Framework	with	hooks	for	instrumentation.	Debugging	uses	breakpoints	and	other	methods	in	the	actual
coding	statements	within	your	app's	code,	as	described	in	a	previous	lesson.	</div>

Introduction

301

http://junit.org/junit4/
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html
https://en.wikipedia.org/wiki/Instrumentation

Task	2:	Test	for	switching	activities	and	entering	text
You	write	Espresso	tests	based	on	what	a	user	might	do	while	interacting	with	your	app.	The	Espresso	tests	are	classes
that	are	separate	from	your	app's	code.	You	can	create	as	many	tests	as	you	need,	in	order	to	interact	with	the	views	in
your	UI	that	you	want	to	test.

The	Espresso	test	is	like	a	robot	that	must	be	told	what	to	do.	It	must	find	the	view	you	want	it	to	find	on	the	screen,	and	it
must	interact	with	it,	such	as	clicking	the	view,	and	checking	the	contents	of	the	view.	If	it	fails	to	do	any	of	these	things
properly,	or	if	the	result	is	not	what	you	expected,	the	test	fails.

With	Espresso,	you	create	what	is	essentially	a	script	of	actions	to	take	on	each	view	and	check	against	expected	results.
The	key	concepts	are	locating	and	then	interacting	with	UI	elements.	These	are	the	basic	steps:

1.	 Match	a	view:	Find	a	view.
2.	 Perform	an	action:	Perform	a	click	or	other	action	that	triggers	an	event	with	the	view.
3.	 Assert	and	verify	the	result:	Check	the	view's	state	to	see	if	it	reflects	the	expected	state	or	behavior	defined	by	the

assertion.

Hamcrest	(an	anagram	of	"matchers")	is	a	framework	that	assists	writing	software	tests	in	Java.	To	create	a	test,	you	create
a	method	within	the	test	class	that	uses	Hamcrest	expressions.

Tip:	For	more	information	about	the	Hamcrest	matchers,	see	The	Hamcrest	Tutorial.

With	Espresso	you	use	the	following	types	of	Hamcrest	expressions	to	help	find	views	and	interact	with	them:

ViewMatchers:	Hamcrest	matcher	expressions	in	the	ViewMatchers	class	that	lets	you	find	a	view	in	the	current	view
hierarchy	so	that	you	can	examine	something	or	perform	some	action.
ViewActions:	Hamcrest	action	expressions	in	the	ViewActions	class	that	lets	you	perform	an	action	on	a	view	found	by
a	ViewMatcher.
ViewAssertions:	Hamcrest	assertion	expressions	in	the	ViewAssertions	class	that	lets	you	assert	or	check	the	state	of
a	view	found	by	a	ViewMatcher.

The	following	shows	how	all	three	expressions	work	together:

1.	 Use	a	ViewMatcher	to	find	a	view:

onView(withId(R.id.my_view))

2.	 Use	a	ViewAction	to	perform	an	action:

.perform(click())

3.	 Use	a	ViewAssertion	to	check	if	the	result	of	the	action	matches	an	assertion:

.check(matches(isDisplayed()));

The	following	shows	how	the	above	expressions	are	used	together	in	a	statement:

onView(withId(R.id.my_view))

								.perform(click())

								.check(matches(isDisplayed()));

2.1	Define	a	class	for	a	test	and	set	up	the	activity
Android	Studio	creates	a	blank	Espresso	test	class	for	you	in	the	src/androidTest/java/com.example.package	folder:

1.	 Expand	com.example.android.twoactivities	(androidTest),	and	open	ExampleInstrumentedTest.
2.	 To	make	the	test	more	understandable	and	describe	what	it	does,	rename	the	class	from		ExampleInstrumentedTest		to

the	following:

Introduction

302

https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
https://developer.android.com/reference/android/support/test/espresso/matcher/ViewMatchers.html
https://developer.android.com/reference/android/support/test/espresso/action/ViewActions.html
https://developer.android.com/reference/android/support/test/espresso/assertion/ViewAssertions.html

public	class	ActivityInputOutputTest

3.	 Change	the	class	definition	to	the	following:

@RunWith(AndroidJUnit4.class)

public	class	ActivityInputOutputTest	{

			@Rule

			public	ActivityTestRule	mActivityRule	=	new	ActivityTestRule<>(

																					MainActivity.class);

}

The	class	definition	now	includes	several	annotations:

	@RunWith	:	To	create	an	instrumented	JUnit	4	test	class,	add	the		@RunWith(AndroidJUnit4.class)		annotation	at	the
beginning	of	your	test	class	definition.
	@Rule	:	The		@Rule		annotation	lets	you	add	or	redefine	the	behavior	of	each	test	method	in	a	reusable	way,	using	one
of	the	test	rule	classes	that	the	Android	Testing	Support	Library	provides,	such	as	ActivityTestRule	or	ServiceTestRule.
The	rule	above	uses	an		ActivityTestRule		object,	which	provides	functional	testing	of	a	single	Activity—in	this	case,
	MainActivity.class	.	During	the	duration	of	the	test	you	will	be	able	to	manipulate	your	Activity	directly,	using
ViewMatchers,	ViewActions,	and	ViewAssertions.

In	the	above	statement,		ActivityTestRule		may	turn	red	at	first,	but	then	Android	Studio	adds	the	following	import
statement	automatically:

import	android.support.test.rule.ActivityTestRule;

2.2	Test	switching	activities

The	TwoActivities	app	has	two	activities:

	Main	:	Includes	the		button_main		button	for	switching	to	the		Second		activity	and	the		text_header_reply		view	that
serves	as	a	text	heading	for	the		Main		activity.
	Second	:	Includes	the		button_second		button	for	switching	to	the		Main		activity	and	the		text_header		view	that	serves
as	a	text	heading	for	the		Second		activity.

When	you	have	an	app	that	switches	activities,	you	should	test	that	capability.	The	Two	Activities	app	provides	a	text	entry
field	and	a	Send	button	(the		button_main		id).	Clicking	Send	launches	the		Second		activity	with	the	entered	text	shown	in
the		text_header		view	of	the		Second		activity.

But	what	happens	if	no	text	is	entered?	Will	the		Second		activity	still	appear?

The		ActivityInputOutputTest		class	of	tests	will	show	that	the	views	appear	regardless	of	whether	text	is	entered.	Follow
these	steps	to	add	your	tests	to		ActivityInputOutputTest	:

1.	 Add	an		activityLaunch()		method	to		ActivityInputOutputTest		to	test	whether	the	views	appear	when	clicking	the
buttons,	and	include	the		@Test		notation	on	a	line	immediately	above	the	method:

@Test

public	void	activityLaunch()	{	…	}

The		@Test		annotation	tells	JUnit	that	the		public	void		method	to	which	it	is	attached	can	be	run	as	a	test	case.	A	test
method	begins	with	the		@Test		annotation	and	contains	the	code	to	exercise	and	verify	a	single	function	in	the
component	that	you	want	to	test.

2.	 Add	a	combined	ViewMatcher	and	ViewAction	expression	to	the		activityLaunch()		method	to	locate	the	view
containing	the		button_main		button,	and	include	a	ViewAction	expression	to	perform	a	click:

onView(withId(R.id.button_main)).perform(click());

Introduction

303

https://developer.android.com/reference/android/support/test/rule/ActivityTestRule.html
https://developer.android.com/reference/android/support/test/rule/ServiceTestRule.html

The		onView()		method	lets	you	use	ViewMatcher	arguments	to	find	views.	It	searches	the	view	hierarchy	to	locate	a
corresponding	View	instance	that	meets	some	given	criteria—in	this	case,	the		button_main		view.	The
	.perform(click())		expression	is	a	ViewAction	expression	that	performs	a	click	on	the	view.

3.	 In	the	above		onView		statement,		onView	,		withID	,	and		click		may	turn	red	at	first,	but	then	Android	Studio	adds
import	statements	for		onView	,		withID	,	and		click	.

4.	 Add	another	ViewMatcher	expression	to	the		activityLaunch()		method	to	find	the		text_header		view	(which	is	in	the
	Second		activity),	and	a	ViewAction	expression	to	perform	a	check	to	see	if	the	view	is	displayed:

onView(withId(R.id.text_header)).check(matches(isDisplayed()));

This	statement	uses	the		onView()		method	to	locate	the		text_header		view	for	the		Second		activity	and	check	to	see	if
it	is	displayed	after	clicking	the		button_main		view.

5.	 In	the	above		onView		statement,	the		check()		method	may	turn	red	at	first,	but	then	Android	Studio	adds	an		import	
statement	for	it.

6.	 Add	similar	statements	to	test	whether	clicking	the		button_second		button	in	the		Second		activity	switches	to	the		Main	
activity:

onView(withId(R.id.button_second)).perform(click());

onView(withId(R.id.text_header_reply)).check(matches(isDisplayed()));

7.	 Review	the		activityLaunch()		method	you	just	created	in	the		ActivityInputOutputTest		class.	It	should	look	like	this:

@Test

public	void	activityLaunch()	{

			onView(withId(R.id.button_main)).perform(click());

			onView(withId(R.id.text_header)).check(matches(isDisplayed()));

			onView(withId(R.id.button_second)).perform(click());

			onView(withId(R.id.text_header_reply)).check(matches(isDisplayed()));

}

8.	 To	run	the	test,	right-click	(or	Control-click)	ActivityInputOutputTest	and	choose	Run	ActivityInputOutputTest	from
the	pop-up	menu.	You	can	then	choose	to	run	the	test	on	the	emulator	or	on	your	device.

As	the	test	runs,	watch	the	test	automatically	start	the	app	and	click	the	button.	The		Second		activity's	view	appears.	The
test	then	clicks	the		Second		activity's	button,	and	the		Main		activity	view	appears.

The	Run	window	(the	bottom	pane	of	Android	Studio)	shows	the	progress	of	the	test,	and	when	finishes,	it	displays	"Tests
ran	to	completion."	In	the	left	column	Android	Studio	displays	"All	Tests	Passed".

2.3	Test	text	input	and	output
Write	a	test	for	text	input	and	output.	The	TwoActivities	app	uses	the		editText_main		view	for	input,	the		button_main		button
for	sending	the	input	to	the		Second		activity,	and	the		Second		activity	view	that	shows	the	output	in	the	field	with	the	id
	text_message	.

1.	 Add	another		@Test		annotation	and	a	new		textInputOutput()		method	to	the	ApplicationTest	class	to	test	text	input
and	output:

@Test

public	void	textInputOutput()	{

			onView(withId(R.id.editText_main)).perform(typeText("This	is	a	test."));

			onView(withId(R.id.button_main)).perform(click());

}

The	above	method	uses	a	ViewMatcher	to	locate	the	view	containing	the		editText_main		view,	and	a	ViewAction	to
enter	the	text		"This	is	a	test."		It	then	uses	another	ViewMatcher	to	find	the	view	with	the		button_main		button,	and
another	ViewAction	to	click	the	button.

Introduction

304

2.	 Add	a	ViewMatcher	to	locate	the		Second		activity's		text_message		view,	and	a	ViewAssertion	to	see	if	the	output
matches	the	input	to	test	that	the	message	was	correctly	sent:

onView(withId(R.id.text_message)).check(matches(withText("This	is	a	test.")));

3.	 Run	the	test.

As	the	test	runs,	the	app	starts	and	the	text	is	automatically	entered	as	input;	the	button	is	clicked,	and	the	text
appears	on	the	second	activity's	screen.

The	bottom	pane	of	Android	Studio	shows	the	progress	of	the	test,	and	when	finished,	it	displays	"Tests	ran	to
completion."	In	the	left	column	Android	Studio	displays	"All	Tests	Passed".	You	have	successfully	tested	the	text	input
field,	the	Send	button,	and	the	text	output	field.

Solution	code:

Android	Studio	Project:	TwoActivitiesEspressoTest

See	ActivityInputOutputTest.java.

2.4	Introduce	an	error	to	show	a	test	failing

Introduce	an	error	in	the	test	to	see	what	a	failed	test	looks	like.

1.	 Change	the	match	check	on	the		text_message		view	from		"This	is	a	test."		to		"This	is	a	failing	test."	:

onView(withId(R.id.text_message)).check(matches(withText("This	is	a	failing	test.")));

2.	 Run	the	test	again.	This	time	you	will	see	the	message	in	red,	"1	test	failed",	above	the	bottom	pane,	and	a	red
exclamation	point	next	to		textInputOutput		in	the	left	column.	Scroll	the	bottom	pane	to	the	message	"Test	running
started"	and	see	that	all	of	the	results	after	that	point	are	in	red.	The	very	next	statement	after	"Test	running	started"	is:

android.support.test.espresso.base.DefaultFailureHandler$AssertionFailedWithCauseError:	'with	text:	is	"This	is	

a	failing	test."'	doesn't	match	the	selected	view.

Expected:	with	text:	is	"This	is	a	failing	test."

Got:	"AppCompatTextView{id=2131427417,	res-name=text_message	...

Other	fatal	error	messages	appear	after	the	above,	due	to	the	cascading	effect	of	a	failure	leading	to	other	failures.	You	can
safely	ignore	them	and	fix	the	test	itself.

Task	3:	Test	the	display	of	spinner	selections
The	Espresso		onView()		method	finds	a	view	that	you	can	test.	This	method	will	find	a	view	in	the	current	view	hierarchy.
But	you	need	to	be	careful—in	an	AdapterView	such	as	a	spinner,	the	view	is	typically	dynamically	populated	with	child
views	at	runtime.	This	means	there	is	a	possibility	the	view	that	you	want	to	test	may	not	be	in	the	view	hierarchy	at	that
time.

The	Espresso	API	handles	this	problem	by	providing	a	separate		onData()		entry	point,	which	is	able	to	first	load	the
adapter	item	and	bring	it	into	focus	prior	to	locating	and	performing	actions	on	any	of	its	children.

PhoneNumberSpinner	is	an	app	from	a	previous	lesson	that	shows	a	spinner,	with	the	id		label_spinner	,	for	choosing	the
label	of	a	phone	number	(Home,	Work,	Mobile,	and	Other).	The	app	displays	the	choice	in	a	text	field,	concatenated	with
the	entered	phone	number.

Introduction

305

https://github.com/google-developer-training/android-fundamentals/tree/master/TwoActivitiesEspressoTest

words	could	be	in	a	different	language.	

Android	Studio	Project:	PhoneNumberSpinner

3.1	Create	the	test	method

1.	 Open	the	PhoneNumberSpinner	project,	or	if	you	prefer,	make	a	copy	of	the	project	first	and	then	open	the	copy.	See
Copy	and	rename	a	project	in	the	Appendix	for	instructions.

2.	 Configure	Espresso	in	your	project	as	described	previously.
3.	 Expand	com.example.android.phonenumberspinner	(androidTest),	and	open	ExampleInstrumentedTest.
4.	 Rename		ExampleInstrumentedTest		to		SpinnerSelectionTest		in	the	class	definition,	and	add	the	following:

@RunWith(AndroidJUnit4.class)

public	class	SpinnerSelectionTest	{

			@Rule

			public	ActivityTestRule	mActivityRule	=	new	ActivityTestRule<>(

																					MainActivity.class);

}

5.	 Create	the		iterateSpinnerItems()		method	as		public		returning		void	.

3.2	Access	the	array	used	for	the	spinner	items
You	want	the	test	to	click	each	item	in	the	spinner	based	on	the	number	of	elements	in	the	array.	But	how	do	you	access
the	array?

1.	 Assign	the	array	used	for	the	spinner	items	to	a	new	array	to	use	within	the		iterateSpinnerItems()		method:

public	void	iterateSpinnerItems()	{

			String[]	myArray	=

									mActivityRule.getActivity().getResources()

									.getStringArray(R.array.labels_array);

}

In	the	statement	above,	the	test	accesses	the	application's	array	(with	the	id		labels_array)	by	establishing	the	context
with	the		getActivity()		method	of	the	ActivityTestRule	class,	and	getting	a	resources	instance	in	the	application's
package	using		getResources()	.

2.	 Assign	the	length	of	the	array	to		size	,	and	construct	a		for		loop	using	the		size		as	the	maximum	number	for	a
counter.

int	size	=	myArray.length;

				for	(int	i=0;	i<size;	i++)	{

}

3.3	Locate	spinner	items	and	click	on	them
1.	 Add	an		onView()		statement	within	the		for		loop	to	find	the	spinner	and	click	on	it:

Introduction

306

https://github.com/google-developer-training/android-fundamentals/tree/master/PhoneNumberSpinner
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html
https://developer.android.com/reference/android/support/test/rule/ActivityTestRule.html

3.3	Locate	spinner	items	and	click	on	them

1.	 Add	an		onView()		statement	within	the		for		loop	to	find	the	spinner	and	click	on	it:

//	Find	the	spinner	and	click	on	it.

onView(withId(R.id.label_spinner)).perform(click());

A	user	must	click	the	spinner	itself	in	order	click	any	item	in	the	spinner,	so	your	test	must	also	click	the	spinner	first
before	clicking	the	item.

2.	 Write	an		onData()		statement	to	find	and	click	a	spinner	item:

//	Find	the	spinner	item	and	click	on	it.

onData(is(myArray[i])).perform(click());

The	above	statement	matches	if	the	object	is	a	specific	item	in	the	spinner,	as	specified	by	the		myArray[i]		array
element.

If		onData		appears	in	red,	click	the	word,	and	then	click	the	red	light	bulb	icon	that	appears	in	the	left	margin.	Choose
the	following	in	the	pop-up	menu:

Static	import	method	'android.support.test.espresso.Espresso.onData'

If		is		appears	in	red,	click	the	word,	and	then	click	the	red	light	bulb	icon	that	appears	in	the	left	margin.	Choose	the
following	in	the	pop-up	menu:

Static	import	method…>	Matchers.is	(org.hamcrest)

3.	 Add	two	more		onView()		statements	to	the	for	loop:

//	Find	the	Submit	button	and	click	on	it.

onView(withId(R.id.button_main)).perform(click());

//	Find	the	text	view	and	check	that	the	spinner	item

//	is	part	of	the	string.

onView(withId(R.id.text_phonelabel))

											.check(matches(withText(containsString(myArray[i]))));

The	first	statement	locates	the		button_main		and	clicks	it.	The	second	statement	checks	to	see	if	the	resulting
	text_phonelabel		matches	the	spinner	item	specified	by		myArray[i]	.

If		containsString		appears	in	red,	click	the	word,	and	then	click	the	red	light	bulb	icon	that	appears	in	the	left	margin.
Choose	the	following	in	the	pop-up	menu:

Static	import	method…>	Matchers.containsString	(org.hamcrest)

4.	 To	run	the	test,	right-click	(or	Control-click)	SpinnerSelectionTest	and	choose	Run	SpinnerSelectionTest	from	the
pop-up	menu.	You	can	then	choose	to	run	the	test	on	the	emulator	or	on	your	device.

The	test	runs	the	app,	clicks	the	spinner,	and	"exercises"	the	spinner—it	clicks	each	spinner	item	from	top	to	bottom,
checking	to	see	if	the	item	appears	in	the	text	field.	It	doesn't	matter	how	many	spinner	items	are	defined	in	the	array,	or
what	language	is	used	for	the	spinner's	items—the	test	performs	all	of	them	and	checks	their	output	against	the	array.

The	bottom	pane	of	Android	Studio	shows	the	progress	of	the	test,	and	when	finished,	it	displays	"Tests	ran	to	completion."
In	the	left	column	Android	Studio	displays	"All	Tests	Passed".

Solution	code:

Android	Studio	project:	PhoneNumberSpinnerEspressoTest

See	SpinnerSelectionTest.java.

Introduction

307

https://github.com/google-developer-training/android-fundamentals/tree/master/PhoneNumberSpinnerEspressoTest

You	learned	how	to	create	a	RecyclerView	in	a	previous	chapter.	Like	an	AdapterView	(such	as	a	spinner),	a	RecyclerView
dynamically	populates	child	views	at	runtime.	But	a	RecyclerView	is	not	an	AdapterView,	so	you	can't	use		onData()		to
interact	with	list	items	as	you	did	in	the	previous	task	with	a	spinner.	What	makes	a	RecyclerView	complicated	from	the
point	of	view	of	Espresso	is	that		onView()		can't	find	the	child	view	if	it	is	off	the	screen.

Fortunately,	you	have	two	handy	tools	to	circumvent	these	complications:

A	class	called	RecyclerViewActions	that	exposes	a	small	API	to	operate	on	a	RecyclerView.
An	Android	Studio	feature	(in	version	2.2	and	newer)	that	lets	you	record	an	Espresso	test.	Use	your	app	as	a	normal
user.	As	you	click	through	the	app	UI,	editable	test	code	is	generated	for	you.	You	can	also	add	assertions	to	check	if	a
view	holds	a	certain	value.

Recording	Espresso	tests,	rather	than	coding	the	tests	by	hand,	ensures	that	your	app	gets	UI	test	coverage	on	areas	that
might	take	too	much	time	or	be	too	difficult	to	code	by	hand.

Solution	code:

Android	Studio	project:	RecyclerView

4.1	Open	and	run	the	app

1.	 Open	the	RecyclerView	project,	or	if	you	prefer,	make	a	copy	of	the	project	first	and	then	open	the	copy.	See	Copy	and
rename	a	project	in	the	Appendix	for	instructions.

2.	 Configure	Espresso	in	your	project	as	described	previously.
3.	 Run	the	app	to	ensure	that	it	runs	properly.	You	can	use	the	emulator	or	an	Android	device.

The	app	lets	you	scroll	a	list	of	words.	When	you	click	on	a	word	such	as	Word	15	the	word	in	the	list	changes	to	"Clicked!
Word	15".

4.2	Record	the	test

1.	 Choose	Run	>	Record	Espresso	Test,	select	your	deployment	target	(an	emulator	or	a	device),	and	click	OK.
2.	 Scroll	the	word	list	in	the	app	on	the	emulator	or	device,	and	tap	on	Word	15.	The	Record	Your	Test	window	shows	the

action	that	was	recorded	("Tap	RecyclerView	with	element	position	15").	

Introduction

308

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html

3.	 Click	Add	Assertion	in	the	Record	Your	Test	window.	A	screenshot	of	the	app's	UI	appears	in	a	pane	on	the	right	side
of	the	window.	Select	Clicked!	Word	15	in	the	screenshot	as	the	UI	element	you	want	to	check.	

Introduction

309

4.	 Choose	text	is	from	the	second	drop-down	menu.	The	text	you	expect	to	see	is	already	entered	in	the	field	below	the
drop-down	menu.	

5.	 Click	Save	Assertion,	and	then	click	Complete	Recording.	

Introduction

310

6.	 In	the	dialog	that	appears,	edit	the	name	of	the	test	to	RecyclerViewTest	so	that	it	is	easy	to	understand	the	test's
purpose.

7.	 Android	Studio	may	display	a	request	to	add	more	dependencies	to	your	Gradle	Build	file.	Click	Yes	to	add	the
dependencies.

8.	 Expand	com.example.android.recyclerview	(androidTest)	to	see	the	test,	and	run	the	test.	It	should	pass.

The	following	is	the	test,	as	recorded	in	the	RecyclerViewTest.java	file:

Introduction

311

@RunWith(AndroidJUnit4.class)

public	class	RecyclerViewTest	{

				@Rule

				public	ActivityTestRule<MainActivity>	mActivityTestRule	=

												new	ActivityTestRule<>(MainActivity.class);

				@Test

				public	void	recyclerViewTest()	{

								ViewInteraction	recyclerView	=	onView(

																allOf(withId(R.id.recyclerview),	isDisplayed()));

								recyclerView.perform(actionOnItemAtPosition(15,	click()));

								ViewInteraction	textView	=	onView(

																allOf(withId(R.id.word),	withText("Clicked!	Word	15"),

																								childAtPosition(

																																childAtPosition(

																																								withId(R.id.recyclerview),

																																								11),

																																0),

																								isDisplayed()));

								textView.check(matches(withText("Clicked!	Word	15")));

				}

				private	static	Matcher<View>	childAtPosition(

												final	Matcher<View>	parentMatcher,	final	int	position)	{

								return	new	TypeSafeMatcher<View>()	{

											@Override

											public	void	describeTo(Description	description)	{

													description.appendText("Child	at	position	"	+	position	+	"	in	parent	");

													parentMatcher.describeTo(description);

											}

											@Override

											public	boolean	matchesSafely(View	view)	{

													ViewParent	parent	=	view.getParent();

													return	parent	instanceof	ViewGroup	&&	parentMatcher.matches(parent)

																								&&	view.equals(((ViewGroup)	parent).getChildAt(position));

											}

								};

				}

}

The	test	uses	a	RecyclerView	object	of	the	ViewInteraction	class,	which	is	the	primary	interface	for	performing	actions	or
assertions	on	views,	providing	both		check()		and		perform()		methods.	Examine	the	test	code	to	see	how	it	works:

Perform:	The	code	below	uses	the		perform()		method	and	the	actionOnItemAtPosition()	method	of	the
RecyclerViewActions	class	to	scroll	to	the	position	(15)	and	click	the	item:

		ViewInteraction	recyclerView	=	onView(

							allOf(withId(R.id.recyclerview),	isDisplayed()));

	recyclerView.perform(actionOnItemAtPosition(15,	click()));

Check	whether	it	matches	the	assertion:	The	code	below	checks	to	see	if	the	clicked	item	matches	the	assertion
that	it	should	be		"Clicked!	Word	15"	:

		ViewInteraction	textView	=	onView(

								allOf(withId(R.id.word),	withText("Clicked!	Word	15"),

													childAtPosition(

																					childAtPosition(

																													withId(R.id.recyclerview),

																													11),

																					0),

													isDisplayed()));

		textView.check(matches(withText("Clicked!	Word	15")));

Introduction

312

https://developer.android.com/reference/android/support/test/espresso/ViewInteraction.html
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html#actionOnItemAtPosition(int,%20android.support.test.espresso.ViewAction)
https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html

The	code	above	uses	a	method	called		childAtPosition()	,	which	is	defined	as	a	custom		Matcher	:

		private	static	Matcher<View>	childAtPosition(

								final	Matcher<View>	parentMatcher,	final	int	position)	{

					//	TypeSafeMatcher()	returned

					...

					}

Implement	a	custom	matcher:	The	custom	matcher	extends	the	abstract	TypeSaveMatcher	class	and	requires	that
you	implement	the	following:

The		matchesSafely()		method,	shown	below,	to	define	how	to	check	for	a	view	in	a	RecyclerView.
The		describeTo()		method,	shown	below,	to	define	how	Espresso	describes	the	output's	matcher	in	the	Run	pane
at	the	bottom	of	Android	Studio	if	a	failure	occurs.

						...

						//	TypeSafeMatcher()	returned

						return	new	TypeSafeMatcher<View>()	{

									@Override

									public	void	describeTo(Description	description)	{

												description.appendText("Child	at	position	"

																																											+	position	+	"	in	parent	");

												parentMatcher.describeTo(description);

									}

									@Override

									public	boolean	matchesSafely(View	view)	{

												ViewParent	parent	=	view.getParent();

												return	parent	instanceof	ViewGroup	&&

																																					parentMatcher.matches(parent)

																																					&&	view.equals(((ViewGroup)

																																					parent).getChildAt(position));

									}

						};

			}

}

You	can	record	multiple	interactions	with	the	UI	in	one	recording	session.	You	can	also	record	multiple	tests,	and	edit	the
tests	to	perform	more	actions,	using	the	recorded	code	as	a	snippet	to	copy,	paste,	and	edit.

Solution	code
Android	Studio	project:	RecyclerViewEspressoTest

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Write	an	Espresso	text	for	the	Scorekeeper	app	from	a	previous	lesson	that	tests	whether	the	Day	Mode	button
appears	after	clicking	Night	Mode,	and	whether	the	Night	Mode	button	appears	after	clicking	Day	Mode.

Summary
In	this	practical,	you	learned	how	to	do	the	following:

Set	up	Espresso	to	test	an	Android	Studio	project:
Checking	for	and	Installing	the	Android	Support	Repository.
Adding	instrumentation	and	dependencies	to	the	build.gradle	(Module:	app)	file.

Introduction

313

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/TypeSafeMatcher.html
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerViewEspressoTest

Turning	off	animations	in	your	test	device.
Defining	the	test	class.

Test	to	see	whether	an	activity	is	launched:
Using	the		onView()		method	with	ViewMatcher	arguments	to	find	views.
Using	a	ViewAction	expression	to	perform	a	click.
Using	a	ViewAssertion	expression	to	check	if	the	view	is	displayed.
Using	a	ViewAssertion	expression	to	see	if	the	output	matches	the	input.

Test	a	spinner	and	its	selections:
Using	the		onData()		method	with	a	view	that	is	dynamically	populated	by	an	adapter	at	runtime.
Getting	items	from	an	app's	array	by	establishing	the	context	with		getActivity()		and	getting	a	resources	instance
using		getResources()	.
Using	an		onData()		statement	to	find	and	click	each	spinner	item.
Using	the		onView()		method	with	a	ViewAction	and	ViewAssertion	to	check	if	the	output	matches	the	selected
spinner	item.

Record	a	test	of	a	RecyclerView:
Using	the	RecyclerViewActions	class	that	exposes	methods	to	operate	on	a	RecyclerView.
Recording	an	Espresso	test	to	automatically	generate	the	test	code.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Testing	Your	User	Interface

Learn	more
Android	Studio	Documentation:

Test	Your	App
Espresso	basics
Espresso	cheat	sheet

Android	Developer	Documentation:

Best	Practices	for	Testing
Getting	Started	with	Testing
Testing	UI	for	a	Single	App
Building	Instrumented	Unit	Tests
Espresso	Advanced	Samples
The	Hamcrest	Tutorial
Hamcrest	API	and	Utility	Classes
Test	Support	APIs

Android	Testing	Support	Library:

Espresso	documentation
Espresso	Samples

Videos

Android	Testing	Support	-	Android	Testing	Patterns	#1	(introduction)
Android	Testing	Support	-	Android	Testing	Patterns	#2	(onView	view	matching)
Android	Testing	Support	-	Android	Testing	Patterns	#3	(onData	and	adapter	views)

Other:

Google	Testing	Blog:	Android	UI	Automated	Testing

Introduction

314

https://developer.android.com/reference/android/support/test/espresso/contrib/RecyclerViewActions.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%202/61_c_testing_the_user_interface.html
http://d.android.com/tools/testing/testing_android.html
https://google.github.io/android-testing-support-library/docs/espresso/basics/
https://google.github.io/android-testing-support-library/docs/espresso/cheatsheet/index.html
https://developer.android.com/training/testing/index.html
https://developer.android.com/training/testing/start/index.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://google.github.io/android-testing-support-library/docs/espresso/advanced/
https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
http://hamcrest.org/JavaHamcrest/javadoc/1.3/
https://developer.android.com/reference/android/support/test/package-summary.html
https://google.github.io/android-testing-support-library/docs/espresso/index.html
https://google.github.io/android-testing-support-library/samples/index.html
https://youtu.be/W8LJjfkTKik
https://youtu.be/kL3MCQV2M2s
https://youtu.be/zi7v47kYKrk
http://googletesting.blogspot.com/2015/03/android-ui-automated-testing.html

Atomic	Object:	"Espresso	–	Testing	RecyclerViews	at	Specific	Positions"
Stack	Overflow:	"How	to	assert	inside	a	RecyclerView	in	Espresso?"
GitHub:	Android	Testing	Samples
Google	Codelabs:	Android	Testing	Codelab

Introduction

315

https://spin.atomicobject.com/2016/04/15/espresso-testing-recyclerviews/
http://stackoverflow.com/questions/31394569/how-to-assert-inside-a-recyclerview-in-espresso
https://github.com/googlesamples/android-testing
https://codelabs.developers.google.com/codelabs/android-testing/index.html#0

7.1:	Create	an	AsyncTask
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Set	up	the	SimpleAsyncTask	project
Task	2:	Create	the	AsyncTask	subclass
Task	3:	Implement	the	final	steps
Coding	challenge
Summary
Related	concept
Learn	more

A	thread	is	an	independent	path	of	execution	in	a	running	program.	When	an	Android	program	is	launched,	the	Android
Runtime	system	creates	a	thread	called	the	"Main"	thread.	As	your	program	runs,	each	line	of	code	is	executed	in	a	serial
fashion,	line	by	line.	This	main	thread	is	how	your	application	interacts	with	components	from	the	Android	UI	Toolkit,	and	it's
why	the	main	thread	is	sometimes	called	the	"UI	thread".	However,	sometimes	an	application	needs	to	perform	resource-
intensive	work,	such	as	downloading	files,	database	queries,	playing	media,	or	computing	complex	analytics.	This	type	of
intensive	work	can	block	the	UI	thread	if	all	of	the	code	executes	serially	on	a	single	thread.	When	the	app	is	performing
resources	intensive	work,	the	app	does	not	respond	to	the	user	or	draw	on	the	screen	because	it	is	waiting	for	that	work	to
be	done.	This	can	yield	poor	performance,	which	negatively	affects	the	user	experience.	Users	may	get	frustrated	and
uninstall	your	Android	app	if	the	performance	of	the	app	is	slow.

To	keep	the	user	experience	(UX)	running	smoothly	and	responding	quickly	to	user	gestures,	the	Android	Framework
provides	a	helper	class	called	AsyncTask	which	processes	work	off	of	the	UI	thread.	An	AsyncTask	is	an	abstract	Java
class	that	provides	one	way	to	move	this	intensive	processing	onto	a	separate	thread,	thereby	allowing	the	UI	thread	to
remain	very	responsive.	Since	the	separate	thread	is	not	synchronized	with	the	calling	thread,	it	is	called	an	asynchronous
thread.	An	AsyncTask	also	contains	a	callback	that	allows	you	to	display	the	results	of	the	computation	back	in	the	UI
thread.

In	this	practical,	you	will	learn	how	to	add	a	background	task	to	your	Android	app	using	an	AsyncTask.

What	you	should	already	KNOW
You	should	be	able	to:

Create	an	Activity.
Add	a	TextView	to	the	layout	for	the	activity.
Programmatically	get	the	id	for	the	TextView	and	set	its	content.
Use	Button	views	and	their	onClick	functionality.

What	you	will	LEARN
During	this	practical,	you	will	learn	to:

Add	an	AsyncTask	to	your	app	in	order	to	run	a	task	in	the	background,	off	of	the	UI	thread.
Identify	and	understand	the	benefits	and	drawbacks	of	using	AsyncTask	for	background	tasks.

What	you	will	DO

Introduction

316

https://developer.android.com/reference/android/os/AsyncTask.html

During	this	practical,	you	will:

Create	a	simple	application	that	executes	a	background	task	using	an	AsyncTask.
Run	the	app	and	see	what	happens	when	you	rotate	the	screen.

App	overview
You	will	build	an	app	that	has	one	TextView	and	one	button.	When	the	user	clicks	the	button,	the	app	sleeps	for	a	random
amount	of	time,	and	then	displays	a	message	in	the	TextView	when	it	wakes	up.

Here's	what	the	finished	app	will	look	like:

Introduction

317

Introduction

318

Task	1.	Set	up	the	SimpleAsyncTask	project
The	SimpleAsyncTask	UI	is	straightforward.	It	contains	a	button	that	launches	the	AsyncTask,	and	a	TextView	that	displays
the	status	of	the	application.

1.1	Create	the	layout

1.	 Create	a	new	project	called	SimpleAsyncTask	using	the	Empty	Activity	template.	(Accept	the	defaults	for	the	other
options.)

2.	 Open	the	activity_main.xml	layout	file.

i.	 Change	the	root	view	to	LinearLayout.
ii.	 In	the	"Hello	World"	TextView	element,	remove	the		layout_constraint		attributes,	if	they	are	present.
iii.	 Add	the	following	essential	UI	elements	to	the	layout:

View Attributes Values

LinearLayout android:orientation vertical

TextView
android:text
android:id

I	am	ready	to	start	work!
@+id/textView1

Button
android:text
android:onClick

Start	Task
startTask

Note:	You	can	set	the	layout	height	and	width	of	each	view	to	whatever	you	want,	as	long	the	views	remain	on	the
screen	independent	of	the	screen	size	(using		wrap_content		ensures	that	this	is	the	case).

3.	 The	onClick	attribute	for	the	button	will	be	highlighted	in	yellow,	since	the		startTask()		method	is	not	yet	implemented
in	the	MainActivity.	Place	your	cursor	in	the	highlighted	text,	press	Alt	+	Enter	(Option	+	Enter	on	a	Mac)	and	choose
Create	'startTask(View)	in	'MainActivity'	to	create	the	method	stub	in	MainActivity.

Depending	on	your	version	of	Android	Studio,	the	activity_main.xml	layout	file	will	look	something	like	the	following:

				<?xml	version="1.0"	encoding="utf-8"?>

				<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

							android:layout_width="match_parent"

							android:layout_height="match_parent"

							android:paddingLeft="@dimen/activity_horizontal_margin"

							android:paddingRight="@dimen/activity_horizontal_margin"

							android:paddingTop="@dimen/activity_vertical_margin"

							android:paddingBottom="@dimen/activity_vertical_margin"

							android:orientation="vertical">

							<TextView

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:text="@string/ready_to_start"

											android:id	=	"@+id/textView1"

											android:textSize="24sp"/>

							<Button

											android:layout_width="wrap_content"

											android:layout_height="wrap_content"

											android:text="@string/start_task"

											android:id="@+id/button"

											android:layout_marginTop="56dp"

											android:onClick="startTask"	/>

				</LinearLayout>

Task	2.	Create	the	AsyncTask	subclass

Introduction

319

Since	AsyncTask	is	an	abstract	class,	you	need	to	subclass	it	in	order	to	use	it.	In	this	example	the	AsyncTask	will	execute
a	very	simple	background	task:	it	just	sleeps	for	a	random	amount	of	time.	In	a	real	app,	the	background	task	could	perform
all	sorts	of	work,	from	querying	a	database,	to	connecting	to	the	Internet,	to	calculating	the	next	Go	move	so	that	you	can
beat	the	current	Go	champion.

An	AsyncTask	has	the	following	methods	for	performing	work	off	of	the	main	thread:

	onPreExecute()	:	This	method	runs	on	the	UI	thread,	and	is	used	for	setting	up	your	task	(like	showing	a	progress	bar).
	doInBackground()	:	This	is	where	you	implement	the	code	to	execute	the	work	that	is	to	be	performed	on	the	separate
thread.
	onProgressUpdate()	:	This	is	invoked	on	the	UI	thread	and	used	for	updating	progress	in	the	UI	(such	as	filling	up	a
progress	bar)
	onPostExecute()	:	Again	on	the	UI	thread,	this	is	used	for	updating	the	results	to	the	UI	once	the	AsyncTask	has

finished	loading.	
Note:	A	background	or	worker	thread	is	any	thread	which	is	not	the	main	or	UI	thread.

When	you	create	an	AsyncTask,	you	may	need	to	give	it	information	about	the	work	which	it	is	to	perform,	whether	and	how
to	report	its	progress,	and	in	what	form	to	return	the	result.

In	this	exercise	you	will	use	an	AsyncTask	subclass	to	define	work	that	will	run	in	a	different	thread	than	the	UI	thread,
which	will	avoid	any	performance	issues.

When	you	create	an	AsyncTask,	you	can	configure	it	using	these	parameters:

Params:	The	data	type	of	the	parameters	sent	to	the	task	upon	executing	the		doInBackground()		override	method.
Progress:	The	data	type	of	the	progress	units	published	using	the		onProgressUpdated()		override	method.
Result:	The	data	type	of	the	result	delivered	by	the		onPostExecute()		override	method.

For	example,	an	AsyncTask	with	the	following	class	declaration	would	take	a		String		as	a	parameter	in		doInBackground()	
(to	use	in	a	query,	for	example),	an	Integer	for		onProgressUpdate()		(percentage	of	job	complete),	and	a	Bitmap	for	the	the
result	in		onPostExecute()		(the	query	result):

public	class	MyAsyncTask	extends	AsyncTask	<String,	Integer,	Bitmap>{}

2.1	Subclass	the	AsyncTask
In	your	first	AsyncTask	implementation,	the	AsyncTask	subclass	will	be	very	simple.	It	does	not	require	a	query	parameter
or	publish	its	progress.	You	will	only	be	using	the		doInBackground()		and		onPostExecute()		methods.

1.	 Create	a	new	Java	class	called	SimpleAsyncTask	that	extends	AsyncTask	and	takes	three	generic	type	parameters:
Void	for	the	params,	since	this	AsyncTask	does	not	require	any	inputs.
Void	for	the	progress	type,	since	the	progress	is	not	published.
A	String	as	the	result	type,	since	you	will	update	the	TextView	with	a	string	when	the	AsyncTask	has	completed

Introduction

320

https://developer.android.com/reference/android/os/AsyncTask.html

execution.

public	class	SimpleAsyncTask	extends	AsyncTask	<Void,	Void,	String>{}

Note:	The	class	declaration	will	be	underlined	in	red,	since	the	required	method		doInBackground()		has	not	yet
been	implemented.
The	AsyncTask	will	need	to	update	the	TextView	once	it	has	completed	sleeping.	The	constructor	will	then	need	to
include	the	TextView,	so	that	it	can	be	updated	in		onPostExecute()	.

2.	 Define	a	member	variable	mTextView.
3.	 Implement	a	constructor	for	AsyncTask	that	takes	a	TextView	and	sets	mTextView	to	the	one	passed	in	TextView:

	public	SimpleAsyncTask(TextView	tv)	{

				mTextView	=	tv;

	}

2.2	Implement	doInBackground()
1.	 Add	the	required		doInBackground()		method.	Place	your	cursor	on	the	highlighted	class	declaration,	press	Alt	+	Enter

(Option	+	Enter	on	a	Mac)	and	select	Implement	methods.	Choose		doInBackground()		and	click	OK:

@Override

protected	String	doInBackground(Void...	voids)	{

			return	null;

}

2.	 Implement	doInBackground()	to:

Generate	a	random	integer	between	0	and	10
Multiply	that	number	by	200
Put	the	current	thread	to	sleep.	(Use		Thread.sleep())	in	a	try/catch	block.
Return	the	String	"Awake	at	last	after	xx	milliseconds"	(where	xx	is	the	number	of	milliseconds	the	app	slept)

@Override

protected	String	doInBackground(Void...	voids)	{

			//	Generate	a	random	number	between	0	and	10

			Random	r	=	new	Random();

			int	n	=	r.nextInt(11);

			//	Make	the	task	take	long	enough	that	we	have

			//	time	to	rotate	the	phone	while	it	is	running

			int	s	=	n	*	200;

			//	Sleep	for	the	random	amount	of	time

			try	{

							Thread.sleep(s);

			}	catch	(InterruptedException	e)	{

							e.printStackTrace();

			}

			//	Return	a	String	result

			return	"Awake	at	last	after	sleeping	for	"	+	s	+	"	milliseconds!";

}

2.3	Implement	onPostExecute()
When	the		doInBackground()		method	completes,	the	return	value	is	automatically	passed	to	the		onPostExecute()		callback.

1.	 Implement		onPostExecute()		to	take	a		String		argument	(this	is	what	you	defined	in	the	third	parameter	of	AsyncTask
and	what	your		doInBackground()		method	returned)	and	display	that	string	in	the	TextView:

Introduction

321

protected	void	onPostExecute(String	result)	{

			mTextView.setText(result);

}

Note:	You	can	update	the	UI	in		onPostExecute()		because	it	is	run	on	the	main	(UI)	thread.	You	cannot	call
	mTextView.setText()		in		doInBackground()	,	because	that	method	is	executed	on	a	separate	thread.

Task	3.	Implement	the	final	steps

3.1	Implement	the	method	that	starts	the	AsyncTask
Your	app	now	has	an	AsyncTask	that	performs	work	in	the	background	(or	it	would	if	you	didn't	call		sleep()		as	the
simulated	work.)	You	can	now	implement	the	method	that	gets	called	when	the	Start	Task	button	is	clicked,	to	trigger	the
background	task.

1.	 In	the	MainActivity.java	file,	add	a	member	variable	to	store	the	TextView.

private	TextView	mTextView;

2.	 In	the		onCreate()		method,	initialize		mTextView		to	the	TextView	in	the	UI.
3.	 Add	code	to	the		startTask()		method	to	create	an	instance	of		SimpleAsyncTask	,	passing	the	TextView		mTextView		to

the	constructor.
4.	 Call		execute()		on	that		SimpleAsyncTask		instance.

Note:	The		execute()		method	is	where	you	pass	in	the	parameters	(separated	by	commas)	that	are	then	passed	into
	doInBackground()		by	the	system.	Since	this	AsyncTask	has	no	parameters,	you	will	leave	it	blank.

5.	 Update	the	TextView	to	show	the	text	"Napping…"

public	void	startTask	(View	view)	{

			//	Put	a	message	in	the	text	view

			mTextView.setText("Napping...	");

			//	Start	the	AsyncTask.

			//	The	AsyncTask	has	a	callback	that	will	update	the	text	view.

			new	SimpleAsyncTask(mTextView).execute();

}

Solution	code	for	MainActivity:

Introduction

322

package	android.example.com.simpleasynctask;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.view.View;

import	android.widget.TextView;

public	class	MainActivity	extends	AppCompatActivity	{

			//	The	TextView	where	we	will	show	results

			TextView	mTextView;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							//		Initialize	mTextView

							mTextView	=	(TextView)	findViewById(R.id.textView1);

			}

			public	void	startTask	(View	view)	{

							//	Put	a	message	in	the	text	view

							mTextView.setText("Napping...	");

							//	Start	the	AsyncTask.

							//	The	AsyncTask	has	a	callback	that	will	update	the	text	view.

							new	SimpleAsyncTask(mTextView).execute();

			}

}

3.2	Implement	onSaveInstanceState()
1.	 Run	the	app	and	click	the	Start	Task	button.	How	long	does	the	app	nap?
2.	 Click	the	Start	Task	button	again,	and	while	the	app	is	napping,	rotate	the	device.	If	the	background	task	completes

before	you	can	rotate	the	phone,	try	again.	Alternatively,	you	can	update	the	code	and	make	it	sleep	for	a	longer	time
period.

Note:	You'll	notice	that	when	the	device	is	rotated,	the	TextView	resets	to	its	initial	content	and	the	AsyncTask	doesn't
seem	able	to	update	the	TextView.
There	are	several	things	going	on	here:

When	you	rotate	the	device,	the	system	restarts	the	app,	calling		onDestroy()		and	then		onCreate()	,	which
restarts	the	activity	lifecycle.	Since	the	AsyncTasks	are	no	longer	connected	to	the	lifecycle	of	your	app,	and
cannot	reconnect	to	the	activity.
The	AsyncTasks	will	continue	running	to	completion	in	the	background,	consuming	system	resources,	but	never
showing	the	results	in	the	UI,	which	gets	reset	in		onCreate()	.	It	will	never	be	able	to	update	the	TextView	that	was
passed	to	it,	since	that	particular	TextView	has	also	been	destroyed.	Eventually,	the	system	run	out	of	resources,
and	will	fail.
Even	without	the	AsyncTask,	the	rotation	of	the	device	resets	all	of	the	UI	elements	to	their	default	state,	which	for
the	TextView	implies	a	particular	string	that	you	set	in	the	activity_main.xml	file.

For	these	reasons,	AsyncTasks	are	not	well	suited	to	tasks	which	may	be	interrupted	by	the	destruction	of	the	Activity.
In	use	cases	where	this	is	critical	you	can	use	a	different	type	of	class	called	a	Loader,	which	you	will	implement	in	a
later	practical.

In	order	to	prevent	the	TextView	from	resetting	to	the	initial	string,	you	need	to	save	its	state.	You've	already	learned
how	to	maintain	the	state	of	views	in	a	previous	practical,	using	the	SavedInstanceState	class.

You	will	now	implement		onSaveInstanceState()		to	preserve	the	content	of	your	TextView	when	the	activity	is
spontaneously	destroyed.

Note:	Not	all	uses	of	AsyncTask	require	you	to	handle	the	state	of	the	views	on	rotation.	This	app	uses	a	TextView	to

Introduction

323

display	the	results	of	the	app,	so	preserving	the	state	is	useful.	In	other	cases,	such	as	uploading	a	file,	you	may	not
need	any	persistent	information	in	the	UI,	so	retaining	the	state	is	not	critical.

3.	 Override	the		onSaveInstanceState()		method	in	MainActivity	to	preserve	the	text	inside	the	TextView	when	the	activity
is	destroyed:

outState.putString(TEXT_STATE,	mTextView.getText().toString());

4.	 Retrieve	the	value	of	the	TextView	when	the	activity	is	restored	in	the		onCreate()		method.

//	Restore	TextView	if	there	is	a	savedInstanceState

if(savedInstanceState!=null){

		mTextView.setText(savedInstanceState.getString(TEXT_STATE));

}

Solution	code	for	MainActivity:

Introduction

324

package	android.example.com.simpleasynctask;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.view.View;

import	android.widget.TextView;

/**

	*	The	SimpleAsyncTask	app	contains	a	button	that	launches	an	AsyncTask

	*	which	sleeps	in	the	asynchronous	thread	for	a	random	amount	of	time.

	*/

public	class	MainActivity	extends	AppCompatActivity	{

				//Key	for	saving	the	state	of	the	TextView

				private	static	final	String	TEXT_STATE	=	"currentText";

				//	The	TextView	where	we	will	show	results

				private	TextView	mTextView	=	null;

				/**

					*	Initializes	the	activity.

					*	@param	savedInstanceState	The	current	state	data

					*/

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_main);

								//		Initialize	mTextView

								mTextView	=	(TextView)	findViewById(R.id.textView1);

								//	Restore	TextView	if	there	is	a	savedInstanceState

								if(savedInstanceState!=null){

											mTextView.setText(savedInstanceState.getString(TEXT_STATE));

								}

				}

				/**`

					*	Handles	the	onCLick	for	the	"Start	Task"	button.	Launches	the	AsyncTask

					*	which	performs	work	off	of	the	UI	thread.

					*

					*	@param	view	The	view	(Button)	that	was	clicked.

					*/

				public	void	startTask	(View	view)	{

								//	Put	a	message	in	the	text	view

								mTextView.setText(R.string.napping);

								//	Start	the	AsyncTask.

								//	The	AsyncTask	has	a	callback	that	will	update	the	textview.

								new	SimpleAsyncTask(mTextView).execute();

				}

				/**

					*	Saves	the	contents	of	the	TextView	to	restore	on	configuration	change.

					*	@param	outState	The	bundle	in	which	the	state	of	the	activity	is	saved							when	it	is	spontaneously	destroye

d.

					*/

				@Override

				protected	void	onSaveInstanceState(Bundle	outState)	{

								super.onSaveInstanceState(outState);

								//	Save	the	state	of	the	TextView

								outState.putString(TEXT_STATE,	mTextView.getText().toString());

				}

}

Solution	code
Android	Studio	project:	SimpleAsyncTask

Introduction

325

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleAsyncTask

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	AsyncTask	provides	another	very	useful	override	method:		onProgressUpdate()	,	which	allows	you	to	update	the
UI	while	the	AsyncTask	is	running.	Use	this	method	to	update	the	UI	with	the	current	sleep	time.	Look	to	the	AsyncTask
documentation	to	see	how		onProgressUpdate()		is	properly	implemented.	Remember	that	in	the	class	definition	of	your
AsyncTask,	you	will	need	to	specify	the	data	type	to	be	used	in	the		onProgressUpdate()		method.

Summary
Avoid	resource-intensive	work	in	the	UI	thread	which	may	make	your	UI	sluggish	or	erratic.

Any	code	that	does	not	involve	drawing	the	UI	or	responding	to	the	user	input	should	be	moved	from	the	UI	thread
to	another,	separate	thread.

An	AsyncTask	is	an	abstract	Java	class	that	moves	intensive	processing	onto	a	separate	thread.
AsyncTask	must	be	subclassed	to	be	used.
AsyncTask	has	4	useful	methods:		onPreExecute()	,		doInBackground()	,		onPostExecute()		and
	onProgressUpdate()	.

	doInBackground()		is	the	only	method	that	is	run	on	a	separate	worker	thread.
You	should	not	call	UI	methods	in	your	AsyncTask	method.
The	other	methods	of	AsyncTask	run	in	the	UI	thread	and	allow	calling	methods	of	UI	components.

Rotating	an	Android	device	destroys	and	recreates	an	Activity.	This	can	disassociate	the	UI	from	the	background
thread,	which	will	continue	to	run.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

AsyncTask	and	AsyncTaskLoader

Learn	more
Android	developer	documentation:

Processes	and	Threads
Processing	bitmaps	off	the	UI	thread	using	AsyncTask
AsyncTask

Other	resources:

https://realm.io/news/android-threading-background-tasks/

Videos:

Threading	Performance	101	by	Performance	Guru	Colt	McAnlis.	Learn	more	about	the	main	thread	and	why	it's	bad	to
run	long-running	tasks	on	the	main	thread.
Good	AsyncTask	Hunting	by	Colt	McAnlis.	Learn	more	about	AsyncTasks.

Introduction

326

https://developer.android.com/reference/android/os/AsyncTask.html#publishProgress(Progress...)
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/71c_asynctask_and_asynctaskloader_md.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/training/displaying-bitmaps/process-bitmap.html
http://developer.android.com/reference/android/os/AsyncTask.html
https://realm.io/news/android-threading-background-tasks/
https://www.youtube.com/watch?v=qk5F6Bxqhr4
https://www.youtube.com/watch?v=jtlRNNhane0

7.2:	Connect	to	the	Internet	with	AsyncTask	and
AsyncTaskLoader
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
Task	1.	Explore	the	Books	API
Task	2.	Create	the	"Who	Wrote	It?"	app
Task	3.	Implement	UI	best	practices
Task	4.	Migrate	to	AsyncTaskLoader
Coding	challenges
Summary
Related	concept
Learn	more

In	this	practical	you	will	use	an	AsyncTask	to	start	a	background	task	which	gets	data	from	the	Internet	using	a	simple
REST	API.	You	will	use	the	Google	API	Explorer	to	learn	how	to	query	the	Book	Search	API,	implement	this	query	in	a
worker	thread	using	AsyncTask,	and	display	the	result	in	your	UI.	Then	you	will	reimplement	the	same	background	task
using	AsyncTaskLoader,	which	will	be	more	efficient	in	updating	your	UI,	handling	performance	issues,	and	improving	the
overall	UX.

What	you	should	already	KNOW
From	the	previous	practicals	you	should	be	able	to:

Create	an	activity.
Add	a	TextView	to	the	layout	for	the	activity.
Implement	onClick	functionality	to	a	button	in	your	layout.
Implement	an	AsyncTask	and	display	the	result	in	your	UI.
Pass	information	between	activities	as	extras.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Use	the	Google	API	Explorer	to	investigate	Google	APIs	and	to	view	JSON	responses	to	http	requests.
Use	the	Books	API	as	an	example	API	retrieving	data	over	the	Internet	and	keep	the	UI	fast	and	responsive.	You	won't
learn	the	Books	API	in	detail	in	this	practical.	Your	app	will	only	use	the	simple	book	search	function.	To	learn	more
about	the	Books	API	see	the	Books	API	reference	documentation.
Parse	the	JSON	results	returned	from	your	API	query.
Implement	an	AsyncTaskLoader	that	preserves	data	upon	configuration	changes.
Update	your	UI	using	the	Loader	callbacks.

What	you	will	DO
In	this	practical,	you	will:

Use	the	Google	API	Explorer	to	learn	about	the	simple	search	feature	of	the	Books	API.
Create	the	"Who	Wrote	It?"	application	that	queries	the	Books	API	using	a	worker	thread	and	displays	the	result	in	the

Introduction

327

https://developers.google.com/apis-explorer
https://developers.google.com/books/

UI.
Modify	the	"Who	Wrote	it?"	app	to	use	an	AsyncTaskLoader	instead	of	an	AsyncTask.

App	Overview
You	will	build	an	app	that	contains	an	EditText	field	and	a	Button.	The	user	enters	the	name	of	the	book	in	the	EditText	field
and	clicks	the	button.	The	button	executes	an	AsyncTask	which	queries	the	Google	Book	Search	API	to	find	the	author	and
title	of	the	book	the	user	is	looking	for.	The	results	are	retrieved	and	displayed	in	a	TextView	field	below	the	button.	Once
the	app	is	working,	you	will	then	modify	the	app	to	use	AsyncTaskLoader	instead	of	the	AsyncTask	class.

Introduction

328

https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/os/AsyncTask.html

Introduction

329

Task	1.	Explore	the	Books	API
In	this	practical	you	will	use	the	Google	Books	API	to	search	for	information	about	a	book,	such	as	the	author(s)	and	the
title.	The	Google	Books	API	provides	programmatic	access	to	the	Google	Book	Search	service	using	REST	APIs.	This	is
the	same	service	used	behind	the	scenes	when	you	manually	execute	a	search	on	Google	Books.	You	can	use	the	Google
API	Explorer	and	Google	Book	Search	in	your	browser	to	verify	that	your	Android	app	is	getting	the	expected	results.

1.1	Send	a	Books	API	Request

1.	 Go	to	the	Google	APIs	Explorer	(found	at	https://developers.google.com/apis-explorer/).
2.	 Click	Books	API.
3.	 Find	(Ctrl-F	or	Cmd-F)	books.volumes.list	and	click	that	function	name.	You	should	see	a	webpage	that	lists	the

various	parameters	of	the	Books	API	function	that	performs	the	book	searches.
4.	 In	the		q		field	enter	a	book	name,	or	partial	book	name.	The		q		parameter	is	the	only	required	field.
5.	 Use	the		maxResults		and		printType		fields	to	limit	the	results	to	the	top	10	matching	books	that	were	printed.	The

	maxResults		field	takes	an	integer	value	that	limits	the	amount	of	results	per	query.	The		printType		field	takes	one	of
three	string	arguments:		all	,	which	does	not	limit	the	results	by	type	at	all;		books	,	which	returns	only	books	in	print;
and		magazines		which	returns	only	magazines.

6.	 Make	sure	that	the	"Authorize	requests	using	OAuth	2.0"	switch	at	the	top	of	the	form	is	turned	off.	Click	Execute
without	OAuth	at	the	bottom	of	the	form.

7.	 Scroll	down	to	see	the	Request	and	Response.

The		Request		field	is	an	example	of	a	Uniform	Resource	Identifier	(URI).	A	URI	is	a	string	that	names	or	locates	a	particular
resource.	URLs	are	a	certain	type	of	URI	for	identifying	and	locating	a	web	resource.	For	the	Books	API,	the	request	is	a
URL	that	contains	your	search	as	a	parameter	(following	the		q		parameter).	Notice	the	API	key	field	after	the	query	field.
For	security	reasons,	when	accessing	a	public	API,	you	usually	need	to	get	an	API	key	and	include	it	in	your	Request.
However,	this	specific	API	does	not	require	a	key,	so	you	can	leave	out	that	portion	of	the	Request	URI	in	your	app.

1.2	Analyze	the	Books	API	Response

Towards	the	bottom	of	the	page	you	can	see	the	Response	to	the	query.	The	response	uses	the	JSON	format,	which	is	a
common	format	for	API	query	responses.	In	the	API	Explorer	web	page,	the	JSON	code	is	nicely	formatted	so	that	it	is
human	readable.	In	your	application,	the	JSON	response	will	be	returned	from	the	API	service	as	a	single	string,	and	you
will	need	to	parse	that	string	to	extract	the	information	you	need.

1.	 In	the	Response	section,	find	the	value	for	the	"title"	key.	Notice	that	this	result	has	a	single	key	and	value.
2.	 Find	the	value	for	the	"authors"	key.	Notice	that	this	one	can	contain	an	array	of	values.
3.	 In	this	practical,	you	will	only	return	the	title	and	authors	of	the	first	item.

Task	2.	Create	the	"Who	Wrote	It?"	App
Now	that	you	are	familiar	with	the	Books	API	method	that	you	will	be	using,	it's	time	to	set	up	the	layout	of	your	application.

2.1	Create	the	project	and	user	interface
1.	 Create	an	app	project	called	Who	Wrote	It?	with	one	Activity,	using	the	Empty	Activity	Template.
2.	 Add	the	following	UI	elements	in	the	XML	file,	using	a	vertical	LinearLayout	as	root	view—the	view	that	contains	all	the

other	views	inside	a	layout	XML	file.	Make	sure	the	LinearLayout	uses		android:orientation="vertical"	:

Introduction

330

https://books.google.com/
https://developers.google.com/apis-explorer/
https://developers.google.com/apis-explorer/
http://www.json.org/
http://www.json.org/

View Attributes Values

TextView

android:layout_width

android:layout_height

android:id

android:text

android:textAppearance

wrap_content

wrap_content

@+id/instructions

@string/instructions

@style/TextAppearance.AppCompat.Title

EditText

android:layout_width

android:layout_height

android:id

android:inputType

android:hint

match_parent

wrap_content

@+id/bookInput

text

@string/input_hint

Button

android:layout_width

android:layout_height

android:id

android:text

android:onClick

wrap_content

wrap_content

@+id/searchButton

@string/button_text

searchBooks

TextView

android:layout_width

android:layout_height

android:id

android:textAppearance

wrap_content

wrap_content

@+id/titleText

@style/TextAppearance.AppCompat.Headline

TextView

android:layout_width

android:layout_height

android:id

android:textAppearance

wrap_content

wrap_content

@+id/authorText

@style/TextAppearance.AppCompat.Headline

3.	 In	the	strings.xml	file,	add	these	string	resources:

<string	name="instructions">Enter	a	book	name,	or	part	of	a

book	name,	or	just	some	text	from	a	book	to	find

the	full	book	title	and	who	wrote	the	book!</string>

<string	name="button_text">Search	Books</string>

<string	name="input_hint">Enter	a	Book	Title</string>

4.	 Create	a	method	called		searchBooks()		in	MainActivity.java	to	handle	the	onClick	button	action.	As	with	all	onClick
methods,	this	one	takes	a		View		as	a	parameter.

2.2	Set	up	the	Main	Activity
To	query	the	Books	API,	you	need	to	get	the	user	input	from	the	EditText.

1.	 In	MainActivity.java,	create	member	variables	for	the	EditText,	the	author	TextView	and	the	title	TextView.
2.	 Initialize	these	variables	in		onCreate()	.
3.	 In	the		searchBooks()		method,	get	the	text	from	the	EditText	widget	and	convert	to	a		String	,	assigning	it	to	a	string

variable.

String	queryString	=	mBookInput.getText().toString();

Introduction

331

Note:		mBookInput.getText()		returns	an	"Editable"	datatype	which	needs	to	be	converted	into	a	string.

2.3	Create	an	empty	AsyncTask

You	are	now	ready	to	connect	to	the	Internet	and	use	the	Book	Search	REST	API.	Network	connectivity	can	be	sometimes
be	sluggish	or	experience	delays.	This	may	cause	your	app	to	behave	erratically	or	become	slow,	so	you	should	not	make
a	network	connection	on	the	UI	thread.	If	you	attempt	a	network	connection	on	the	UI	thread,	the	Android	Runtime	may
raise	a	NetworkOnMainThreadException	to	warn	you	that	it's	a	bad	idea.

Use	an	AsyncTask	to	make	network	connections:

1.	 Create	a	new	Java	class	called		FetchBook		in	app/java	that	extends		AsyncTask	.	An	AsyncTask	requires	three
arguments:

The	input	parameters.
The	progress	indicator.
The	result	type.

The	generic	type	parameters	for	the	task	will	be		<String,	Void,	String>	since	the	AsyncTask	takes	a		String		as	the
first	parameter	(the	query),		Void		since	there	is	no	progress	update,	and		String		since	it	returns	a	string	as	a	result
(the	JSON	response).

2.	 Implement	the	required	method,		doInBackground()	,	by	placing	your	cursor	on	the	red	underlined	text,	pressing	Alt	+
Enter	(Opt	+	Enter	on	a	Mac)	and	selecting	Implement	methods.	Choose	doInBackground()	and	click	OK.	Make
sure	the	parameters	and	return	types	are	the	correct	type	(It	takes	a	String	array	and	returns	a	String).
i.	 Click	the	Code	menu	and	choose	Override	methods	(or	press	Ctrl	+	O).	Select	the	onPostExecute()	method.
The		onPostExecute()		method	takes	a		String		as	a	parameter	and	returns		void	.

3.	 To	display	the	results	in	the	TextViews,	you	must	have	access	to	those	TextViews	inside	the	AsyncTask.	Create
member	variables	in	the	FetchBook	AsyncTask	for	the	two	TextViews	that	show	the	results,	and	initialize	them	in	a
constructor.	You	will	use	this	constructor	in	your	MainActivity	to	pass	along	the	TextViews	to	your	AsyncTask.

Solution	code	for	FetchBook:

public	class	FetchBook	extends	AsyncTask<String,Void,String>{

								private	TextView	mTitleText;

								private	TextView	mAuthorText;

			public	FetchBook(TextView	mTitleText,	TextView	mAuthorText)	{

							this.mTitleText	=	mTitleText;

							this.mAuthorText	=	mAuthorText;

			}

			@Override

			protected	String	doInBackground(String...	params)	{

							return	null;

			}

			@Override

			protected	void	onPostExecute(String	s)	{

							super.onPostExecute(s);

			}

}

2.4	Create	the	NetworkUtils	class	and	build	the	URI

In	this	step,	you	will	open	an	Internet	connection	and	query	the	Books	API.	This	section	has	quite	a	lot	of	code,	so
remember	to	visit	the	developer	documentation	for	Connecting	to	the	Network	if	you	get	stuck.	You	will	write	the	code	for
connecting	to	the	internet	in	a	helper	class	called	NetworkUtils.

1.	 Create	a	new	Java	class	called	NetworkUtils	by	clicking	File	>	New	>	Java	Class	and	only	filling	in	the	"Name"	field.
2.	 Create	a	unique		LOG_TAG		variable	to	use	throughout	NetworkUtils	class	for	logging:

Introduction

332

http://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/training/basics/network-ops/connecting.html

private	static	final	String	LOG_TAG	=	NetworkUtils.class.getSimpleName();

3.	 Create	a	new	static	method	called		getBookInfo()		that	takes	a		String		as	a	parameter	(which	will	be	the	search	term)
and	returns	a		String		(the	JSON	String	response	from	the	API	you	examined	earlier).

static	String	getBookInfo(String	queryString){}

4.	 Create	the	following	two	local	variables	in		getBookInfo()		that	will	be	needed	later	to	help	connect	and	read	the
incoming	data.

HttpURLConnection	urlConnection	=	null;

BufferedReader	reader	=	null;

5.	 Create	another	local	variable	at	the	end	of		getBookInfo()		to	contain	the	raw	response	from	the	query	and	return	it:

String	bookJSONString	=	null;

return	bookJSONString;

If	you	remember	the	request	from	the	Books	API	webpage,	you	will	notice	that	all	the	requests	begin	with	the	same
URI.	To	specify	the	type	of	resource,	you	append	query	parameters	to	the	base	URI.	It	is	common	practice	to	separate
all	of	these	query	parameters	into	constants,	and	combine	them	using	a	Uri.Builder	so	they	can	be	reused	for	different
URI's.	The	Uri	class	has	a	convenient	method,		Uri.buildUpon()		that	returns	a	URI.Builder	that	we	can	use.

For	this	application,	you	will	limit	the	number	and	type	of	results	returned	to	increase	the	query	speed.	To	restrict	the
query,	you	will	only	look	for	books	that	are	printed.

6.	 Create	the	following	member	constants	in	the	NetworkUtils	class:

private	static	final	String	BOOK_BASE_URL	=		"https://www.googleapis.com/books/v1/volumes?";	//	Base	URI	for	the

	Books	API

private	static	final	String	QUERY_PARAM	=	"q";	//	Parameter	for	the	search	string

private	static	final	String	MAX_RESULTS	=	"maxResults";	//	Parameter	that	limits	search	results

private	static	final	String	PRINT_TYPE	=	"printType";			//	Parameter	to	filter	by	print	type

7.	 Create	a	skeleton	try/catch/finally	block	in	getBookInfo()	.	This	is	where	you	will	make	your	HTTP	request.	The	code	to
build	the	URI	and	issue	the	query	will	go	in	the	try	block.	The	catch	block	is	used	to	handle	any	problems	with	making
the	HTTP	request	and	the	finally	block	is	for	closing	the	network	connection	after	you've	finished	receiving	the	JSON
data	and	returning	the	result.

try	{

...

}	catch	(Exception	ex)	{

...

}	finally	{

			return	bookJSONString;

}

8.	 Build	up	your	request	URI	in	the	try	block:

//Build	up	your	query	URI,	limiting	results	to	10	items	and	printed	books

Uri	builtURI	=	Uri.parse(BOOK_BASE_URL).buildUpon()

							.appendQueryParameter(QUERY_PARAM,	queryString)

							.appendQueryParameter(MAX_RESULTS,	"10")

							.appendQueryParameter(PRINT_TYPE,	"books")

							.build();

9.	 Convert	your	URI	to	a	URL:

URL	requestURL	=	new	URL(builtURI.toString());

Introduction

333

https://developer.android.com/reference/android/net/Uri.Builder.html

2.5	Make	the	Request

It	is	fairly	common	to	make	an	API	request	via	the	internet.	Since	you	will	probably	use	this	functionality	again,	you	may
want	to	create	a	utility	class	with	this	functionality	or	develop	a	useful	subclass	for	your	own	convenience.	This	API	request
uses	the	HttpURLConnection	class	in	combination	with	an	InputStream	and	a	StringBuffer	to	obtain	the	JSON	response
from	the	web.	If	at	any	point	the	process	fails	and	InputStream	or	StringBuffer	are	empty,	it	returns	null	signifying	that	the
query	failed.

1.	 In	the	try	block	of	the		getBookInfo()		method,	open	the	URL	connection	and	make	the	request:

urlConnection	=	(HttpURLConnection)	requestURL.openConnection();

urlConnection.setRequestMethod("GET");

urlConnection.connect();

2.	 Read	the	response	using	an	InputStream	and	a	StringBuffer,	then	convert	it	to	a		String	:

InputStream	inputStream	=	urlConnection.getInputStream();

StringBuffer	buffer	=	new	StringBuffer();

if	(inputStream	==	null)	{

			//	Nothing	to	do.

			return	null;

}

reader	=	new	BufferedReader(new	InputStreamReader(inputStream));

String	line;

while	((line	=	reader.readLine())	!=	null)	{

			/*	Since	it's	JSON,	adding	a	newline	isn't	necessary	(it	won't	affect

						parsing)	but	it	does	make	debugging	a	*lot*	easier	if	you	print	out	the

						completed	buffer	for	debugging.	*/

			buffer.append(line	+	"\n");

}

if	(buffer.length()	==	0)	{

			//	Stream	was	empty.		No	point	in	parsing.

			return	null;

}

bookJSONString	=	buffer.toString();

3.	 Close	the	try	block	and	log	the	exception	in	the	catch	block.

catch	(IOException	e)	{

			e.printStackTrace();

			return	null;

}

4.	 Close	both	the	urlConnection	and	the	reader	variables	in	the	finally	block:

finally	{

			if	(urlConnection	!=	null)	{

							urlConnection.disconnect();

			}

			if	(reader	!=	null)	{

							try	{

											reader.close();

							}	catch	(IOException	e)	{

											e.printStackTrace();

							}

			}

}

Note:	Each	time	the	connection	fails,	this	code	returns	null.	This	means	that		onPostExecute()		will	have	to	check	its
input	parameter	for	a	null	string	and	let	the	user	know	the	connection	failed.	This	error	handling	strategy	is	simplistic,
as	the	user	has	no	idea	why	the	connection	failed.	A	better	solution	for	a	production	application	would	be	to	handle
each	point	of	failure	differently	so	that	the	user	can	get	the	appropriate	feedback.

5.	 Log	the	value	of	the		bookJSONString		variable	before	returning	it.	You	are	now	done	with	the		getBookInfo()		method.

Introduction

334

https://developer.android.com/reference/java/net/HttpURLConnection.html
https://developer.android.com/reference/java/io/InputStream.html
https://developer.android.com/reference/java/lang/StringBuffer.html
https://developer.android.com/reference/java/io/InputStream.html
https://developer.android.com/reference/java/lang/StringBuffer.html

	Log.d(LOG_TAG,	bookJSONString);

6.	 In	your	AsyncTask		doInBackground()		method,	call	the		getBookInfo()		method,	passing	in	the	search	term	which	you
obtained	from	the		params		argument	passed	in	by	the	system	(it	is	the	first	value	in	the		params		array).	Return	the
result	of	this	method	in	the		doInBackground()		method:

return	NetworkUtils.getBookInfo(params[0]);

7.	 Now	that	your	AsyncTask	is	set	up,	you	need	to	launch	it	from	the	MainActivity	using	the		execute()		method.	Add	the
following	code	to	your		searchBooks()		method	in	MainActivity.java	to	launch	the	AsyncTask:

new	FetchBook(mTitleText,	mAuthorText).execute(mQueryString);

8.	 Run	your	app.	Execute	a	search.	Your	app	will	crash.	Look	at	your	Logs	to	see	what	is	causing	the	error.	You	should
see	the	following	line:

Caused	by:	java.lang.SecurityException:	Permission	denied	(missing	INTERNET	permission?)

This	error	indicates	that	you	have	not	included	the	permission	to	access	the	internet	in	your	AndroidManifest.xml	file.
Connecting	to	the	internet	introduces	new	security	concerns,	which	is	why	your	apps	do	not	have	connectivity	by	default.
You	must	add	permissions	manually	in	the	form	of	a		<uses-permission>	;	tag	in	the	AndroidManifest.xml.

2.6	Add	the	Internet	permissions

1.	 Open	the	AndroidManifest.xml	file.
2.	 All	permissions	of	your	app	need	to	be	put	in	the	AndroidManifest.xml	file	outside	of	the		<application>	;	tag.	You

should	be	sure	to	follow	the	order	in	which	tags	are	defined	in	AndroidManifest.xml.
3.	 Add	the	following	xml	tags	outside	of	the		<application>		tag:

<uses-permission	android:name="android.permission.INTERNET"	/>

<uses-permission	android:name="android.permission.ACCESS_NETWORK_STATE"	/>

4.	 Build	and	run	your	app	again.	Running	a	query	should	now	result	in	a	JSON	string	being	printed	to	the	Log.

2.7	Parse	the	JSON	string

Now	that	you	have	the	correct	response	to	your	query,	you	must	parse	the	results	to	extract	the	information	you	want	to
display	in	the	UI.	Fortunately,	Java	has	existing	classes	that	aids	in	the	parsing	and	handling	of	JSON	type	data.	This
process,	as	well	as	updating	the	UI,	will	happen	in	the		onPostExecute()		method.

There	is	chance	that	the		doInBackground()		method	might	not	return	the	expected	JSON	string.	For	example,	the	try	catch
might	fail	and	throw	an	exception,	the	network	might	time	out	or	other	unhandled	errors	might	occur.	In	those	cases,	the
Java	JSON	methods	will	fail	to	parse	the	data	and	will	throw	exceptions.	This	is	why	you	have	to	do	the	parsing	in	the	try
block,	and	the	catch	block	must	handle	the	case	where	incorrect	or	incomplete	data	is	returned.

To	parse	the	JSON	data	and	handle	possible	exceptions,	do	the	following:

1.	 In		onPostExecute()	,	add	a	try/catch	block	below	the	call	to		super	.
2.	 Use	the	built-in	Java	JSON	classes	(JSONObject		and		JSONArray)	to	obtain	the	JSON	array	of	results	items	in	the	try

block.

JSONObject	jsonObject	=	new	JSONObject(s);

JSONArray	itemsArray	=	jsonObject.getJSONArray("items");

3.	 Iterate	through	the		itemsArray	,	checking	each	book	for	title	and	author	information.	If	both	are	not	null,	exit	the	loop
and	update	the	UI;	otherwise	continue	looking	through	the	list.	This	way,	only	entries	with	both	a	title	and	authors	will
be	displayed.

Introduction

335

//Iterate	through	the	results

for(int	i	=	0;	i<itemsArray.length();	i++){

			JSONObject	book	=	itemsArray.getJSONObject(i);	//Get	the	current	item

			String	title=null;

			String	authors=null;

			JSONObject	volumeInfo	=	book.getJSONObject("volumeInfo");

			try	{

							title	=	volumeInfo.getString("title");

							authors	=	volumeInfo.getString("authors");

			}	catch	(Exception	e){

							e.printStackTrace();

			}

			//If	both	a	title	and	author	exist,	update	the	TextViews	and	return

			if	(title	!=	null	&&	authors	!=	null){

							mTitleText.setText(title);

							mAuthorText.setText(authors);

							return;

			}

}

4.	 If	there	are	no	results	which	meet	the	criteria	of	having	both	a	valid	author	and	a	title,	and	the	loop	has	stopped,	set	the
title	TextView	to	read	"No	Results	Found",	and	clear	the		authors		TextView.

5.	 In	the	catch	block,	print	the	error	to	the	log,	set	the	title	TextView	to	"No	Results	Found",	and	clear	the		authors	
TextView.

Solution	code:

Introduction

336

//Method	for	handling	the	results	on	the	UI	thread

@Override

protected	void	onPostExecute(String	s)	{

				super.onPostExecute(s);

				try	{

							JSONObject	jsonObject	=	new	JSONObject(s);

							JSONArray	itemsArray	=	jsonObject.getJSONArray("items");												

							for(int	i	=	0;	i<itemsArray.length();	i++){

											JSONObject	book	=	itemsArray.getJSONObject(i);

											String	title=null;

											String	authors=null;

											JSONObject	volumeInfo	=	book.getJSONObject("volumeInfo");

											try	{

															title	=	volumeInfo.getString("title");

															authors	=	volumeInfo.getString("authors");

											}	catch	(Exception	e){

															e.printStackTrace();

											}

											if	(title	!=	null	&&	authors	!=	null){

															mTitleText.setText(title);

															mAuthorText.setText(authors);

															return;

											}

							}

							mTitleText.setText("No	Results	Found");

							mAuthorText.setText("");

			}	catch	(Exception	e){

							mTitleText.setText("No	Results	Found");

							mAuthorText.setText("");

							e.printStackTrace();

			}

}

Task	3.	Implement	UI	Best	Practices
You	now	have	a	functioning	app	that	uses	the	Books	API	to	execute	a	book	search.	However,	there	are	a	few	things	that	to
do	not	behave	as	expected:

When	the	user	clicks	Search	Books,	the	keyboard	does	not	disappear,	and	there	is	no	indication	to	the	user	that	the
query	is	actually	being	executed.
If	there	is	no	network	connection,	or	the	search	field	is	empty,	the	app	still	tries	to	query	the	API	and	fails	without
properly	updating	the	UI.
If	you	rotate	the	screen	during	a	query,	the	AsyncTask	becomes	disconnected	from	the	Activity,	and	it	is	not	able	to
update	the	UI	with	the	results.

You	will	fix	these	issues	in	the	following	section.

3.1	Hide	the	Keyboard	and	Update	the	TextView

The	user	experience	of	searching	is	not	intuitive.	When	the	button	is	pushed,	the	keyboard	remains	visible	and	there	is	no
way	to	know	that	the	query	is	in	progress.	One	solution	is	to	programmatically	hide	the	keyboard	and	update	one	of	the
result	TextViews	to	read	"Loading…"	while	the	query	is	being	performed.	To	use	this	solution,	you	can:

1.	 Add	the	following	code	to	the		searchBooks()		method	to	hide	the	keyboard	when	the	button	is	pressed:

Introduction

337

InputMethodManager	inputManager	=	(InputMethodManager)

																					getSystemService(Context.INPUT_METHOD_SERVICE);

inputManager.hideSoftInputFromWindow(getCurrentFocus().getWindowToken(),

																					InputMethodManager.HIDE_NOT_ALWAYS);

2.	 Add	a	line	of	code	beneath	the	call	to	execute	the	FetchBook	task	that	changes	the	title	TextView	to	read	"Loading…"
and	clears	the	author	TextView.

3.	 Extract	your	String	resources.

3.2	Manage	the	network	state	and	the	empty	search	field	case

Whenever	your	application	uses	the	network,	it	needs	to	handle	the	possibility	that	a	network	connection	is	unavailable.
Before	attempting	to	connect	to	the	network	in	your	AsyncTask	or	AsyncTaskLoader,	your	app	should	check	the	state	of	the
network	connection.

1.	 Modify	your		searchBooks()		method	to	check	both	the	network	connection	and	if	there	is	any	text	in	the	search	field
before	executing	the	FetchBook	task.

2.	 Update	the	UI	in	the	case	that	there	is	no	internet	connection	or	no	text	in	the	search	field.	Display	the	cause	of	the
error	in	the	TextView.

Solution	code:

public	void	searchBooks(View,	view)	{

			String	queryString	=	mBookInput.getText().toString();

			InputMethodManager	inputManager	=	(InputMethodManager)

											getSystemService(Context.INPUT_METHOD_SERVICE);

			inputManager.hideSoftInputFromWindow(getCurrentFocus().getWindowToken(),

											InputMethodManager.HIDE_NOT_ALWAYS);

			ConnectivityManager	connMgr	=	(ConnectivityManager)

											getSystemService(Context.CONNECTIVITY_SERVICE);

			NetworkInfo	networkInfo	=	connMgr.getActiveNetworkInfo();

			if	(networkInfo	!=	null	&&	networkInfo.isConnected()	&&	queryString.length()!=0)	{

							new	FetchBook(mTitleText,	mAuthorText).execute(queryString);

							mAuthorText.setText("");

							mTitleText.setText(R.string.loading);

			}

			else	{

							if	(queryString.length()	==	0)	{

											mAuthorText.setText("");

											mTitleText.setText("Please	enter	a	search	term");

							}	else	{

											mAuthorText.setText("");

											mTitleText.setText("Please	check	your	network	connection	and	try	again.");

							}

			}

}

Task	4.	Migrate	to	AsyncTaskLoader
When	using	an	AsyncTask,	it	cannot	update	the	UI	if	a	configuration	change	occurs	while	the	background	task	is	running.
To	address	this	situation,	the	Android	SDK	provides	a	set	of	classes	called	loaders	designed	specifically	for	loading	data
into	the	UI	asynchronously.	If	you	use	a	loader,	you	don't	have	to	worry	about	the	loader	losing	the	ability	to	update	the	UI
in	the	activity	that	initially	created	it.	The	Loader	framework	does	the	work	for	you	by	reassociating	the	loader	with	the
appropriate	Activity	when	the	device	changes	its	configuration.	This	means	that	if	you	rotate	the	device	while	the	task	is	still
running,	the	results	will	be	displayed	correctly	in	the	Activity	once	the	data	is	returned.

Introduction

338

In	this	task	you	will	use	a	specific	loader	called	an	AsyncTaskLoader.	An	AsyncTaskLoader	is	an	abstract	subclass	of
Loader	and	uses	an	AsyncTask	to	efficiently	load	data	in	the	background.

Note:	When	you	used	an	AsyncTask,	you	implemented	the		onPostExecute()		method	in	the	AsyncTask	to	display	the
results	on	the	screen.	When	you	use	an	AsyncTaskLoader,	you	define	callback	methods	in	the	Activity	to	display	the
results.
Loaders	provide	a	lot	of	additional	functionality	beyond	just	running	tasks	and	reconnecting	to	the	Activity.	For	example,	you
can	attach	a	loader	to	a	data	source	and	have	it	automatically	update	the	UI	elements	when	the	underlying	data	changes.
Loaders	can	also	be	programmed	to	resume	loading	if	interrupted.

So	why	should	you	use	an	AsyncTask	if	an	AsyncTaskLoader	is	so	much	more	useful?	The	answer	is	that	it	depends	on	the
situation.	If	the	background	task	is	likely	to	finish	before	any	configuration	changes	occur,	and	it	is	not	crucial	that	it	updates
the	UI,	an	AsyncTask	may	be	sufficient.	The	Loader	framework	actually	uses	an	AsyncTask	behind	the	scenes	to	work	its
magic.

A	good	rule	of	thumb	is	to	use	an	AsyncTaskLoader	instead	of	an	AsyncTask	if	the	user	might	rotate	the	screen	while	the
job	is	running,	or	when	it's	critical	to	update	the	UI	when	the	job	finishes.

In	this	exercise	you	will	learn	how	to	use	a	AsyncTaskLoader	instead	of	an	AsyncTask	to	run	your	Books	API	query.	You	will
learn	more	about	the	uses	of	other	loaders	in	a	later	lesson.

Implementing	a	Loader	requires	the	following	components:

A	class	that	extends	a	Loader	class	(in	this	case,	AsyncTaskLoader).
An	Activity	that	implements	the	LoaderManager.LoaderCallbacks	class.
An	instance	of	the	LoaderManager.

1.	 The	Activity.
2.	 The	LoaderManager.LoaderCallbacks.
3.	 The	Loader	subclass.
4.	 The	Loader	Implementation.

The	LoaderManager	automatically	moves	the	loader	through	its	lifecycle	depending	on	the	state	of	the	data	and	the	Activity.
For	example,	the	LoaderManager	calls		onStartLoading()		when	the	loader	is	initialized	and	destroys	the	loader	when	the
Activity	is	destroyed.

The	LoaderManager.LoaderCallbacks	are	a	set	of	methods	in	the	Activity	that	are	called	by	the	LoaderManager	when
loader	is	being	created,	when	the	data	has	finished	loading,	and	when	the	loader	is	reset.	The	LoaderCallbacks	can	take
the	results	of	the	task	and	pass	them	back	to	the	Activity's	UI.

Introduction

339

https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html
https://developer.android.com/reference/android/app/LoaderManager.html

The	Loader	subclass	contains	the	details	of	loading	the	data,	usually	overriding	at	least		onStartLoading()	.	It	can	also
contain	additional	features	such	as	observing	the	data	source	for	changes	and	caching	data	locally.

Your	Loader	subclass	implements	Loader	lifecycle	callback	methods	such	as		onStartLoading()	,		onStopLoading()		and
	onReset()	.	The	loader	subclass	also	contains	the		forceLoad()		method	which	initiates	the	loading	of	the	data.	This
method	is	not	called	automatically	when	the	loader	is	started	because	some	setup	is	usually	required	before	a	load	is
performed.	The	simplest	implementation	would	call		forceLoad()		in		onStartLoading()		which	results	in	a	load	every	time
the	LoaderManager	starts	the	loader.

4.1	Create	an	AsyncTaskLoader

1.	 Copy	the	WhoWroteIt	project,	in	order	to	preserve	the	results	of	the	previous	practical.	Rename	the	copied	project
WhoWroteItLoader.

2.	 Create	a	new	class	in	your	Java	directory	called	BookLoader.
3.	 Have	your	BookLoader	class	extend	AsyncTaskLoader	with	parameterized	type	<String>.
4.	 Make	sure	you	import	the	loader	from	the	v4	Support	Library.
5.	 Implement	the	required	method	(loadInBackground()).	Notice	the	similarity	between	this	method	and	the	initial

	doInBackground()		method	from	AsyncTask.
6.	 Create	the	constructor	for	your	new	class.	In	Android	Studio,	it's	likely	the	class	declaration	will	still	be	underlined	in	red

because	your	constructor	does	not	match	the	superclass	implementation.	With	your	text	cursor	on	the	class
declaration	line,	press	Alt	+	Enter	(Option	+	Enter	on	a	Mac)	and	choose	Create	constructor	matching	super.	This
will	create	a	constructor	with	the	context	as	a	parameter.

Define	onStartLoading()

1.	 Press	Ctrl	+	O	to	open	the	Override	methods	menu,	and	select	onStartLoading.	This	method	is	called	by	the	system
when	you	start	your	loader.

2.	 The	loader	will	not	actually	start	loading	the	data	until	you	call	the	forceLoad()	method.	Inside	the
	onStartLoading()	method	stub,	call		forceLoad()	to	start	the		loadInBackground()	method	once	the	Loader	is	created.

Define	loadInBackground()

1.	 Create	a	member	variable		mQueryString		that	will	hold	the	query		String	,	and	modify	the	constructor	to	take	a		String	
as	an	argument	and	assign	it	to	the		mQueryString		variable.

2.	 In	the		loadInBackground()	method,	call	the		getBookInfo()	method	passing	in		mQueryString	,	and	return	the	result	to
download	the	information	from	the	Books	API:

@Override

public	String	loadInBackground()	{

			return	NetworkUtils.getBookInfo(mQueryString);

}

4.2	Modify	MainActivity
You	must	now	implement	the	Loader	Callbacks	in	your	MainActivity	to	handle	the	results	of	the
	loadInBackground()	AsyncTaskLoader	method.

1.	 Add	the		LoaderManager.LoaderCallbacks		implementation	to	your	Main	Activity	class	declaration,	parameterized	with	the
	String		type:

public	class	MainActivity	extends	AppCompatActivity

																implements	LoaderManager.LoaderCallbacks<String>{

2.	 Implement	all	the	required	methods:	onCreateLoader(),	onLoadFinished(),	onLoaderReset()	.	Place	your	text	cursor	on
the	class	signature	line	and	enter	Alt	+	Enter	(Option	+	Enter	on	a	Mac).	Make	sure	all	the	methods	are	selected.	

Note:	If	the	imports	for		Loader		and		LoaderManager		in	MainActivity	do	not	match	the	import	for	the		AsyncTaskLoader	
for	the		BookLoader		class,	you	will	have	some	type	errors	in	the	callbacks.	Make	sure	that	all	imports	are	from	the

Introduction

340

https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteIt
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html

Android	Support	Library.

Loaders	use	the	Bundle	class	to	pass	information	from	the	calling	activity	to	the	LoaderCallbacks.	You	can	add	primitive
data	to	a	bundle	with	the	appropriate		putType()	method.

To	start	a	loader,	you	have	two	options:

	initLoader()	:	This	method	creates	a	new	loader	if	one	does	not	exist	already,	and	passes	in	the	arguments	Bundle.	If
a	loader	exists,	the	calling	Activity	is	re-associated	with	it	without	updating	the	Bundle.
	restartLoader()	:	This	method	is	the	same	as	initLoader()	except	that	if	it	finds	an	existing	loader,	it	destroys	and
recreates	it	with	the	new	Bundle.

Both	of	these	methods	are	defined	in	the	LoaderManager,	which	manages	all	the	Loader	instances	used	in	an	Activity	(or
Fragment).	Each	Activity	has	exactly	one	LoaderManager	instance	that	is	responsible	for	the	lifecycle	of	the	Loaders	that	it
manages.

Currently,	the	FetchBook	AsyncTask	is	triggered	when	the	user	presses	the	button.	You'll	want	to	start	your	loader	with	a
new	Bundle	each	time	the	button	is	pressed.	To	do	this,	you	need	to	edit	the	onClick	method	for	the	button.

1.	 In	the		searchBooks()		method,	which	is	the	onClick	method	for	the	button,	replace	the	call	to	execute	the	FetchBook
task	with	a	call	to		restartLoader()	,	passing	in	the	query	string	you	got	from	the	EditText	in	the	Bundle:

Bundle	queryBundle	=	new	Bundle();

queryBundle.putString("queryString",	queryString);

getSupportLoaderManager().restartLoader(0,	queryBundle,this);

The		restartLoader()		method	takes	three	arguments:

A	loader		id		(useful	if	you	implement	more	than	one	loader	in	your	activity).
An	arguments		Bundle		(this	is	where	any	data	needed	by	the	loader	goes).
The	instance	of	LoaderCallbacks	you	implemented	in	your	activity.	If	you	want	the	loader	to	deliver	the	results	to
the	MainActivity,	specify		this		as	the	third	argument.

2.	 Examine	the	Override	methods	in	the	LoaderCallbacks	class.	These	methods	are:

	onCreateLoader()	:	Called	when	you	instantiate	your	Loader.
	onLoadFinished()	:	Called	when	the	loader's	task	finishes.	This	is	where	you	add	the	code	to	update	your	UI	with
the	results.
	onLoaderReset()	:	Cleans	up	any	remaining	resources.

You	will	only	be	defining	the	first	two	methods,	since	your	current	data	model	is	a	simple	string	that	does	not	need	extra
care	when	the	loader	is	reset.

Implement	onCreateLoader()

1.	 In		onCreateLoader()	,	return	an	instance	of	the	BookLoader	class,	passing	in	the		queryString		obtained	from	the
arguments	Bundle:

return	new	BookLoader(this,	args.getString("queryString"));

Implement	onLoadFinished()

1.	 Update		onLoadFinished()		to	process	your	result,	which	is	the	raw	JSON	String	response	from	the	BooksAPI.
i.	 Copy	the	code	from		onPostExecute()		in	your	FetchBook	class	to		onLoadFinished()		in	your	MainActivity,	excluding
the	call	to		super.onPostExecute()	.

ii.	 Replace	the	argument	to	the	JSONObject	constructor	with	the	passed	in	data		String	.
2.	 Run	your	app.

You	should	have	the	same	functionality	as	before,	but	now	in	a	Loader!	One	thing	still	does	not	work.	When	the	device
is	rotated,	the		View		data	is	lost.	That	is	because	when	the	Activity	is	created	(or	recreated),	the	Activity	does	not	know
there	is	a	loader	running.	An		initLoader()		method	is	needed	in		onCreate()		of	MainActivity	to	reconnect	to	the

Introduction

341

https://developer.android.com/reference/android/os/Bundle.html

loader.

3.	 Add	the	following	code	in		onCreate()		to	reconnect	to	the	Loader	if	it	already	exists:

if(getSupportLoaderManager().getLoader(0)!=null){

			getSupportLoaderManager().initLoader(0,null,this);

}

Note:	If	the	loader	exists,	initialize	it.	You	only	want	to	reassociate	the	loader	to	the	Activity	if	a	query	has	already	been
executed.	In	the	initial	state	of	the	app,	no	data	is	loaded	so	there	is	none	to	preserve.

4.	 Run	your	app	again	and	rotate	the	device.	The	LoaderManager	now	preserves	your	data	across	device	configurations!

5.	 Remove	the	FetchBook	class	as	it	is	no	longer	used.

Solution	code
Android	Studio	project:	WhoWroteItLoader

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	Explore	the	the	specific	API	you	are	using	in	greater	detail	and	find	a	search	parameter	that	restricts	the
results	to	books	that	are	downloadable	in	the	epub	format.	Add	this	parameter	to	your	request	and	view	the	results.

Challenge	2:	The	response	from	the	Books	API	contains	as	many	results	as	you	set	with	the		maxResults		parameter,	but	in
this	implementation	you	are	only	returning	the	first	valid	Book	result.	Modify	your	app	so	that	the	data	is	displayed	in	a
RecyclerView	that	has	a		maxResults		amount	of	entries.

Summary
Tasks	that	connect	to	the	network,	or	require	extra	time	processing,	should	not	be	executed	on	the	UI	thread.

The	Android	Runtime	usually	defaults	to	StrictMode	which	will	raise	an	exception	if	you	attempt	network
connectivity	or	file	access	on	the	UI	thread.

The	Google	API	Explorer	is	a	tool	that	helps	you	explore	numerous	Google	APIs	interactively.
The	Books	Search	API	is	a	set	of	RESTful	APIs	to	access	Google	Books	programmatically.
An	API	request	to	Google	Books	is	in	the	form	of	a	URL.
The	response	to	that	API	request	returns	a	JSON	string.

Use		getText()		to	retrieve	text	from	an	EditText	view.	It	can	be	converted	into	a	simple	String	by	using		toString()	.
The	URI	class	has	a	convenient	method,		Uri.buildUpon()		that	returns	a	URI.Builder	that	can	be	used	to	construct	a
URI	string.
An	AsyncTask	is	a	class	that	allows	you	to	run	tasks	in	the	background,	asynchronously,	instead	of	on	the	UI	thread.

An	AsyncTask	can	be	started	via		execute()	.
An	AsyncTask	will	not	be	able	to	update	the	UI	if	the	Activity	it	is	controlling	terminates	(such	as	in	a	configuration
change	on	the	device).
An	AsyncTask	must	be	subclassed	to	be	used.	The	subclass	will	override	at	least	one	method
doInBackground(Params)	,	and	most	often	will	override	a	second	one	onPostExecute(Result)	as	well.

Whenever	an	AsyncTask	is	executed,	it	goes	through	the	following	4	steps:

1.	 onPreExecute().	Invoked	on	the	UI	thread	before	the	task	is	executed.	This	step	is	normally	used	to	set	up	the
task.

2.	 doInBackground(Params).	Invoked	on	the	background	thread	immediately	after	onPreExecute()	finishes
executing.	This	step	is	used	to	perform	background	computation	that	can	take	a	long	time.

Introduction

342

https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteItLoader
https://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
https://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)
https://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute()
ttps://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
https://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute()

3.	 onProgressUpdate(Progress).	Invoked	on	the	UI	thread	after	you	a	call	in	doInBackground	to
publishProgress(Progress).

4.	 onPostExecute(Result).	Invoked	on	the	UI	thread	after	the	background	computation	has	finished.	The	result	of	the
background	computation	gets	passed	into	this	method	as	a	parameter.

AsyncTaskLoader	is	the	Loader	equivalent	of	an	AsyncTask.	It	provides	a	method,		loadInBackground()	,	that	runs	on	a
separate	thread	and	whose	results	are	automatically	delivered	to	the	UI	thread	(to	the		onLoadFinished()	
LoaderManager	callback).
You	must	configure	network	permissions	in	the	Android	manifest	file	to	connect	to	the	Internet:

<uses-permission	android:name="android.permission.INTERNET">

Use	the	built	in	Java	JSON	classes	(JSONObject		and		JSONArray)	to	create	and	parse	JSON	strings.

A	Loader	allows	asynchronous	loading	of	data	in	an	Activity.
A	Loader	can	be	used	to	re-establish	communication	to	the	UI	when	an	Activity	is	terminated	before	the	task
finishes	(such	as	by	device	rotation).
An	AsyncTaskLoader	is	a	Loader	that	uses	an	AsyncTask	helper	class	behind	the	scenes	to	do	work	in	the
background	off	the	main	thread.
Loaders	are	managed	by	a	LoaderManager;	one	or	more	Loaders	can	be	assigned	and	managed	by	a	single
LoadManager.
The	LoaderManager	allows	you	to	associate	a	newly	created	Activity	with	a	Loader	using
	getSupportLoaderManager().initLoader()	.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Connect	to	the	Internet	with	AsyncTask	and	AsyncTaskLoader

Learn	more
Android	Developer	Documentation

Guides

Connecting	to	the	Network
Managing	Network	State
Loaders

Reference

AsyncTask
AsyncTaskLoader

Introduction

343

https://developer.android.com/reference/android/os/AsyncTask.html#onProgressUpdate(Progress...)
https://developer.android.com/reference/android/os/AsyncTask.html#publishProgress(Progress...)
https://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/72_c_connect_to_the_internet.html
https://developer.android.com/training/basics/network-ops/connecting.html
https://developer.android.com/training/basics/network-ops/managing.html
https://developer.android.com/guide/components/loaders.html
http://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html

7.3:	Broadcast	Receivers
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
Task	1.	Setup	the	PowerReceiver	Project
Task	2.	Send	and	Receive	a	Custom	Broadcast
Coding	challenge
Summary
Related	concept
Learn	more

Certain	events	that	can	happen	in	the	Android	system	might	affect	the	functionality	of	applications	installed	on	the	device.
For	example,	if	the	system	has	finished	booting,	you	might	like	your	weather	app	to	update	its	information.	The	Android
framework	handles	this	by	sending	out	system	broadcasts	containing	Intents	that	are	meant	to	be	received	using
BroadcastReceivers.	A	BroadcastReceiver	is	the	base	class	for	code	that	will	receive	Intents	sent	by		sendBroadcast()	.
There	are	two	major	classes	of	broadcasts	that	can	be	received:

Normal	broadcasts	(sent	with	Context.sendBroadcast())	are	completely	asynchronous.	All	receivers	of	the	broadcast
are	run	in	an	undefined	order,	often	at	the	same	time.	This	is	more	efficient,	but	means	that	receivers	cannot	use	the
result	or	abort	APIs	included	here.
Ordered	broadcasts	(sent	with	Context.sendOrderedBroadcast)	are	delivered	to	one	receiver	at	a	time.	As	each
receiver	executes	in	turn,	it	can	propagate	a	result	to	the	next	receiver,	or	it	can	completely	abort	the	broadcast	so	that
it	won't	be	passed	to	other	receivers.	The	order	receivers	run	in	can	be	controlled	with	the	android:priority	attribute	of
the	matching	intent-filter;	receivers	with	the	same	priority	will	be	run	in	an	arbitrary	order.

Even	in	the	case	of	normal	broadcasts,	the	system	may	in	some	situations	revert	to	delivering	the	broadcast	one	receiver	at
a	time.	In	particular,	for	receivers	that	may	require	the	creation	of	a	process,	only	one	will	be	run	at	a	time	to	avoid
overloading	the	system	with	new	processes.	In	this	situation,	however,	the	non-ordered	semantics	hold:	these	receivers	still
cannot	return	results	or	abort	their	broadcast.

Additionally,	you	can	create	Intents	with	custom	actions	and	broadcast	them	yourself	from	your	application	using
the	sendBroadcast()		method.	The	broadcast	will	be	received	by	all	applications	with	a	BroadcastReceiver	registered	for	that
action.	To	learn	more	about	broadcast	Intents	and	Broadcast	receivers,	visit	the	Intent	documentation.

It	is	useful	to	note	that	while	the	Intent	class	is	used	for	sending	and	receiving	broadcasts,	the	Intent	broadcast	mechanism
is	completely	separate	from	Intents	that	are	used	to	start	Activities.

In	this	practical,	you'll	create	an	app	that	responds	to	a	change	in	the	charging	state	of	your	device,	as	well	as	sends	and
receives	a	custom	Broadcast	Intent.

What	you	should	already	KNOW
Prior	to	this	practical,	you	should	be	able	to:

Identify	key	parts	of	the	AndroidManifest.xml	file.
Create	Implicit	Intents.

What	you	will	LEARN
During	this	practical,	you	will	learn	to:

Introduction

344

https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestIntentFilter_priority
https://developer.android.com/reference/android/content/Intent.html

Subclass	and	implement	a	BroadcastReceiver.
Register	for	system	Broadcast	intents.
Create	and	send	custom	Broadcast	intents.

What	you	will	DO
In	this	practical,	you	will:

Subclass	a	BroadcastReceiver	to	show	a	Toast	when	a	broadcast	is	received.
Register	your	receiver	to	listen	to	system	broadcasts.
Send	and	receive	a	custom	broadcast	intent.

App	overview
The	PowerReceiver	application	will	register	a	BroadcastReceiver	that	displays	a	Toast	message	when	the	device	is
connected	or	disconnected	from	power.	It	will	also	send	and	receive	a	custom	Broadcast	Intent	to	display	a	different	Toast
message.

Introduction

345

Introduction

346

Task	1.	Set	up	the	PowerReceiver	Project

1.1	Create	the	Project
1.	 Create	a	new	project	called	PowerReceiver,	accept	the	default	options	and	use	the	Empty	template.
2.	 Create	a	new	Broadcast	Receiver.	Select	the	package	name	in	the	Android	Project	View	and	navigate	to	File	>	New	>

Other	>	Broadcast	Receiver.
3.	 Name	the	class	CustomReceiver	and	make	sure	"Exported"	and	"Enabled"	are	checked.

Note:	The	"Exported"	feature	allows	your	application	to	respond	to	outside	broadcasts,	while	"Enabled"	allows	it	to	be
instantiated	by	the	system.

4.	 Navigate	to	your	Android	manifest	file.	Note	that	Android	Studio	automatically	generates	a		<receiver>		tag	with	your
chosen	options	as	attributes.	BroadcastReceivers	can	also	be	registered	programmatically,	but	it	is	easiest	to	define
them	in	the	manifest.

1.2	Register	your	Receiver	for	system	broadcasts

In	order	to	receive	any	broadcasts,	you	must	first	determine	which	broadcast	intents	you	are	interested	in.	In	the	Intent
documentation,	under	"Standard	Broadcast	Actions",	you	can	find	some	of	the	common	broadcast	intents	sent	by	the
system.	In	this	app,	you	will	be	interested	in	two	particular	broadcasts:		ACTION_POWER_CONNECTED		and
	ACTION_POWER_DISCONNECTED	.	BroadcastReceivers	register	for	broadcast	the	same	way	you	registered	your	activities	for
implicit	Intents:	you	use	an	intent	filter.	You	learned	about	implicit	intents	in	an	earlier	practical.

1.	 In	the	AndroidManifest.xml	file,	add	the	following	code	between	the		<receiver>		tags	to	register	your	Receiver	for	the
system	Intents:

<intent-filter>

			<action	android:name="android.intent.action.ACTION_POWER_CONNECTED"/>

			<action	android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>

</intent-filter>

1.3	Implement	onReceive()	in	your	BroadcastReceiver

Once	the	BroadcastReceiver	intercepts	a	broadcast	that	it	is	registered	for,	the	Intent	is	delivered	to	the	receiver's
	onReceive()		method,	along	with	the	context	in	which	the	receiver	is	running.

1.	 Navigate	to	your	CustomReceiver	file,	and	delete	the	default	implementation	inside	the		onReceive()		method.
2.	 Obtain	the	action	from	the	intent	and	store	it	in	a		String		variable	called		intentAction	:

@Override

public	void	onReceive(Context	context,	Intent	intent)	{

			String	intentAction	=	intent.getAction();

}

3.	 Create	a		switch		statement	with	the		intentAction		string,	so	that	your	app	can	display	a	different	toast	message	for
each	specific	action	your	receiver	is	registered	for:

switch	(intentAction){

			case	Intent.ACTION_POWER_CONNECTED:

							break;

			case	Intent.ACTION_POWER_DISCONNECTED:

							break;

}

4.	 Initialize	a		String		variable	called		toastMessage		before	the		switch		statement,	and	make	it's	value		null		so	that	it
can	be	set	depending	on	the	broadcast	action	you	receive.

5.	 Assign		toastMessage		to	"Power	connected!"	if	the	action	is		ACTION_POWER_CONNECTED	,	and	"Power	disconnected!"	if	it	is

Introduction

347

https://developer.android.com/reference/android/content/Intent.html

	ACTION_POWER_DISCONNECTED	.	Extract	your	string	resources.
6.	 Display	a	toast	message	for	a	short	duration	after	the	switch	statement:

Toast.makeText(context,	toastMessage,	Toast.LENGTH_SHORT).show();

7.	 Run	your	app.	After	it	is	installed,	unplug	your	device.	It	may	take	a	moment	the	first	time,	but	sure	enough,	a	toast	is
displayed	each	time	you	plug	in,	or	unplug	your	device.
Note:	If	you	are	using	an	emulator,	you	can	toggle	the	power	connection	state	by	selecting	the	ellipses	icon	for	the
menu,	choose	Battery	on	the	left	bar,	and	toggle	using	the	Charger	connection	setting.

1.4	Restrict	your	Broadcast	Receiver

Broadcast	Receivers	are	always	active,	and	therefore	your	app	does	not	even	need	to	be	running	for	its		onReceive()	
method	to	be	called.

1.	 Go	ahead,	try	it	out:	close	your	app,	and	plug	or	unplug	your	device.

The	toast	message	is	still	displayed!

There	is	a	lot	of	responsibility	on	you,	as	the	developer,	to	not	overwhelm	your	user	with	notifications	or	unwanted
functionality	every	time	a	broadcast	occurs.	In	this	example,	having	a	Toast	message	pop	up	every	time	the	power
state	changes	could	quickly	annoy	the	user.	To	limit	this,	you	will	add	some	code	to	ensure	that	the	broadcast	receiver
is	only	active	when	the	app	is	showing.

The	PackageManager	class	is	responsible	for	enabling	and	disabling	a	particular	android	component	(such	as	a
service,	activity	or	broadcast	receiver).	This	is	accomplished	using	the		setComponentEnabledSetting()	method	which
takes	three	arguments:

The	ComponentName	(an	identifier	for	the	component	you	want	to	enable	or	disable).
One	of	the	PackageManager	class	constants	that	represent	the	enabled	state	of	a	component.	In	this	app	we	will
use		PackageManager.COMPONENT_ENABLED_STATE_ENABLED		and		PackageManager.COMPONENT_ENABLED_STATE_DISABLED	.	See
the	PackageManager	reference	for	the	other	constants.
An	optional	flag	constant	that	tells	the	system	not	to	kill	the	app	when	changing	the	state	of	the	component:
	PackageManager.DONT_KILL_APP	.

2.	 For	the	broadcast	receiver	to	only	be	active	when	the	app	is	showing,	enable	it	in		onStart()		and	disable	it	in
	onStop()	.

3.	 Create	two	member	variables:	a	PackageManager	and	a	ComponentName.
4.	 Initialize	both	of	them	in		onCreate()	.

Instantiate	the	PackageManager	with		getPackageManager()	.	The	constructor	for	ComponentName	takes	the
application	context	and	the	class	name	of	the	component:

mReceiverComponentName	=	new	ComponentName(this,	CustomReceiver.class);

mPackageManager	=	getPackageManager();

5.	 Override	both		onStart()		and		onStop()	:

@Override

protected	void	onStart()	{

			super.onStart();

}

@Override

protected	void	onStop()	{

			super.onStop();

}

6.	 Call		setComponentEnabledSetting()		on	the	PackageManager	in		onStart()	.	Pass	in	the	Component	name,	the
	PackageManager.COMPONENT_ENABLED_STATE_ENABLED		constant,	and	the		DONT_KILL_APP		flag:

Introduction

348

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjNrp3XopzQAhWCxYMKHWpUBHcQFggyMAM&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fcontent%2Fpm%2FPackageManager.html&usg=AFQjCNFe1CpI3bPMEjsJVMraZ01iAgBVDA&bvm=bv.138169073,d.cWw
https://developer.android.com/reference/android/content/pm/PackageManager.html

mPackageManager.setComponentEnabledSetting

(mReceiverComponentName,	PackageManager.COMPONENT_ENABLED_STATE_ENABLED,

PackageManager.DONT_KILL_APP);

7.	 In		onStop()	,	use	the	PackageManager	to	disable	the	CustomReceiver,	using	the
	PackageManager.COMPONENT_ENABLED_STATE_DISABLED		constant:

mPackageManager.setComponentEnabledSetting

(mReceiverComponentName,	PackageManager.COMPONENT_ENABLED_STATE_DISABLED,

PackageManager.DONT_KILL_APP);

Task	2.	Send	and	Receive	a	Custom	Broadcast
In	addition	to	responding	to	system	broadcasts,	your	application	can	also	send	and	receive	custom	Broadcast	Intents.	A
custom	broadcast	intent	is	exactly	the	same	a	system	one	except	you	must	define	your	own	Intent	action	for	it	(a	unique
string)	and	it's	delivered	using	the		sendBroadcast()		method.	In	this	task,	you	will	add	a	button	to	your	activity	that	sends	a
custom	Broadcast	Intent,	which	will	be	registered	by	your	receiver	and	displayed	in	a	Toast	message.

2.1	Define	your	custom	Broadcast	Action	string
Both	the	sender	and	receiver	of	a	custom	broadcast	must	agree	on	a	unique	action	string	for	the	Broadcast	Intent.	It	is	a
common	practice	to	create	unique	action	strings	by	prepending	your	Action	Name	with	your	package	name.

1.	 Create	a	constant		String		variable	in	both	your	MainActivity	and	your	CustomReceiver	class	to	be	used	as	the
Broadcast	Intent	Action	(this	is	your	custom	action	string):

private	static	final	String	ACTION_CUSTOM_BROADCAST	=

"com.example.android.powerreceiver.ACTION_CUSTOM_BROADCAST";

2.2	Add	a	"Send	Custom	Broadcast"	Button

1.	 In	your	activity_main.xml	file,	add	a	Button	view	with	the	following	attributes:

Attribute Value

android:id "@+id/sendBroadcast"

android:layout_width wrap_content

android:layout_height wrap_content

android:text "Send	Custom	Broadcast"

android:layout_margin "8dp"

android:onClick "sendCustomBroadcast"

2.	 Extract	your	string	resources.
3.	 Create	the	stub	for	the		sendCustomBroadcast()		method:	Click	in	the	yellow	highlighted	onClick	method	name.	Press

Alt	(Option	for	Mac	users)	+	Enter	and	choose	'Create	'sendCustomBroadcast(View)'	in	'MainActivity'.

2.3	Implement	sendCustomBroadcast()

Introduction

349

Because	this	broadcast	is	meant	to	be	used	solely	by	your	application,	you	should	use	LocalBroadcastManager	to	manage
the	broadcasts	in	your	application.	LocalBroadcastManager	is	a	class	that	allows	you	to	register	for	and	send	broadcasts	of
Intents	to	local	objects	within	your	app.	By	keeping	broadcasts	local,	your	application	data	will	not	be	shared	with	other
Android	applications,	keeping	your	information	more	secure	and	maintaining	system	efficiency.

1.	 In	the		sendCustomBroadcast()		method	in	MainActivity,	create	a	new	Intent,	with	your	custom	action	string	as	the
argument.

Intent	customBroadcastIntent	=	new	Intent(ACTION_CUSTOM_BROADCAST);

2.	 Send	the	broadcast	using	the	LocalBroadcastManager	class:
	LocalBroadcastManager.getInstance(this).sendBroadcast(customBroadcastIntent);	

2.4	Register	your	Custom	Broadcast
For	system	broadcasts,	you	registered	your	receiver	in	the	AndroidManifest.xml	file.	It	is	also	possible	to	register	your
receiver	for	specific	actions	programmatically.	For	broadcasts	sent	using	LocalBroadcastManager,	static	registrations	in	the
manifest	is	not	allowed.

If	you	programmatically	register	the	broadcast	receiver,	you	must	also	unregister	the	receiver	when	it	is	no	longer	needed.
In	your	application,	the	receiver	will	only	need	to	respond	to	the	custom	broadcast	when	it	is	running,	so	we	can	therefore
register	the	action	in		onCreate()		and	unregister	it	in		onDestroy()	.

1.	 Create	a	member	variable	in	MainActivity	for	your	Receiver	and	initialize	it:

private	CustomReceiver	mReceiver	=	new	CustomReceiver();

2.	 In		onCreate()	,	get	an	instance	of		LocalBroadcastManager		and	register	your	receiver	with	the	custom	intent	action:

LocalBroadcastManager.getInstance(this)

.registerReceiver(mReceiver,	new	IntentFilter(ACTION_CUSTOM_BROADCAST));

3.	 Override	the		onDestroy()		method	and	unregister	your	receiver	from	the		LocalBroadcastManager	:

@Override

protected	void	onDestroy()	{

			LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver);

			super.onDestroy();

}

2.5	Respond	to	the	Custom	Broadcast
1.	 In		onReceive()		in	your	CustomReceiver	class,	add	a	case	statement	for	the	custom	Intent	Action.
2.	 Modify	the	toast	message	to	"Custom	Broadcast	Received",	extract	it	into	your	strings.xml	and	call	it

	custom_broadcast_toast		(press	Alt	+	Enter	or	Option	+	Enter	on	a	Mac	and	choose	extract	string	resource):

case	ACTION_CUSTOM_BROADCAST:

			toastMessage	=	context.getString(R.string.custom_broadcast_toast);

			break;

Note:	Broadcast	Receivers	that	are	registered	programmatically	are	not	affected	by	the	enabling	or	disabling	done	by
the	PackageManager	class,	which	is	meant	for	components	listed	in	the	Android	Manifest	file.	Enabling	or	disabling
such	receivers	is	done	by	registering	or	unregistering	them,	respectively.	In	this	case,	turning	off	the	"Receiver
Enabled"	toggle	will	stop	the	power	connected	or	disconnected	toast	messages,	but	not	the	Custom	Broadcast	Intent
Toast	messages.

That's	it!	Your	app	now	delivers	custom	Broadcast	intents	and	is	able	to	receive	both	system	and	custom	Broadcasts.

Introduction

350

Solution	code
Android	Studio	project:	PowerReceiver

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	A	common	pattern	for	broadcast	receivers	is	starting	some	update	or	action	once	the	device	has	booted.
Implement	a	Broadcast	Receiver	that	will	show	a	toast	message	half	an	hour	after	the	device	has	booted.

Summary
Broadcast	Receivers	are	one	of	the	fundamental	components	of	an	android	application.
Broadcast	Receivers	can	receive	Intents	broadcasted	by	both	the	system	and	application.
The	Intent	broadcast	mechanism	is	completely	separate	from	Intents	that	are	used	to	start	Activities.
You	need	to	subclass	the	BroadcastReceiver	class	and	implement	onReceive()	to	process	the	incoming	Intent
associated	with	the	broadcast.
A	broadcast	receiver	can	be	registered	in	the	Android	manifest	file	or	programmatically.
Use	LocalBroadcastManager	to	register	and	send	for	Broadcasts	that	are	private	to	your	application.
LocalBroadcastManager	is	more	efficient	and	secure	than	system	broadcasts.
For	broadcasts	sent	using	LocalBroadcastManager,	you	can	only	register	interest	for	specific	actions	programmatically.
A	common	practice	to	create	unique	Intent	action	names	for	broadcasts	is	to	prepend	your	Action	Name	with	your
package	name.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Broadcast	Receivers

Learn	more
Android	Developer	Documentation

Guides

Intents	and	Intent	Filters
Manipulating	Broadcast	Receivers	On	Demand

Reference

BroadcastReceiver

Introduction

351

https://github.com/google-developer-training/android-fundamentals/tree/master/PowerReceiver
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/73_c_broadcast_receivers.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/training/monitoring-device-state/manifest-receivers.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html

8.1:	Notifications
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	a	basic	notification
Task	2.	Update	and	cancel	your	notification
Task	3.	Add	notification	actions
Coding	challenge
Summary
Related	concept
Learn	more

Until	now,	the	apps	you	have	built	used	UI	elements	that	are	visible	only	when	your	app	is	running.	The	only	exception	to
this	is	the	BroadcastReceiver	you	implemented	that	showed	a	Toast	message	when	the	device	was	connected	or
disconnected	from	power.	There	are	many	times	when	you	want	to	show	your	user	information	even	when	your	application
is	not	running.	For	example,	you	might	let	them	know	that	new	content	is	available,	or	update	them	on	their	favorite	team
score.	The	Android	framework	provides	a	mechanism	for	your	app	to	notify	users	even	when	the	app	is	not	in	the
foreground:	the	Notification	framework.

A	Notification	is	a	message	you	can	display	to	the	user	outside	of	your	application's	normal	UI.	When	Android	issues	a
notification,	it	will	first	appear	as	an	icon	in	the	notification	area	of	the	device.	To	see	the	specific	details	of	the
notification,	the	user	opens	the	notification	drawer.	Both	the	notification	area	and	the	notification	drawer	are	system-
controlled	areas	that	the	user	can	view	at	any	time.

Introduction

352

https://developer.android.com/guide/topics/ui/notifiers/notifications.html

Introduction

353

In	this	practical	you'll	create	an	app	that	triggers	a	notification	when	a	button	is	pressed	and	provides	the	ability	to	update
the	notification	or	cancel	it.

What	you	should	already	KNOW
For	this	practical,	you	should	be	able	to:

Implement	the		onClick()		method	for	buttons.
Create	Implicit	Intents.
Send	Custom	Broadcast	Intents.
Use	Broadcast	Receivers.

What	you	will	LEARN
During	this	practical,	you	will	learn	to:

Create	a	Notification	using	the	Notification	Builder.
Use	Pending	Intents	to	respond	to	Notification	actions.
Update	or	cancel	existing	Notifications.

What	you	will	DO
In	this	practical,	you	will:

Send	a	notification	when	a	button	is	pushed.
Update	the	notification	both	from	a	button	and	an	action	located	in	the	notification.
Launch	an	implicit	intent	to	a	web	page	from	the	notification.

App	overview
Notify	Me!	is	an	application	that	can	trigger,	update	and	cancel	a	notification.	It	also	experiments	with	notification	styles,
actions	and	priorities.

Introduction

354

Introduction

355

Introduction

356

Task	1.	Create	a	basic	notification

1.1	Create	the	project
1.	 Create	a	new	project	called	"Notify	Me!",	accept	the	default	options,	and	use	the	empty	template.
2.	 In	your	activity_main.xml	file,	change	the	rootview	element	to	a	vertical	LinearLayout	with	its	gravity	attribute	set	to

"center".
3.	 Add	a	button	with	the	following	attributes	to	replace	the	default	TextView:

Attribute Value

android:id "@+id/notify"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Notify	Me!"

android:layout_margin "4dp"

4.	 Create	a	method	stub	for	the		sendNotification()		method.	The	method	should	take	no	arguments	and	return	void:

public	void	sendNotification()	{}

5.	 Create	a	member	variable	for	the	Notify	Button.
6.	 Initialize	the	button	in		onCreate()		and	create	an	onClickListener	for	it:

mNotifyButton	=	(Button)	findViewById(R.id.notify);

mNotifyButton.setOnClickListener(new	View.OnClickListener()	{

			@Override

			public	void	onClick(View	view)	{

			}

});

7.	 Call		sendNotification()		from	the	onClick	method.

1.2	Build	your	first	notification
Notifications	are	created	using	the	NotificationCompat.Builder	class,	which	allows	you	to	set	the	content	and	behavior	of
the	Notification.	A	notification	must	contain	the	following	elements:

A	title,	set	by		setContentTitle()	.
Detail	text,	set	by		setContentText()	.
An	icon,	set	by		setSmallIcon()	.

An	Android	Notification	is	deployed	by	the	NotificationManager.	If	you	need	to	update	or	cancel	the	notification	in	the	future,
you	should	associate	a	notification	ID	with	your	Notification.

Create	the	Notification	Icon

1.	 Go	to	File	>	New	>	Image	Asset.
2.	 From	the	Icon	Type	dropdown,	select	Notification	Icons.
3.	 Click	on	the	icon	next	to	the	Clip	Art	item	to	select	a	material	icon	that	you	will	use	as	the	icon	for	your	notification.	In

this	example,	you	can	use	the	Android	icon.
4.	 Rename	the	resource	ic_android	and	click	Next	and	Finish.	This	will	create	a	number	of	drawable	files	with	different

Introduction

357

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/app/NotificationManager.html

resolutions	for	different	API	levels.
5.	 Create	a	member	variable	in	MainActivity	to	store	the	NotificationManager:

private	NotificationManager	mNotifyManager;

6.	 Create	a	constant	variable	for	the	notification	ID.	Since	there	will	be	only	one	active	notification	at	a	time,	we	can	use
the	same	ID	for	all	notifications:

private	static	final	int	NOTIFICATION_ID	=	0;

7.	 Instantiate	the	NotificationManager	in	onCreate	using		getSystemService()	:

mNotifyManager	=	(NotificationManager)	getSystemService(NOTIFICATION_SERVICE);

8.	 Create	and	instantiate	the	Notification	Builder	in	the		sendNotification()		method:

NotificationCompat.Builder	notifyBuilder	=	new	NotificationCompat.Builder(this)

Note:	Make	sure	the	NotificationCompat	class	is	imported	from	the	v4	support	library.
9.	 Set	the	Notification	Title	to	"You've	been	notified!".
10.	 Set	the	Notification	Text	to	"This	is	your	notification	text."
11.	 Set	the	Notification	icon	to	the	android	icon	you	added.

NotificationCompat.Builder	notifyBuilder	=	new	NotificationCompat.Builder(this)

			.setContentTitle("You've	been	notified!")

			.setContentText("This	is	your	notification	text.")

			.setSmallIcon(R.drawable.ic_android);

12.	 Call		notify()		on	the	NotificationManager	at	the	end	of	the		sendNotification()		method,	passing	in	the	notification	ID
and	the	notification:

Notification	myNotification	=	notifyBuilder.build();

mNotifyManager.notify(NOTIFICATION_ID,	myNotification);

13.	 Run	your	app.	The	"Notify	Me!"	button	now	issues	a	notification	(look	for	the	icon	in	the	status	bar),	but	it's	missing
some	essential	features:	there	is	no	notification	sound	or	vibration,	clicking	on	the	notification	doesn't	do	anything.	Let's
add	some	additional	functionality	to	the	notification.

1.3	Add	a	content	intent

In	order	to	improve	your	notification,	you	will	add	a	few	more	features	available	through	the	NotificationCompat.Builder
class:

A	content	intent,	which	is	launched	when	the	notification	is	tapped,	and	is	set	by		setContentIntent()	.
A	priority,	which	determines	how	the	system	displays	the	notification	with	respect	to	other	notifications,	and	is	set	by
	setPriority()	.
The	default	options,	such	as	sounds,	vibration	and	LED	lights	(if	available),	and	is	set	by		setDefaults()	.

Tapping	a	notification	launches	an	Intent.	Content	Intents	for	notifications	are	very	similar	to	the	Intents	you've	been	using
throughout	this	course.	They	can	be	explicit	intents	to	launch	an	activity,	implicit	intents	to	perform	an	action,	or	broadcast
intents	to	notify	the	system	of	a	system	or	custom	event.	The	major	difference	with	an	Intent	in	a	notification	is	that	it	must
be	wrapped	in	a	PendingIntent,	which	allows	the	notification	to	perform	the	action	even	if	your	application	is	not	running.	A
PendingIntent	is	given	to	an	external	component	(e.g.	NotificationManager)	which	allows	the	external	application	to	use
your	application's	permissions	to	execute	a	predefined	piece	of	code.	In	effect,	it	authorizes	the	notification	to	send	the
intent	on	the	application's	behalf.

For	this	example,	the	content	intent	of	the	notification	(that	is,	the	intent	that	is	launched	when	the	notification	is	pressed)
will	launch	the	MainActivity	of	the	application	(if	you	are	already	in	the	application	this	will	have	no	effect).

Introduction

358

https://developer.android.com/reference/android/app/PendingIntent.html

1.	 Create	an	explicit	intent	in	the		sendNotification()		method	to	launch	the	MainActivity	class:

Intent	notificationIntent	=	new	Intent(this,	MainActivity.class);

2.	 Get	a	PendingIntent	using		getActivity()	,	passing	in	the	notification	ID	constant	for	the	requestCode	and	using	the
FLAG_UPDATE_CURRENT	flag:

PendingIntent	notificationPendingIntent	=	PendingIntent.getActivity(this,

				NOTIFICATION_ID,	notificationIntent,	PendingIntent.FLAG_UPDATE_CURRENT);

3.	 Add	the	PendingIntent	to	the	Notification	using		setContentIntent()		in	the	NotificationCompat.Builder:

.setContentIntent(notificationPendingIntent)

4.	 Run	the	app.	Click	the	Notify	Me!	button	to	send	the	notification.	Quit	the	app.	Now	view	the	notification	and	click	it.
Notice	the	app	will	open	back	up	at	the	MainActivity.

1.4	Add	priority	and	defaults	to	your	notification

When	your	user	clicks	the	"Notify	Me!"	button,	the	notification	is	issued	but	the	only	visual	that	the	user	sees	is	the	icon	in
the	notification	bar.	In	order	to	catch	the	user's	attention,	the	notification	defaults	and	priority	must	be	properly	set.

Priority	is	an	integer	value	from	PRIORITY_MIN	(-2)	to	PRIORITY_MAX	(2)	that	represents	how	important	your	notification
is	to	the	user.	Notifications	with	a	higher	priority	will	be	sorted	above	lower	priority	ones	in	the	notification	drawer.	HIGH	or
MAX	priority	notifications	will	be	delivered	as	"Heads	-	Up"	Notifications,	which	drop	down	on	top	of	the	user's	active
screen.

1.	 Add	the	following	line	to	the	Notification	Builder	to	set	the	priority	of	the	notification	to	HIGH:

.setPriority(NotificationCompat.PRIORITY_HIGH)

2.	 The	defaults	option	in	the	Builder	is	used	to	set	the	sounds,	vibration,	and	LED	color	pattern	for	your	notification	(if	the
user's	device	has	an	LED	indicator).	In	this	example,	you	will	use	the	default	options	by	adding	the	following	line	to
your	Builder:

.setDefaults(NotificationCompat.DEFAULT_ALL)

3.	 You	need	to	quit	the	application	and	start	it	again	to	see	the	changes.
Note:	The	high	priority	notification	will	not	drop	down	in	front	of	the	active	screen	unless	both	the	priority	and	the
defaults	are	set.	The	priority	alone	is	not	enough.

Task	2.	Update	and	cancel	your	notification
After	issuing	a	notification,	it	is	useful	to	be	able	to	update	or	cancel	the	notification	if	the	information	changes	or	becomes
no	longer	relevant.

In	this	task,	you	will	learn	how	to	update	and	cancel	your	notification.

2.1	Add	update	and	cancel	buttons

1.	 In	your	layout	file,	create	two	copies	of	the	"Notify	Me!"	button.
2.	 Change	the	text	attribute	in	the	copies	to	"Update	Me!"	and	"Cancel	Me!".
3.	 Change	the	id's	to	"update"	and	"cancel",	respectively.
4.	 Add	a	member	variable	for	each	of	the	new	buttons	and	initialize	them	in		onCreate()	.
5.	 Create	two	methods	in	the	MainActivity	that	take	no	parameters	and	return	void:

Introduction

359

public	void	updateNotification()	{}

public	void	cancelNotification()	{}

6.	 Create	onClick	Listeners	for	the	new	buttons	and	call		updateNotification()		in	"update"	button	onClick	method	and
	cancelNotification()		in	the	"cancel"	button	onClick	method.

2.2	Implement	the	cancel	and	update	notification	methods

Cancel	the	Notification

Canceling	a	notification	is	straightforward:	call		cancel()		on	the	NotificationManager,	passing	in	the	notification	ID:

mNotifyManager.cancel(NOTIFICATION_ID);

Update	the	Notification

Updating	a	notification	is	more	complex.	Android	notifications	come	with	alternative	styles	that	can	help	condense
information	or	represent	it	more	efficiently.	For	example,	the	Gmail	app	uses	"InboxStyle"	notifications	if	there	is	more	than
a	single	unread	message,	condensing	the	information	into	a	single	notification.

In	this	example,	you	will	update	your	notification	to	use	the	BigPictureStyle	notification,	which	allows	you	to	include	an
image	in	your	notification.

1.	 Download	this	image	to	use	in	your	notification,	and	rename	it	to	mascot_1.
2.	 Put	it	in	the	res/drawable	folder.
3.	 In	your		updateNotification()		method,	convert	your	drawable	into	a	bitmap:

Bitmap	androidImage	=	BitmapFactory

				.decodeResource(getResources(),R.drawable.mascot_1);

4.	 Copy	the	Intent	and	PendingIntent	you	create	in		sendNotification()		to		updateNotification()	,	as	you	will	use	the
same	PendingIntent	as	a	Content	Intent.

5.	 Copy	the	NotificationCompat.Builder	code	from		sendNotification()		to		updateNotification()	,	to	have	the	same	basic
notification	options	in	your	updated	notification.

6.	 Change	the	style	of	your	notification	in	the	same	NotificationCompat.Builder,	setting	the	image	and	the	"Big	Content
Title":

.setStyle(new	NotificationCompat.BigPictureStyle()

			.bigPicture(androidImage)

			.setBigContentTitle("Notification	Updated!"));

Note:	The	BigPictureStyle	is	a	subclass	of	NotificationCompat.Style	which	provides	alternative	layouts	for	notifications.
See	the	documentation	for	other	defined	subclasses.

7.	 Change	the	priority	of	the	Builder	to	the	default,	so	that	you	don't	get	another	heads	up	notification	when	it	is	updated
(heads	up	notifications	can	only	be	shown	in	the	default	style).

.setPriority(NotificationCompat.PRIORITY_DEFAULT)

8.	 Call		notify()		on	the	NotificationManager,	passing	in	the	same	notification	ID	as	before.

mNotifyManager.notify(NOTIFICATION_ID,	notifyBuilder.build());

9.	 Run	your	app.	After	clicking	update,	check	the	notification	again.	It	now	has	the	image	and	updated	title!	You	can
shrink	back	to	the	regular	notification	style	by	pinching	on	the	extended	one.

2.3	Toggle	the	button	state

Introduction

360

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.BigPictureStyle.html
https://github.com/google-developer-training/android-fundamentals-starter-apps/blob/master/8_1_P_starter_image.jpg
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Style.html

In	this	application,	the	user	can	get	confused	because	the	state	of	the	notification	is	not	tracked	inside	the	activity.	For
example,	the	user	may	tap	"Cancel	Me!"	when	no	notification	is	showing.	You	can	fix	this	by	enabling	and	disabling	the
various	buttons	depending	on	the	state	of	the	notification.	When	the	app	is	first	run,	the	"Notify	Me!"	button	should	be	the
only	one	enabled	as	there	is	no	notification	yet	to	update	or	cancel.	After	a	notification	is	sent,	the	cancel	and	update
buttons	should	be	enabled,	and	the	notification	button	should	disabled	since	the	notification	has	already	been	delivered.
After	the	notification	is	updated,	the	update	and	notify	buttons	should	be	disabled,	leaving	only	the	cancel	button	enabled.
Finally,	if	the	notification	is	cancelled,	the	buttons	should	return	to	the	initial	condition	with	the	notify	button	being	the	only
one	enabled.

Here	is	the	enabled	state	toggle	code	for	each	method:

onCreate():

mNotifyButton.setEnabled(true);

mUpdateButton.setEnabled(false);

mCancelButton.setEnabled(false);

sendNotification():

mNotifyButton.setEnabled(false);

mUpdateButton.setEnabled(true);

mCancelButton.setEnabled(true);

updateNotification():

mNotifyButton.setEnabled(false);

mUpdateButton.setEnabled(false);

mCancelButton.setEnabled(true);

cancelNotification():

mNotifyButton.setEnabled(true);

mUpdateButton.setEnabled(false);

mCancelButton.setEnabled(false);

Task	3.	Add	notification	actions
Sometimes,	a	notification	requires	immediate	interaction:	snoozing	an	alarm,	replying	to	a	text	message,	and	so	on.	When
these	types	of	notifications	occur,	the	user	might	tap	your	notification	to	respond	to	the	event.	Android	then	loads	the	proper
Activity	in	your	application	for	the	user	to	respond.	To	avoid	opening	your	application,	the	notification	framework	lets	you
embed	a	notification	action	directly	in	the	notification	itself.	This	allows	the	user	to	act	on	the	notification	without	opening
your	application.

The	components	needed	for	an	action	are:

An	icon,	to	be	placed	in	the	notification.
A	label	string,	placed	next	to	the	icon.
A	PendingIntent,	to	be	sent	when	the	notification	action	is	clicked.

For	this	example,	you	will	add	two	actions	to	your	notification.	First	you'll	add	a	"Learn	More"	action	with	an	implicit	intent
that	launches	a	web	page,	then	an	"Update"	action	with	a	broadcast	intent	that	updates	your	notification	without	launching
the	application.

3.1	Implement	the	"Learn	More"	action

As	a	first	example	of	notification	actions,	you	will	implement	one	that	launches	an	implicit	intent	to	open	a	website.

Introduction

361

1.	 Create	a	member	String	variable	that	contains	the	URL	to	the	Material	Design	guide	for	notifications:
https://developer.android.com/design/patterns/notifications.html.

2.	 Create	an	implicit	Intent	that	opens	the	saved	URL	in	the	sendNotification()		method	before	you	build	the	notification.
3.	 Create	a	PendingIntent	from	the	implicit	intent,	using	the	flag	FLAG_ONE_SHOT	so	that	the	PendingIntent	cannot	be

reused:

Intent	learnMoreIntent	=	new	Intent(Intent.ACTION_VIEW,	Uri

				.parse(NOTIFICATION_GUIDE_URL));

PendingIntent	learnMorePendingIntent	=	PendingIntent.getActivity

				(this,NOTIFICATION_ID,learnMoreIntent,PendingIntent.FLAG_ONE_SHOT);

4.	 Add	this	icon	using	the	Image	Asset	Studio,	and	call	it	ic_learn_more:	
5.	 Add	the	following	line	of	code	to	your	builder	in	both		sendNotification()		and		updateNotification()		to	add	the	action

to	both	the	original	and	updated	notification:

.addAction(R.drawable.ic_learn_more,"Learn	More",	learnMorePendingIntent);

6.	 Run	your	app.	You	notification	will	now	have	a	clickable	icon	that	takes	you	to	the	web!

3.2	Implement	the	"Update"	action

You've	seen	that	a	notification	action	uses	a	PendingIntent	to	respond	to	user	interaction.	In	the	last	step,	you	added	an
action	that	uses	a	PendingIntent	created	using	the		getActivity()		method.	You	can	also	create	a	PendingIntent	which
delivers	a	broadcast	intent	by	calling		getBroadcast()		on	the	PendingIntent	class.	Broadcast	Intents	are	very	useful	in
notifications,	since	a	broadcast	receiver	can	register	its	interest	in	the	intent	and	respond	accordingly,	entirely	without
launching	a	specific	activity.

You	will	now	implement	a	Broadcast	Receiver	that	will	call	the		updateNotification()		method	when	the	"Update"	action	in
the	notification	is	pressed.	It	is	a	common	pattern	to	add	functionality	to	a	notification	that	already	exists	in	the	app,	so	the
user	does	not	need	to	launch	any	app	to	perform	the	action.

1.	 Subclass	a	BroadcastReceiver	as	an	inner	class	in	MainActivity	and	override	the		onReceive()		method.	Don't	forget	to
include	an	empty	constructor:

public	class	NotificationReceiver	extends	BroadcastReceiver	{

			public	NotificationReceiver()	{

			}

			@Override

			public	void	onReceive(Context	context,	Intent	intent)	{

			}

}

2.	 In	the		onReceive()		method,	call		updateNotification()	.
3.	 Create	a	constant	member	variable	in	MainActivity	to	represent	the	update	notification	action	for	your	BroadcastIntent.

Make	sure	it	begins	with	your	package	name	to	insure	it's	uniqueness:

private	static	final	String	ACTION_UPDATE_NOTIFICATION	=

				"com.example.android.notifyme.ACTION_UPDATE_NOTIFICATION";

4.	 Create	a	member	variable	for	your	receiver	and	initialize	it	using	the	default	constructor.
5.	 In	the		onCreate()		method,	register	your	Broadcast	Receiver	to	receive	the	ACTION_UPDATE_NOTIFICATION	intent:

registerReceiver(mReceiver,new	IntentFilter(ACTION_UPDATE_NOTIFICATION));

6.	 Override	the		onDestroy()		method	of	your	Activity	to	unregister	your	receiver:

Introduction

362

https://developer.android.com/design/patterns/notifications.html

@Override

protected	void	onDestroy()	{

unregisterReceiver(mReceiver);

			super.onDestroy();

}

Note:	In	this	example	you	are	registering	your	Broadcast	Receiver	programmatically	because	your	receiver	is	defined
as	an	inner	class.	When	receivers	are	defined	this	way,	they	cannot	be	registered	in	the	Android	Manifest	since	they
are	dynamic	and	have	the	possibility	of	changing	during	the	life	of	the	application.	

It	may	seem	the	broadcast	sent	by	the	notification	only	concerns	your	app	and	should	be	delivered	with	a
LocalBroadcastManager.	However,	the	use	of	PendingIntents	delegates	the	responsibility	of	delivering	the	notification
to	the	Android	Framework.	Because	the	Android	runtime	is	handling	the	broadcast,	LocalBroadcastManager	can	not
be	used.

Create	the	Update	Action

1.	 Create	a	broadcast	Intent	in	the		sendNotification()		method	using	the	custom	update	action.
2.	 Get	a	PendingIntent	using		getBroadcast()	:

Intent	updateIntent	=	new	Intent(ACTION_UPDATE_NOTIFICATION);

PendingIntent	updatePendingIntent	=	PendingIntent.getBroadcast

						(this,	NOTIFICATION_ID,	updateIntent,	PendingIntent.FLAG_ONE_SHOT);

3.	 Create	this	icon	using	the	Image	Asset	Studio,	call	it	ic_update.
4.	 Add	the	action	to	the	builder	in	the		sendNotification()		method,	giving	it	the	title	"Update":

.addAction(R.drawable.ic_update,	"Update",	updatePendingIntent)

5.	 Run	your	app.	You	can	now	update	your	notification	without	opening	the	app!

Solution	code
Android	Studio	project:	NotifyMe

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Enabling	and	disabling	the	various	buttons	is	a	common	way	to	ensure	the	user	does	not	perform	any	actions
that	are	not	supported	in	the	current	state	of	the	app	(think	of	disabling	a	"Sync"	button	when	there	is	no	network").	In	this
application,	however,	there	is	one	use	case	in	which	the	state	of	your	buttons	does	not	match	the	state	of	the	application:
when	a	user	dismisses	a	notification	by	swiping	it	away	or	clearing	the	whole	notification	drawer.	In	this	case,	your	app	has
no	way	of	knowing	that	the	notification	was	cancelled,	and	that	the	button	state	must	be	changed.

Create	another	broadcast	intent	that	will	let	the	application	know	that	the	user	has	dismissed	the	notification,	and	toggle	the
button	states	accordingly.

Hint:	Check	out	the	NotificationCompat.Builder	class	for	a	method	that	delivers	an	Intent	when	the	notification	has	been
dismissed	by	the	user.

Summary

Introduction

363

https://github.com/google-developer-training/android-fundamentals/tree/master/NotifyMe
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html

A	Notification	is	a	message	you	can	display	to	the	user	outside	of	your	application's	normal	UI.
Notifications	provide	a	way	for	your	app	to	interact	with	the	user	even	when	the	app	is	not	running.
When	Android	issues	a	notification,	it	will	first	appear	as	an	icon	in	the	notification	area	of	the	device.
The	UI	and	actions	for	a	notification	are	specified	using	NotificationCompat.Builder.
To	create	a	notification	use		NotificationCompat.Builder.build()	.
To	issue	the	notification,	pass	the	Notification	object	to	the	Android	runtime	system	with		NotificationManager.notify().	
To	update	or	cancel	a	notification,	you	need	to	associate	a	notification	ID	with	your	Notification.
An	Intent	can	be	part	of	a	notification	(Explicit,	Implicit	or	Broadcast).
Intents	in	a	notification	must	be	"wrapped"	in	a	PendingIntent,	which	really	isn't	an	Intent.	A	PendingIntent	is	an
implementation	of	the	decorator	pattern.
The	required	components	of	a	notification	are:	small	icon	(setSmallIcon()),	title	(setContentTitle())	and	some	detailed
text	(setContentText()).
Some	optional	components	of	a	notification	are:	intent,	expanded	styles,	priority,	et	al.	See	NotificationCompat.Builder
for	more	info.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Notifications

Learn	more
Guides

Notifications
Notification	Design	Guide

Reference

NotificationCompat.Builder
NotificationCompat.Style

Introduction

364

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/81_c_notifications.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/design/patterns/notifications.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Style.html

8.2:	Alarm	Manager
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	the	Stand	Up!	project	and	views
Task	2.	Set	up	the	notification
Task	3.	Create	the	repeating	alarm
Coding	challenge
Summary
Related	concept
Learn	more

In	your	previous	practicals,	you've	learned	how	to	make	your	app	respond	to	user	interaction	by	pushing	a	button	or	tapping
a	notification.	You've	also	learned	how	to	make	your	app	respond	to	system	events	using	BroadcastReceivers.	But	what	if
your	app	needs	to	take	action	at	a	specific	time,	such	as	is	the	case	with	a	calendar	notification?	In	that	case,	you	would
use	AlarmManager,	a	class	that	allows	you	to	launch	and	repeat	a	PendingIntent	at	a	specific	time	and	interval.

In	this	practical,	you	will	create	a	timer	that	will	remind	you	to	stand	up	if	you	have	been	sitting	for	too	long.

What	you	should	already	KNOW
From	previous	practicals,	you	should	be	able	to:

Implement	onCheckChanged	listeners	for	toggle	buttons.
Set	up	custom	broadcast	intents.
Use	broadcast	receivers.
Send	notifications.

What	you	will	LEARN
You	will	learn	to:

Schedule	repeating	alarms	with	AlarmManager.
Check	if	an	Alarm	is	already	set	up.
Cancel	a	repeating	alarm.

What	you	will	DO
Set	a	repeating	alarm	to	notify	you	every	fifteen	minutes.
Use	a	ToggleButton	to	set	and	keep	track	of	the	alarm.
Use	Toast	messages	to	notify	the	user	when	the	Alarm	is	turned	on	or	off.

App	overview
Stand	Up!	is	an	app	that	helps	you	stay	healthy	by	reminding	you	to	stand	up	and	walk	around	every	fifteen	minutes.	It
uses	a	notification	to	let	you	know	when	fifteen	minutes	have	passed.	The	app	includes	a	toggle	button	that	can	turn	the
Alarm	on	and	off.

Introduction

365

https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/app/PendingIntent.html

Introduction

366

Introduction

367

Task	1.	Set	up	the	Stand	Up!	project	and	views

1.1	Create	the	Stand	Up!	project	layout
1.	 Create	a	new	project	called	"Stand	Up!",	accept	the	default	options	and	use	the	empty	activity	template.
2.	 Open	the	activity_main.xml	layout	file.

i.	 Change	the	root	view	to	RelativeLayout.
ii.	 Remove	the	entire	"Hello	World"	TextView	and	add	the	following	elements:

TextView Attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:layout_above "@+id/alarmToggle"

android:layout_centerHorizontal "true"

android:layout_margin "8dp"

android:text "Stand	Up	Alarm"

android:textAppearance "@style/TextAppearance.AppCompat.Headline"

ToggleButton Attribute Value

android:id "@+id/alarmToggle"

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:layout_centerHorizontal "true"

android:layout_centerVertical "true"

1.2	Set	up	the	setOnCheckedChangeListener()	method
The	Stand	Up!	app	includes	a	toggle	button	that	is	used	to	set	and	cancel	the	alarm,	as	well	as	visibly	represent	the	alarm's
current	status.	To	set	the	alarm	when	the	toggle	is	turned	on,	you	will	use	the		onCheckedChangeListener()		method:

1.	 In	your	MainActivity		onCreate()		method,	find	the	Alarm	Toggle	by	id.
2.	 Call		setOnCheckedChangeListener()		on	the	toggle	button	instance,	and	begin	typing	"	new	OnCheckedChangeListener	".

Android	Studio	will	autocomplete	the	method	for	you,	including	the	required		onCheckedChanged()		override	method.	This
method	has	two	parameters:	the	CompoundButton	that	was	clicked	(in	this	case	it's	the	Alarm	Toggle	button),	and	a
boolean	representing	the	current	state	of	the	Toggle	Button	(i.e.,	whether	the	toggle	is	now	set	on	or	off.

Introduction

368

alarmToggle.setOnCheckedChangeListener(

			new	CompoundButton.OnCheckedChangeListener()	{

			@Override

			public	void	onCheckedChanged(CompoundButton	compoundButton,

								boolean	isChecked)	{

			}

});

3.	 It	is	useful	for	the	user	to	have	some	feedback	other	than	the	toggle	button	being	turned	on	and	off	to	indicate	the
alarm	was	indeed	set	(you	haven't	implemented	the	alarm	yet,	you	will	do	that	in	a	further	section).	Set	up	an	if/else
block	using	the	boolean	parameter	in	the		onCheckedChanged()		method	that	delivers	a	toast	message	to	tell	the	user	if
the	Alarm	was	turned	on	or	off.	Don't	forget	to	extract	your	string	resources.

String	toastMessage;

if(isChecked){

			//Set	the	toast	message	for	the	"on"	case

			toastMessage	=	getString(R.string.alarm_on_toast);

}	else	{

			//Set	the	toast	message	for	the	"off"	case

			toastMessage	=	getString(R.string.alarm_off_toast);

}

//Show	a	toast	to	say	the	alarm	is	turned	on	or	off

Toast.makeText(MainActivity.this,	toastMessage,	Toast.LENGTH_SHORT)

							.show();

Task	2.	Set	up	the	notification
The	next	step	is	to	create	the	notification	that	will	remind	the	user	to	stand	up	every	fifteen	minutes.	For	now,	the
notification	will	be	delivered	immediately	when	the	toggle	is	set.

2.1	Create	the	notification

In	this	step,	you	will	create	a		deliverNotification()		method	that	will	post	the	reminder	to	stand	up	and	walk	around.

1.	 Create	a	member	variable	in	MainActivity	called	mNotificationManager	of	type	NotificationManager.
2.	 Initialize	it	in		onCreate()		by	calling		getSystemService()	:

mNotificationManager	=	(NotificationManager)	getSystemService(NOTIFICATION_SERVICE);

3.	 Create	a	method	in	MainActivity	called		deliverNotification()		that	takes	the	Context	as	an	argument	and	does	not
return	anything.

private	void	deliverNotification(Context	context)	{}

4.	 Create	a	member	constant	in	MainActivity	called	NOTIFICATION_ID	and	set	it	to	0.	Your	app	will	only	have	one
notification	at	a	time,	so	you	will	use	the	same	notification	ID	for	all	notifications.
Note:	Notification	ID's	are	used	to	distinguish	notifications	within	your	application.	The	NotificationManager	will	only	be
able	to	cancel	notifications	delivered	from	your	app	so	you	can	use	the	same	ID	in	in	different	applications.

Notification	content	Intent

1.	 Create	an	Intent	in		onCreate()		that	you	will	use	for	the	notification	content	Intent:

Intent	contentIntent	=	new	Intent(context,	MainActivity.class);

2.	 Create	a	PendingIntent	from	content	Intent	right	below	the	definition	of		contentIntent		using	the		getActivity()	
method,	passing	in	the	notification	ID	and	using	the		FLAG_UPDATE_CURRENT	flag:	

Introduction

369

PendingIntent	contentPendingIntent	=	PendingIntent.getActivity

			(context,	NOTIFICATION_ID,	contentIntent,	PendingIntent.FLAG_UPDATE_CURRENT);

Note:	PendingIntent	flags	tell	the	system	how	to	handle	the	situation	when	multiple	instances	of	the	same
PendingIntent	are	created	(meaning	they	contain	the	same	intent).	The	FLAG_UPDATE_CURRENT	flag	tells	the
system	to	use	the	old	Intent	but	replace	the	extras	data.	Since	you	don't	have	any	extras	in	this	Intent,	you	reuse	the
same	PendingIntent	over	and	over.

Notification	title	and	text

1.	 Create	a	string	resource	in	your	strings.xml	file	called	notification_title.	Set	it	equal	to	"Stand	Up	Alert".
2.	 Create	a	string	resource	in	your	strings.xml	file	called	notification_text.	Set	it	equal	to	"You	should	stand	up	and	walk

around	now!".

Notification	icon

1.	 Add	an	image	asset	to	use	as	the	notification	icon	(use	the	Image	Asset	Studio).	Choose	any	icon	you	find	appropriate

for	this	alarm:	

Build	the	notification

1.	 Use	the	NotificationCompat.Builder	to	build	a	notification	in	the		deliverNotification()	method	using	the	above
notification	title,	text,	icon	and	content	intent.

NotificationCompat.Builder	builder	=	new	NotificationCompat.Builder(context)

			.setSmallIcon(R.drawable.ic_stand_up)

			.setContentTitle(context.getString(R.string.notification_title))

			.setContentText(context.getString(R.string.notification_text))

			.setContentIntent(contentPendingIntent)

2.	 Set	the	Notification	priority	to	PRIORITY_HIGH:

.setPriority(NotificationCompat.PRIORITY_HIGH)

3.	 Add	an	option	to	the	builder	to	set	AutoCancel	to	true,	and	another	option	to	use	the	default	light,	sound	and	vibration
pattern:

.setAutoCancel(true)

.setDefaults(NotificationCompat.DEFAULT_ALL);

Deliver	the	notification

1.	 Use	the	NotificationManager	to	deliver	the	notification:

mNotificationManager.notify(NOTIFICATION_ID,	builder.build());

2.	 Call		deliverNotification()		when	the	alarm	toggle	button	is	turned	on,	passing	in	the	activity	context:
3.	 Call		cancelAll()		on	the	NotificationManager	if	the	toggle	is	turned	off	to	remove	the	notification.

Introduction

370

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/studio/write/image-asset-studio.html

if(isChecked){

			deliverNotification(MainActivity.this);

			//Set	the	toast	message	for	the	"on"	case

			toastMessage	=	getString(R.string.alarm_on_toast);

}	else	{

			//Cancel	notification	if	the	alarm	is	turned	off

			mNotificationManager.cancelAll();

			//Set	the	toast	message	for	the	"off"	case

			toastMessage	=	getString(R.string.alarm_off_toast);

}

4.	 Run	the	app,	and	check	that	the	notification	is	delivered	with	all	the	desired	options.

At	this	point	there	is	no	alarm	at	all:	the	notification	is	immediately	delivered	when	the	alarm	toggle	is	turned	on.	In	the	next
section	you	will	implement	the	AlarmManager	to	schedule	and	deliver	the	notification	every	15	minutes.

Task	3.	Create	the	repeating	alarm
Now	that	your	app	can	send	a	notification	it	is	time	to	implement	the	main	component	of	your	application:	the
AlarmManager.	This	is	the	class	that	will	be	responsible	for	periodically	delivering	the	reminder	to	stand	up.	AlarmManager
has	many	kinds	of	alarms	built	into	it,	both	one-time	and	periodic,	exact	and	inexact.	To	learn	more	about	the	different	kinds
of	alarms,	see	Scheduling	Repeating	Alarms.

AlarmManager,	like	notifications,	uses	a	PendingIntent	that	it	delivers	with	the	specified	options.	Because	of	this,	it	can
deliver	the	Intent	even	when	the	application	is	no	longer	running.	In	this	application,	your	PendingIntent	will	deliver	an	Intent
broadcast	with	a	custom	"Notify"	action.

The	broadcast	intent	will	be	received	by	a	broadcast	receiver	that	takes	the	appropriate	action	(delivers	the	notification).	

The	AlarmManager	can	trigger	one-time	or	recurring	events	which	occur	even	when	the	device	is	in	deep	sleep	or	your
application	is	not	running.	Events	may	be	scheduled	with	your	choice	of	currentTimeMillis()	when	using	the	real	time
version	(RTC)	or	elapsedRealtime()	when	using	the	elapsed	time	version	(ELAPSED_REALTIME),	and	deliver	a
PendingIntent	when	they	occur.	For	more	information	on	the	different	clocks	available	and	information	on	how	to	control	the
timing	of	events,	see	the	SystemClock	Developer	Reference.

3.1	Set	up	the	broadcast	pending	intent

Introduction

371

https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/java/lang/System.html#currentTimeMillis()
https://developer.android.com/reference/android/os/SystemClock.html#elapsedRealtime()
https://developer.android.com/reference/android/os/SystemClock.html

The	AlarmManager	is	responsible	for	delivering	your	PendingIntent	at	a	specified	interval.	This	PendingIntent	will	deliver	a
broadcast	intent	letting	the	application	know	it	is	time	to	update	the	remaining	time	in	the	notification.

1.	 Create	a	string	constant	as	a	member	variable	in	MainActivity	to	be	used	as	the	broadcast	intent	action	which	will
deliver	the	notification:

private	static	final	String	ACTION_NOTIFY	=

				"com.example.android.standup.ACTION_NOTIFY";

Note:	use	the	fully-qualified	package	name	for	the	Intent	string,	to	ensure	that	your	Broadcast	is	unique,	and	can	not
accidentally	be	used	by	other	applications	with	similar	actions.

2.	 Create	an	Intent	called	notifyIntent	in		onCreate()		with	the	custom	string	as	its	action:

Intent	notifyIntent	=	new	Intent(ACTION_NOTIFY);

3.	 Create	the	notify	PendingIntent	using	the	context,	the	NOTIFICATION_ID	variable,	the	new	notify	intent,	and	the
PendingIntent	flag	UPDATE_CURRENT:

PendingIntent	notifyPendingIntent	=	PendingIntent.getBroadcast

			(this,	NOTIFICATION_ID,	notifyIntent,	PendingIntent.FLAG_UPDATE_CURRENT);

3.2	Set	the	repeating	alarm

You	will	now	use	the	AlarmManager	to	deliver	this	broadcast	Intent	every	15	minutes.	For	this	task,	the	appropriate	type	of
alarm	is	an	inexact,	repeating	alarm	that	uses	elapsed	time	and	will	wake	the	device	up	if	it	is	asleep.	The	real	time	clock	is
not	relevant	here,	since	we	want	to	deliver	the	notification	every	fifteen	minutes.

1.	 Initialize	the	AlarmManager	in		onCreate()		by	calling		getSystemService()	:

AlarmManager	alarmManager	=	(AlarmManager)	getSystemService(ALARM_SERVICE);

2.	 In	the		onCheckedChanged()		method,	call		setInexactRepeating()		on	the	alarm	manager	instance	when	the	user	clicks
the	Alarm	"ON"	(The	second	parameter	is		true).	You	will	use	the		setInexactRepeating()		alarm	since	it	is	more
resource	efficient	to	use	inexact	timing	(the	system	can	bundle	alarms	from	different	apps	together)	and	it	is	acceptable
for	your	alarm	to	deviate	a	little	bit	from	the	exact	15	minute	repeat	interval.	The		setInexactRepeating()		method	takes
4	arguments:

3.	 The	alarm	type.	In	this	case	you	will	use	the	elapsed	time	since	boot	type,	since	only	the	relative	time	is	important.	You
also	want	to	wakeup	the	device	if	it's	asleep,	so	the	alarm	type	is	ELAPSED_REALTIME_WAKEUP.

4.	 The	trigger	time	in	milliseconds.	For	this,	use	the	current	elapsed	time,	plus	15	minutes.	To	get	the	current	elapsed
time,	you	can	call	SystemClock.elapsedRealtime().	You	can	then	use	a	built-in	AlarmManager	constant	to	add	15
minutes	to	the	elapsed	time:		AlarmManager.INTERVAL_FIFTEEN_MINUTES	.

5.	 The	time	interval	in	milliseconds.	You	want	the	notification	posted	every	15	minutes.	You	can	use	the
AlarmManager.INTERVAL_FIFTEEN_MINUTES	constant	again.

6.	 The	PendingIntent	to	be	delivered.	You	created	the	PendingIntent	in	the	previous	task.

long	triggerTime	=	SystemClock.elapsedRealtime()

							+	AlarmManager.INTERVAL_FIFTEEN_MINUTES;

long	repeatInterval	=	AlarmManager.INTERVAL_FIFTEEN_MINUTES;

//If	the	Toggle	is	turned	on,	set	the	repeating	alarm	with	a	15	minute	interval

alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,

							triggerTime,	repeatInterval,	notifyPendingIntent);

Note:	Because	you	are	accessing	the	AlarmManager	and	notifyPendingIntent	instances	from	an	anonymous	inner
class,	Android	Studio	may	make	these	instances	final.	If	it	doesn't,	you	have	to	make	them	final	yourself.

7.	 Remove	the	call	to		deliverNotification()		in	the		onCheckedChanged()	method.

Introduction

372

https://developer.android.com/training/scheduling/alarms.html#set
https://developer.android.com/reference/android/os/SystemClock.html#elapsedRealtime()

8.	 If	the	alarm	toggle	is	turned	off	(by	clicking	the	toggle	in	the	ON	state),	cancel	the	alarm	by	calling		cancel()		on	the
AlarmManager,	passing	in	the	pending	intent	used	to	create	the	alarm.

alarmManager.cancel(notifyPendingIntent);

Keep	the	call	to	cancelAll()	on	the	NotificationManager,	since	turning	the	toggle	off	should	still	remove	any	existing
notification.

The	AlarmManager	will	now	start	delivering	your	Broadcast	Intent	starting	fifteen	minutes	from	when	the	Alarm	was	set,
and	every	fifteen	minutes	after	that.	Your	application	needs	to	be	able	to	respond	to	these	intents	by	delivering	the
notification.	In	the	next	step	you	will	subclass	a	BroadcastReceiver	to	receive	the	broadcast	intents	and	deliver	the
notification.

3.3	Create	the	Broadcast	Receiver
The	Broadcast	Receiver	is	responsible	for	receiving	the	broadcast	intents	from	the	AlarmManager	and	reacting
appropriately.

1.	 In	Android	Studio,	click	on	File	>	New	>	Other	>	Broadcast	Receiver.
2.	 Enter	AlarmReceiver	for	the	name,	make	sure	the	Exported	checkbox	is	unchecked	(to	ensure	that	other	apps	will	not

be	able	to	invoke	this	Broadcast	Receiver).	You	can	also	change	this	setting	in	the	AndroidManifest	by	setting	the
	android:exported		attribute	to		false	.	Android	Studio	will	create	the	subclass	of	BroadcastReceiver	with	the	required
method	(onReceive()),	as	well	as	add	the	receiver	to	your	AndroidManifest.	You	need	to	add	an	Intent	Filter	to	your
the		<receiver>		tag	in	the	AndroidManifest	to	select	the	proper	incoming	Broadcast	Intents.

3.	 In	the	Android	Manifest,	create	an		<intent-filter>		opening	and	closing	tag	between	the		<receiver>		tags.	Create	an
	<action>		item	in	the	intent	filter	with		android:name		attribute	set	to	the	custom	ACTION_NOTIFY	action	string	you
created:

<intent-filter>

				<action	android:name="com.example.android.standup.ACTION_NOTIFY"	/>

</intent-filter>

4.	 Cut	and	paste	the		deliverNotification()		method	to	the		onReceive()		method	in	the	BroadcastReceiver	and	call	it
from		onReceive()	.	The	notification	manager	and	notification	ID	has	not	been	initialized	in	the	BroadcastReceiver	class
so	it	will	be	highlighted	in	red.

5.	 Copy	the	NOTIFICATION_ID	variable	from	the	MainActivity	into	the	BroadcastReceiver	class.
6.	 Initialize	the	NotificationManager	at	the	beginning	of	the		onReceive()		method.	You	have	to	call	getSystemService()

from	the	passed	in	Context:

NotificationManager	notificationManager	=	(NotificationManager)

			context.getSystemService(Context.NOTIFICATION_SERVICE);

7.	 Remove	the	line	that	raises	the	UnsupportedOperationException.
8.	 Run	your	app.	If	you	don't	want	to	wait	for	fifteen	minutes	to	see	the	notification,	you	can	change	the	trigger	time	to

	SystemClock.elapsedRealtime()		to	see	the	notification	immediately.	You	can	also	change	the	interval	to	a	shorter	time
to	make	sure	that	the	repeated	alarm	is	working.

You	now	have	an	app	that	can	schedule	and	perform	a	repeated	operation,	even	if	the	application	is	no	longer	running.	Go
ahead,	exit	the	application	completely,	the	notification	will	still	be	delivered.	There	is	one	final	component	missing	that
would	ensure	a	proper	user	experience:	if	the	application	is	exited,	the	toggle	button	will	reset	to	the	off	state,	even	if	the
alarm	has	already	been	set.	To	fix	this,	you	will	need	to	check	the	state	of	the	alarm	every	time	the	application	is	launched.

3.5	Check	the	state	of	the	alarm

To	track	the	state	of	the	alarm,	you	will	need	a	boolean	variable	that	is		true		if	the	Alarm	already	exists,	and		false	
otherwise.	To	set	this	boolean,	you	can	call		PendingIntent.getBroadcast()		with	the	FLAG_NO_CREATE	PendingIntent	flag.
In	this	case,	the	PendingIntent	is	returned	if	it	already	exists,	otherwise	the	call	returns	null.	This	is	extremely	useful	for

Introduction

373

https://developer.android.com/reference/android/app/PendingIntent.html#FLAG_NO_CREATE

checking	whether	the	alarm	has	already	been	set.

Note:	When	you	create	a	PendingIntent,	the	system	uses	the	Intent.filterEquals()	method	to	determine	if	a	PendingIntent
with	the	same	Intent	already	exists.	This	means	that	to	have	two	distinct	PendingIntents,	the	contained	Intents	have	to	differ
in	one	of	action,	data,	type,	class,	or	categories.	Intent	extras	are	not	included	in	the	comparison.	

The	PendingIntent	flag	determines	what	happens	when	a	PendingIntent	whose	Intent	matches	the	one	you	are	trying	to
create	already	exists.	In	the	case	of	the	NO_CREATE	flag,	it	will	return	null	unless	a	PendingIntent	with	a	matching	Intent
already	exists.
1.	 Create	a	boolean	that	is	true	if	PendingIntent	is	not	null,	and	false	otherwise,	using	this	strategy.	Use	this	boolean	to

correctly	set	the	state	of	the	ToggleButton	when	your	app	starts.	This	code	has	to	come	before	the	PendingIntent	has
been	created,	otherwise	it	will	always	return	true:

boolean	alarmUp	=	(PendingIntent.getBroadcast(this,	NOTIFICATION_ID,	notifyIntent,

			PendingIntent.FLAG_NO_CREATE)	!=	null);

2.	 Set	the	checked	state	of	the	toggle	right	after	you	define	the	alarmUp	boolean:

alarmToggle.setChecked(alarmUp);

This	ensures	that	the	toggle	will	always	be	turned	on	if	the	Alarm	is	set,	and	off	otherwise.	That's	it,	You	now	have	a
repeated	scheduled	alarm	to	remind	you	to	stand	up	every	fifteen	minutes.

3.	 Run	your	app.	Switch	on	the	alarm.	Exit	the	app.	Open	the	app	again.	The	alarm	button	will	show	that	the	alarm	is	on.

Solution	code
**Android	Studio	project:	StandUp

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

The	AlarmManager	class	also	handles	alarm	clocks	in	the	usual	sense,	the	kind	that	wake	you	up	in	the	morning.	On
devices	running	API	21+,	you	can	get	information	about	the	next	alarm	clock	of	this	kind	by	calling		getNextAlarmClock()		on
the	alarm	manager.

Add	a	button	to	your	application	that	displays	the	time	of	next	alarm	clock	that	the	user	has	set	in	a	Toast	message.

Summary
AlarmManager	allows	you	to	schedule	tasks	based	on	the	real	time	clock	or	the	elapsed	time	since	boot.
AlarmManager	provides	a	variety	of	alarm	types,	both	periodic	and	one	time,	with	options	to	wake	up	your	device	if	it	is
asleep.
AlarmManager	is	meant	for	situations	where	precise	timing	is	critical	(such	as	a	calendar	event).	Otherwise,	consider
the	Job	Scheduler	framework	for	more	resource-efficient	timing	and	scheduling.
Use	the	inexact	timing	version	of	the	AlarmManager	whenever	possible,	to	minimize	the	load	caused	by	multiple	users'
devices	or	multiple	applications	performing	a	task	at	the	exact	same	time.
AlarmManager	uses	PendingIntents	to	perform	the	operations,	so	you	can	schedule	broadcasts,	services	and	activities
using	the	appropriate	PendingIntent.

Related	concept

Introduction

374

https://developer.android.com/reference/android/content/Intent.html#filterEquals(android.content.Intent)
https://github.com/google-developer-training/android-fundamentals/tree/master/StandUp
https://developer.android.com/reference/android/app/job/JobScheduler.html

The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Scheduling	Alarms

Learn	more
Android	developer	documentation:

Scheduling	Repeating	Alarms
AlarmManager
SystemClock

Other	resources:

Blog	Post	on	choosing	the	correct	alarm	type

Introduction

375

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/82c_scheduling_alarms_md.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/os/SystemClock.html
https://plus.sandbox.google.com/+AndroidDevelopers/posts/GdNrQciPwqo

8.3:	Job	Scheduler
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
Task	1.	Implement	a	Job	Service
Task	2.	Implement	the	job	conditions
Coding	challenge
Summary
Related	concept
Learn	more

You've	seen	that	you	can	trigger	events	based	on	the	real-time	clock,	or	the	elapsed	time	since	boot	using	the
AlarmManager	class.	Most	tasks,	however,	do	not	require	an	exact	time,	but	should	be	scheduled	based	on	a	combination
of	system	and	user	requirements.	For	example,	a	news	app	might	like	to	update	the	news	in	the	morning,	but	could	wait
until	the	device	is	charging	and	connected	to	wifi	to	update	the	news,	to	preserve	the	user's	data	and	system	resources.

The	JobScheduler	class	is	meant	for	this	kind	of	scheduling;	it	allows	you	to	set	the	conditions,	or	parameters	of	running
your	task.	Given	these	conditions,	the	JobScheduler	calculates	the	best	time	to	schedule	the	execution	of	the	job.	Some
examples	of	these	parameters	are:	persistance	of	the	job	across	reboots,	the	interval	that	the	job	should	run	at,	whether	or
not	the	device	is	plugged	in,	or	whether	or	not	the	device	is	idle.

The	task	to	be	run	is	implemented	as	a	JobService	subclass	and	executed	according	to	the	specified	constraints.

JobScheduler	is	only	available	on	devices	running	API	21+,	and	is	currently	not	available	in	the	support	library.	For
backward	compatibility,	use	the	GcmNetworkManager	(soon	to	be	FirebaseJobDispatcher).

In	this	practical,	you	will	create	an	app	that	schedules	a	notification	to	be	posted	when	the	parameters	set	by	the	user	are
fulfilled,	and	the	system	requirements	are	met.

What	you	should	already	KNOW
From	the	previous	practicals,	you	should	be	able	to:

Deliver	a	notification.
Get	an	integer	value	from	a	Spinner	view.
Use	Switch	views	for	user	input.
Create	PendingIntents.

What	you	will	LEARN
You	will	learn	to:

Implement	a	JobService.
Construct	a	JobInfo	object	with	specific	constraints.
Schedule	a	JobService	based	on	the	JobInfo	object.

What	you	will	DO
In	this	practical,	you	will:

Introduction

376

https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobService.html
https://developers.google.com/android/reference/com/google/android/gms/gcm/GcmNetworkManager

Implement	a	JobService	that	delivers	a	simple	notification	to	let	the	user	know	the	job	is	running.
Get	user	input	to	configure	the	constraints	(such	as	waiting	until	the	device	is	charging)	on	the	JobService	you	are
scheduling.
Schedule	the	job	using	JobScheduler.

App	Overview
For	this	practical	you	will	create	an	app	called	"Notification	Scheduler".	Your	app	will	demonstrate	the	JobScheduler
framework	by	allowing	the	user	to	select	constraints	and	schedule	a	job.	When	that	job	is	executed,	it	will	post	a	notification
(in	this	app,	your	notification	is	effectively	your	"job").

Introduction

377

Introduction

378

To	use	the	JobScheduler,	you	need	two	additional	parts:	JobService	and	JobInfo.	A	JobInfo	object	contains	the	set	of
conditions	that	will	trigger	the	job	to	run.	A	JobService	is	the	implementation	of	the	job	that	is	to	run	under	those	conditions.

Task	1.	Implement	a	JobService
To	begin	with,	you	must	create	a	service	that	will	be	run	at	the	time	determined	by	the	conditions.	The	JobService	is
automatically	executed	by	the	system,	and	the	only	parts	you	need	to	implement	are:

onStartJob()	callback

called	when	the	system	determines	that	your	task	should	be	run.	You	implement	the	job	to	be	done	in	this	method.
Note:		onStartJob()		is	executed	on	the	main	thread,	and	therefore	any	long-running	tasks	must	be	offloaded	to	a
different	thread.	In	this	case,	you	are	simply	posting	a	notification,	which	can	be	done	safely	on	the	main	thread.
returns	a	boolean	indicating	whether	the	job	needs	to	continue	on	a	separate	thread.	If	true,	the	work	is	offloaded	to	a
different	thread,	and	your	app	must	call		jobFinished()		explicitly	in	that	thread	to	indicate	that	the	job	is	complete.	If
the	return	value	is	false,	the	framework	knows	that	the	job	is	completed	by	the	end	of		onStartJob()		and	it	will
automatically	call		jobFinished()		on	your	behalf.

onStopJob()	callback

called	if	the	conditions	are	no	longer	met,	meaning	that	the	job	must	be	stopped.
returns	a	boolean	that	determines	what	to	do	if	the	job	is	not	finished.	If	the	return	value	is	true,	the	job	will	be
rescheduled,	otherwise,	it	will	be	dropped.

1.1	Create	the	Project	and	the	NotificationJobService

Verify	that	the	minimum	SDK	you	are	using	is	API	21.	Prior	to	API	21,	JobScheduler	does	not	work,	as	it	is	missing	some	of
the	required	APIs.

1.	 Use	the	empty	template	,	and	create	a	new	project	called	"Notification	Scheduler".
2.	 Create	a	new	Java	class	called	NotificationJobService	that	extends	JobService.
3.	 Add	the	required	methods:		onStartJob()		and		onStopJob()	.
4.	 In	your	AndroidManfiest.xml	file,	register	your	JobService	with	the	following	permission	inside	the		<application>		tag:

<service

			android:name=".NotificationJobService"

			android:permission="android.permission.BIND_JOB_SERVICE"/>

1.2	Implement	onStartJob()

1.	 Add	a	notification	icon	for	the	"Job	Running"	notification.
2.	 In		onStartJob()	,	create	a	PendingIntent	to	launch	the	MainActivity	of	your	app	to	be	used	as	the	content	intent	for

your	notification.
3.	 In		onStartJob()	,	construct	and	deliver	a	notification	with	the	following	attributes:

Introduction

379

https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobInfo.html

Attribute Title

Content	Title "Job	Service"

Content	Text "Your	Job	is	running!"

Content	Intent contentPendingIntent

Small	Icon R.drawable.ic_job_running

Priority NotificationCompat.PRIORITY_HIGH

Defaults NotificationCompat.DEFAULT_ALL

AutoCancel true

4.	 Make	sure		onStartJob()		returns	false,	because	all	of	the	work	is	completed	in	that	callback.
5.	 Make		onStopJob()		return	true,	so	that	the	job	is	rescheduled	if	it	fails.

@Override

public	boolean	onStartJob(JobParameters	jobParameters)	{

			//Set	up	the	notification	content	intent	to	launch	the	app	when	clicked

			PendingIntent	contentPendingIntent	=	PendingIntent.getActivity

											(this,	0,	new	Intent(this,	MainActivity.class),

												PendingIntent.FLAG_UPDATE_CURRENT);

			NotificationManager	manager	=

							(NotificationManager)	getSystemService(NOTIFICATION_SERVICE);

			NotificationCompat.Builder	builder	=	new	NotificationCompat.Builder(this)

											.setContentTitle(getString(R.string.job_service))

											.setContentText(getString(R.string.job_running))

											.setContentIntent(contentPendingIntent)

											.setSmallIcon(R.drawable.ic_job_running)

											.setPriority(NotificationCompat.PRIORITY_HIGH)

											.setDefaults(NotificationCompat.DEFAULT_ALL)

											.setAutoCancel(true);

			manager.notify(0,	builder.build());

			return	false;

}

Task	2.	Implement	the	job	conditions
Now	that	you	have	your	JobService,	it	is	time	to	identify	the	criteria	for	running	the	job.	For	this,	use	the	JobInfo	component.
You	will	create	a	series	of	parameterized	conditions	for	running	a	job	using	a	variety	of	network	connectivity	types	and
device	status.

To	begin,	you	will	create	a	group	of	radio	buttons	to	determine	the	network	type	required	for	this	job.

2.1	Implement	the	network	constraint

One	of	the	possible	conditions	for	running	a	Job	is	the	status	of	your	device's	network	connectivity.	You	can	limit	the
JobService	to	be	executed	only	when	certain	network	conditions	are	met.	The	options	are:

NETWORK_TYPE_NONE:	the	job	will	run	with	or	without	a	network	connection.	This	is	the	default	value.
NETWORK_TYPE_ANY:	the	job	will	run	as	long	as	a	network	(cellular,	wifi)	is	available.
NETWORK_TYPE_UNMETERED:	the	job	will	run	as	long	as	the	device	is	connected	to	wifi	that	does	not	use	a
HotSpot.

Introduction

380

https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NONE
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NONE
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_ANY
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_UNMETERED

Create	the	layout	for	your	app

Create	the	layout	for	your	app	to	show	the	buttons	for	the	user	to	choose	the	network	criteria.	

1.	 In	your	activity_main.xml	file,	change	the	rootview	element	to	a	vertical	LinearLayout.
2.	 Change	the	TextView	to	have	the	following	attributes:

Attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Network	Type	Required:	"

android:textAppearance "@style/TextAppearance.AppCompat.Subhead"

android:layout_margin "4dp"

3.	 Add	a	RadioGroup	container	element	below	the	TextView	with	the	following	attributes:

Attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:orientation "horizontal"

android:id "@+id/networkOptions"

android:layout_margin "4dp"

Note:	Using	a	radio	group	ensures	that	only	one	of	its	children	can	be	selected	at	a	time.	For	more	information	on
Radio	Buttons	see	this	guide.

4.	 Add	three	RadioButtons	as	children	to	the	RadioGroup	with	their	layout	height	and	width	set	to	"wrap_content"	and	the
following	attributes:

Introduction

381

https://developer.android.com/guide/topics/ui/controls/radiobutton.html

RadioButton	1

android:text "None"

android:id "@+id/noNetwork"

android:checked true

RadioButton	2

android:text "Any"

android:id "@+id/anyNetwork"

RadioButton	3

android:text "Wifi"

android:id "@+id/wifiNetwork"

5.	 Add	two	buttons	below	the	radio	button	group	with	height	and	width	set	to	"wrap	content"	with	the	following	attributes:

Button	1

android:text "Schedule	Job"

android:onClick "scheduleJob"

android:layout_gravity "center_horizontal"

android:layout_margin "4dp"

Button	2

android:text "Cancel	Jobs"

android:onClick "cancelJobs"

android:layout_gravity "center_horizontal"

android:layout_margin "4dp"

6.	 Add	the	method	stubs	for	both	of	the		onClick()		methods	in	MainActivity.

Get	the	selected	network	option

1.	 In		scheduleJob()	,	find	the	RadioGroup	by	id	and	save	it	in	an	instance	variable	called	networkOptions.
2.	 Get	the	selected	network	id	and	save	it	in	a	integer	variable:

int	selectedNetworkID	=	networkOptions.getCheckedRadioButtonId();

3.	 Create	a	selected	network	option	integer	variable	and	set	it	equal	to	the	default	network	option	(no	network	required):

int	selectedNetworkOption	=	JobInfo.NETWORK_TYPE_NONE;

4.	 Create	a	switch	statement	with	the	selected	network	id,	and	add	a	case	for	each	of	the	possible	id's:

Introduction

382

switch(selectedNetworkID){

				case	R.id.noNetwork:

								break;			

				case	R.id.anyNetwork:

								break;

				case	R.id.wifiNetwork:

								break;

}

5.	 Assign	the	selected	network	option	the	appropriate	JobInfo	network	constant,	depending	on	the	case:

switch(selectedNetworkID){

			case	R.id.noNetwork:

							selectedNetworkOption	=	JobInfo.NETWORK_TYPE_NONE;

							break;

			case	R.id.anyNetwork:

							selectedNetworkOption	=	JobInfo.NETWORK_TYPE_ANY;

							break;

			case	R.id.wifiNetwork:

							selectedNetworkOption	=	JobInfo.NETWORK_TYPE_UNMETERED;

							break;

}

Create	the	JobScheduler	and	the	JobInfo	object

1.	 In	MainActivity,	create	a	member	variable	for	the	JobScheduler,	and	initialize	it	in		scheduleJob()		using
	getSystemService()	:

mScheduler	=	(JobScheduler)	getSystemService(JOB_SCHEDULER_SERVICE);

2.	 Create	a	member	constant	for	the	JOB_ID,	and	set	it	equal	to	0.
3.	 Create	a	JobInfo.Builder	object	in		scheduleJob().		The	constructor	for	the		JobInfo.Builder		class	takes	two

parameters:
The	JOB_ID.
The	ComponentName	for	the	JobService	you	created.	A	ComponentName	is	used	to	identify	the	JobService	with
the	JobInfo	object.

ComponentName	serviceName	=	new	ComponentName(getPackageName(),

NotificationJobService.class.getName());

JobInfo.Builder	builder	=	new	JobInfo.Builder(JOB_ID,	serviceName)

4.	 Call		setRequiredNetworkType()		on	the	JobInfo.Builder	object,	passing	in	the	selected	network	option:

.setRequiredNetworkType(selectedNetworkOption);

5.	 Call		schedule()		on	the	JobScheduler	object,	passing	in	the	JobInfo	object	with	the		build()		method:

JobInfo	myJobInfo	=	builder.build();

mScheduler.schedule(myJobInfo);

6.	 Show	a	Toast	message,	letting	the	user	know	the	job	was	scheduled.
7.	 In	the		cancelJobs()		method,	check	if	the	JobScheduler	object	is	null,	and	if	not,	call		cancelAll()		on	it	to	remove	all

pending	jobs,	reset	the	JobScheduler	to	be	null,	and	show	a	Toast	message	to	let	the	user	know	the	job	was	canceled:

if	(mScheduler!=null){

			mScheduler.cancelAll();

			mScheduler	=	null;

			Toast.makeText(this,	"Jobs	Canceled",	Toast.LENGTH_SHORT).show();

}

8.	 Run	the	app.	You	can	now	set	tasks	that	have	network	restrictions	and	see	how	long	it	takes	for	them	to	be	executed.
In	this	case,	the	task	is	to	deliver	a	notification.	To	dismiss	the	notification,	either	swipe	it	away	or	tap	on	it	to	open	the

Introduction

383

https://developer.android.com/reference/android/app/job/JobInfo.Builder.html

notification.

You	may	notice	that	if	you	do	not	change	the	network	constraint	to	either	"Any"	or	"Wifi",	the	app	will	crash	with	the
following	exception:

java.lang.IllegalArgumentException:

			You're	trying	to	build	a	job	with	no	constraints,	this	is	not	allowed.

This	is	because	the	"No	Network	Required"	condition	is	the	default	and	does	not	actually	count	as	a	constraint.	The
JobScheduler	needs	at	least	one	constraint	to	properly	schedule	the	JobService.	In	the	following	section	you	will	create	a
conditional	that	is		true		when	at	least	one	constraint	is	set,	and		false		otherwise.	You	will	then	schedule	the	task	if	it's
	true	,	and	show	a	Toast	to	tell	the	user	to	set	a	constraint	if	it	isn't.

2.2	Check	for	constraints

JobScheduler	requires	at	least	one	constraint	to	be	set.	In	this	task	you	will	create	a	boolean	that	will	track	if	this
requirement	has	been	met,	so	that	you	can	notify	the	user	to	set	at	least	one	constraint	if	they	haven't	already.	As	you
create	additional	options	in	the	further	steps,	you	will	need	to	modify	this	boolean	so	it	is	always		true		if	at	least	one
constraint	is	set,	and		false		otherwise.

1.	 Create	a	boolean	variable	called	constraintSet	that	is	true	if	selected	network	option	is	not	the	default
JobInfo.NETWORK_TYPE_NONE:

boolean	constraintSet	=	selectedNetworkOption	!=	JobInfo.NETWORK_TYPE_NONE;

2.	 Create	an	if/else	block	using	the		constraintSet		boolean.
3.	 Move	the	code	that	schedules	the	task	and	shows	the	Toast	message	into	the		if		block.
4.	 If		constraintSet		is		false	,	show	a	Toast	message	to	the	user	to	set	at	least	one	constraint.	Don't	forget	to	extract

your	string	resources:

if(constraintSet)	{

			//Schedule	the	job	and	notify	the	user

			JobInfo	myJobInfo	=	builder.build();

			mScheduler.schedule(myJobInfo);

			Toast.makeText(this,	R.string.job_scheduled,	Toast.LENGTH_SHORT).show();

}	else	{

			Toast.makeText(this,	R.string.no_constraint_toast,	Toast.LENGTH_SHORT).show();

}

2.3	Implement	the	Device	Idle	and	Device	Charging	constraints

JobScheduler	includes	the	ability	to	wait	until	the	device	is	charging,	or	in	an	idle	state	(the	screen	is	off,	and	the	CPU	has
gone	to	sleep)	to	execute	your	JobService.	You	will	now	add	switches	to	your	app	to	toggle	these	constraints	on	your
JobService.

Introduction

384

Add	the	UI	elements	for	the	new	constraints	

1.	 In	your	activity_main.xml	file,	copy	the	network	type	label	TextView	and	paste	it	below	the	RadioGroup.
2.	 Change	the		android:text		attribute	to	"Requires:".
3.	 Below	this	textview,	insert	a	horizontal	LinearLayout	with	a	4dp	margin.
4.	 Create	two	Switch	views	as	children	to	the	horizontal	LinearLayout	with	height	and	width	set	to	"wrap_content"	and	the

following	attributes:

Switch	1

android:text "Device	Idle"

android:id "@+id/idleSwitch"

Switch	2

android:text "Device	Charging"

android:id "@+id/chargingSwitch"

Add	the	code	for	the	new	constraints

1.	 In	MainActivity,	create	member	variables,		mDeviceIdle		and		mDeviceCharging	,	for	the	switches	and	initialize	them	in
	onCreate()	.

2.	 In	the		scheduleJob()		method,	add	the	following	calls	to	set	the	constraints	on	the	JobScheduler	based	on	the	user
selection	in	the	switches:

builder.setRequiresDeviceIdle(mDeviceIdle.isChecked());

builder.setRequiresCharging(mDeviceCharging.isChecked());

3.	 Update	the	code	that	sets		constraintSet		to	consider	these	new	constraints:

boolean	constraintSet	=	(selectedNetworkOption	!=	JobInfo.NETWORK_TYPE_NONE)

			||	mDeviceChargingSwitch.isChecked()	||	mDeviceIdleSwitch.isChecked();

Introduction

385

4.	 Run	your	app,	now	with	the	additional	constraints.	Try	the	difference	combinations	of	switches	to	see	when	the
notification	gets	sent	(that	indicates	that	the	job	ran).	You	can	test	the	charging	state	constraint	in	an	emulator	by
opening	the	menu	(the	ellipses	icon	next	to	the	emulated	device),	go	to	the	Battery	pane	and	toggle	the	Battery	Status
dropdown.	There	is	no	way	to	manually	put	the	emulator	in	Idle	mode	as	of	the	writing	of	this	practical.

Waiting	until	the	device	is	idle	and	plugged	in	is	a	common	pattern	for	battery	intensive	tasks	such	as	downloading	or
uploading	large	files.

2.4	Implement	the	Override	Deadline	constraint

Up	to	this	point,	there	is	no	way	to	know	precisely	when	the	framework	will	execute	your	task.	The	system	takes	into
account	effective	resource	management	which	may	delay	your	task	depending	on	the	state	of	the	device,	and	does	not
guarantee	that	your	task	will	run	on	time.	For	example,	a	news	app	may	want	to	download	the	latest	news	only	when	wifi	is
available	and	the	device	is	plugged	in	and	charging;	but	a	user	may	inadvertently	forget	to	enable	their	wifi	or	charge	their
device.	If	you	don't	add	a	time	parameter	to	your	scheduled	Job,	that	user	will	be	disappointed	when	they	wake	up	to
yesterday's	news.	For	this	reason,	the	JobScheduler	API	includes	the	ability	to	set	a	hard	deadline	that	will	override	the
previous	constraints.

Add	the	new	UI	for	setting	the	deadline	to	run	the	task

Introduction

386

Introduction

387

In	this	step	you	will	use	a	new	UI	component,	a	Seekbar,	to	allow	the	user	to	set	a	deadline	between	0	and	100	seconds	to
execute	your	task.

The	user	sets	the	value	by	dragging	the	SeekBar.

1.	 Create	a	horizontal	LinearLayout	below	the	existing	LinearLayout	with	the	switches,	which	will	contain	the	labels	for	the
SeekBar.

2.	 The	SeekBar	will	have	two	labels:	a	static	one	just	like	the	label	for	the	RadioGroup	of	buttons,	and	a	dynamic	one	that
will	be	updated	with	the	value	from	the	SeekBar.	Add	two	TextViews	to	the	LinearLayout	with	the	following	attributes:

TextView	1

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Override	Deadline:	"

android:id "@+id/seekBarLabel"

android:textAppearance "@style/TextAppearance.AppCompat.Subhead"

TextView	2

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Not	Set"

android:id "@+id/seekBarProgress"

android:textAppearance "@style/TextAppearance.AppCompat.Subhead"

3.	 Add	a	SeekBar	view	below	the	LinearLayout	with	the	following	attributes:

Attribute Value

android:layout_width "match_parent"

android:layout_height "wrap_content"

android:id "@+id/seekBar"

android:layout_margin "4dp"

Write	the	code	for	adding	the	deadline

1.	 In	MainActivity,	create	a	member	variable	for	the	SeekBar	and	initialize	it	in		onCreate()	:

mSeekBar	=	(SeekBar)	findViewById(R.id.seekBar);

2.	 Create	final	variables	for	both	TextViews	(they	will	be	accessed	from	an	inner	class)	and	initialize	them	in		onCreate()	:

final	TextView	label	=	(TextView)	findViewById(R.id.seekBarLabel);

final	TextView	seekBarProgress	=	(TextView)	findViewById(R.id.seekBarProgress);

Introduction

388

https://developer.android.com/reference/android/widget/SeekBar.html

3.	 In		onCreate()	,	call		setOnSeekBarChangeListener()		on	the	SeekBar,	passing	in	a	new	OnSeekBarChangeListener
(Android	Studio	should	generate	the	required	methods):

mSeekBar.setOnSeekBarChangeListener(new	SeekBar.OnSeekBarChangeListener()	{

			@Override

			public	void	onProgressChanged(SeekBar	seekBar,	int	i,	boolean	b)	{}

			@Override

			public	void	onStartTrackingTouch(SeekBar	seekBar)	{}

			@Override

			public	void	onStopTrackingTouch(SeekBar	seekBar)	{}

});

4.	 The	second	argument	of		onProgressChanged()		is	the	current	value	of	the	SeekBar.	In	the		onProgressChanged()	
callback,	check	if	the	integer	value	is	greater	than	0	(meaning	a	value	has	been	set	by	the	user),	and	if	it	is,	set	the
SeekBar	progress	label	to	the	integer	value,	followed	by	"s"	to	indicate	seconds:

if	(i	>	0){

				mSeekBarProgress.setText(String.valueOf(i)	+	"	s");

}

5.	 Otherwise,	set	the	TextView	to	read	"Not	Set":

else	{

				mSeekBarProgress.setText("Not	Set");

}

6.	 The	override	deadline	should	only	be	set	if	the	integer	value	of	the	SeekBar	is	greater	than	0.	In	the		scheduleJob()	
method,	create	an	integer	to	store	the	SeekBar	progress	and	a	boolean	variable	that	is	true	if	the	SeekBar	has	an
integer	value	greater	than	0:

int	seekBarInteger	=	mSeekBar.getProgress();

boolean	seekBarSet	=	seekBarInteger	>	0;

7.	 If	this	boolean	is	true,	call		setOverrideDeadline()		on	the	JobInfo.Builder,	passing	in	the	integer	value	from	the
SeekBar	multiplied	by	1000	(the	parameter	is	in	milliseconds,	you	want	the	user	to	set	the	deadline	in	seconds):

if	(seekBarSet)	{

						builder.setOverrideDeadline(seekBarInteger	*	1000);

}

8.	 Modify	the		constraintSet		boolean	to	include	the	value	of		seekBarSet		as	a	possible	constraint:

boolean	constraintSet	=	selectedNetworkOption	!=	JobInfo.NETWORK_TYPE_NONE

			||	mDeviceChargingSwitch.isChecked()	||	mDeviceIdleSwitch.isChecked()

			||	seekBarSet;

9.	 Run	the	app.	The	user	can	now	set	a	hard	deadline	in	seconds	by	which	time	the	JobService	must	be	run!

2.5	Implement	the	Periodic	constraint
JobScheduler	also	allows	you	to	schedule	a	repeated	task,	much	like	AlarmManager.	This	option	has	a	few	caveats:

The	task	is	not	guaranteed	to	run	in	a	given	period	(the	other	conditions	may	not	be	met,	or	there	might	not	be	enough
system	resources).
Using	this	constraint	prevents	you	from	also	setting	an	override	deadline	or	a	minimum	latency	(),	since	these	options
do	not	make	sense	for	repetitive	tasks.	See	JobInfo.Builder)	documentation	for	more	information.

Add	the	Periodic	Switch	to	the	layout

Introduction

389

https://developer.android.com/reference/android/app/job/JobInfo.Builder.html#setMinimumLatency(long

You	will	add	a		Switch		to	allow	the	user	to	switch	between	having	the	job	run	once	or	repeatedly	at	periodic	intervals.

1.	 In	activity_main.xml,	add	a	Switch	view	between	the	two	horizontal	LinearLayouts.	Use	the	following	attributes:

Attribute Value

android:layout_width "wrap_content"

android:layout_height "wrap_content"

android:text "Periodic"

android:id "@+id/periodicSwitch"

android:layout_margin "4dp"

2.	 Create	a	member	variable	for	the	switch	and	initialize	it	in		onCreate()	:

mPeriodicSwitch	=	(Switch)	findViewById(R.id.periodicSwitch);

Write	the	code	to	use	the	Periodic	Switch

The	override	deadline	and	periodic	constraints	are	mutually	exclusive.	You	will	use	the	switch	to	toggle	the	functionality	and
label	of	the	SeekBar	to	represent	either	the	override	deadline,	or	the	periodic	interval.

1.	 Call		setOnCheckedChangeListener()		on	the	periodic	switch,	passing	in	a	new	OnCheckedChangeListener.
2.	 If	checked,	set	the	label	to	"Periodic	Interval:	",	otherwise	to	"Override	Deadline:	":

mPeriodicSwitch.setOnCheckedChangeListener(

			new	CompoundButton.OnCheckedChangeListener()	{

			@Override

			public	void	onCheckedChanged(CompoundButton	compoundButton,	boolean	isChecked)	{

							if	(isChecked){

											label.setText(R.string.periodic_interval);

							}	else	{

											label.setText(R.string.override_deadline);

							}

			}

});

All	that	remains	now	is	to	implement	the	logic	in	the		scheduleJob()		method	to	properly	set	the	constraints	on	the	JobInfo
object.

If	the	periodic	option	is	on:

If	the	SeekBar	has	a	non-zero	value,	set	the	constraint	by	calling		setPeriodic()		on	the	JobInfo.Builder	object.
If	the	SeekBar	has	a	value	of	0,	show	a	Toast	message	asking	the	user	to	set	a	periodic	interval	with	the	SeekBar.

If	the	periodic	option	is	off:

If	the	SeekBar	has	a	non-zero	value,	the	user	has	set	an	override	deadline.	Apply	the	override	deadline	using	the
	setOverrideDeadline()		option.
If	the	SeekBar	has	a	value	of	0,	the	user	has	simply	not	specified	an	override	deadline	or	a	periodic	task,	so	add
nothing	to	the	JobInfo.Builder	object.
Replace	the	code	that	sets	the	override	deadline	to	the	JobInfo.Builder	in		scheduleJob()		with	the	following	code	to
implement	this	logic:

Introduction

390

if	(mPeriodicSwitch.isChecked()){

			if	(seekBarSet){

							builder.setPeriodic(seekBarInteger	*	1000);

			}	else	{

							Toast.makeText(MainActivity.this,

											"Please	set	a	periodic	interval",	Toast.LENGTH_SHORT).show();

			}

}	else	{

			if	(seekBarSet){

							builder.setOverrideDeadline(seekBarInteger	*	1000);

			}

}

Solution	code
Android	Studio	project:	NotificationScheduler

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge:	Up	until	now,	your	tasks	scheduled	by	the	JobService	focused	on	delivering	a	notification.	Most	of	the	time,
however,	JobScheduler	is	used	for	more	robust	background	tasks	such	as	updating	the	weather	or	syncing	with	a
database.	Since	background	tasks	can	be	more	complex	in	nature,	both	from	a	programmatic	and	from	a	functionality
standpoint,	the	job	of	notifying	the	framework	when	the	task	is	complete	falls	on	the	developer.	Fortunately,	the	developer
can	do	this	by	calling		jobFinished()	.

1.	 Implement	a	JobService	that	starts	an	AsyncTask	when	the	given	constraints	are	met.	The	AsyncTask	should	sleep	for
5	seconds.	This	will	require	you	to	call		jobFinished()		once	the	task	is	complete.	If	the	constraints	are	no	longer	met
while	the	thread	is	sleeping,	show	a	Toast	message	saying	that	the	job	failed	and	also	reschedule	the	job.

Summary
JobScheduler	provides	a	flexible	framework	to	intelligently	accomplish	background	services.
JobScheduler	is	only	available	on	devices	running	API	21+
To	use	the	JobScheduler,	you	need	two	parts:	JobService	and	JobInfo.
JobInfo	is	a	set	of	conditions	that	will	trigger	the	job	to	run.
JobService	implements	the	job	to	run	under	the	conditions	specified	by	JobInfo.
You	only	have	to	implement	the		onStartJob()		and		onStopJob()		callback	methods	in	your	JobService.
The	implementation	of	your	job	occurs	(or	is	started)	in		onStartJob()	.
	onStartJob()		returns	a	boolean	that	indicates	whether	the	service	needs	to	process	the	work	in	a	separate	thread.
If		onStartJob()		returns	true,	you	must	explicitly	call		jobFinished()	.	If		onStartJob()		returns	false,	the	runtime	will	call
	jobFinished()		on	your	behalf.
JobService	is	processed	on	the	main	thread,	so	avoid	lengthy	calculations	or	I/O.
JobScheduler	is	the	manager	class	responsible	for	scheduling	the	task.JobScheduler	batches	tasks	together	to
maximize	the	efficiency	of	system	resources,	which	means	you	do	not	have	exact	control	of	when	it	will	be	executed.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Transferring	Data	Efficiently

Introduction

391

https://github.com/google-developer-training/android-fundamentals/tree/master/NotificationScheduler
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/83_c_transferring_data_efficiently.html

Learn	more

Android	Developer	Documentation

Reference

JobScheduler
JobInfo
JobInfo.Builder
JobService
JobParameters

Introduction

392

https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobInfo.html
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html
https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobParameters.html

9.1:	Shared	Preferences
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Explore	HelloSharedPrefs
Task	2.	Save	and	restore	data	to	shared	preferences
Coding	challenge
Summary
Related	concept
Learn	more

Shared	preferences	allow	you	to	read	and	write	small	amounts	of	primitive	data	(as	key/value	pairs)	to	a	file	on	the	device
storage.	The	SharedPreference	class	provides	APIs	for	getting	a	handle	to	a	preference	file	and	for	reading,	writing,	and
managing	this	data.	The	shared	preferences	file	itself	is	managed	by	the	Android	framework,	and	accessible	to	(shared
with)	all	the	components	of	your	app.	That	data	is	not,	however,	shared	with	or	accessible	to	any	other	apps.

The	data	you	save	to	shared	preferences	is	different	from	the	data	in	the	saved	activity	state	you	learned	about	in	an	earlier
chapter.	The	data	in	the	activity	instance	state	is	retained	across	activity	instances	in	the	same	user	session.	Shared
preferences	persist	across	user	sessions,	even	if	your	app	is	killed	and	restarted	or	if	the	device	is	rebooted.

Use	shared	preferences	only	when	you	need	to	save	a	small	amount	data	as	simple	key/value	pairs.	To	manage	larger
amounts	of	persistent	app	data	use	the	other	methods	such	as	SQL	databases,	which	you	will	learn	about	in	a	later
chapter.

What	you	should	already	KNOW
From	the	previous	practicals	you	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Designing	layouts	with	buttons	and	text	views.
Using	styles	and	themes.
Saving	and	restoring	activity	instance	state.

What	you	will	LEARN
You	will	learn	to:

Identify	what	shared	preferences	are.
Create	a	shared	preferences	file	for	your	app.
Save	data	to	shared	preferences,	and	read	those	preferences	back	again.
Clear	the	data	in	the	shared	preferences.

What	you	will	DO
In	this	practical,	you	will:

Add	the	ability	to	save,	retrieve,	and	reset	shared	preferences	to	an	app.

Introduction

393

App	Overview
The	HelloSharedPrefs	app	is	another	variation	of	the	HelloToast	app	you	created	in	Lesson	1.	It	includes	buttons	to
increment	the	number,	to	change	the	background	color,	and	to	reset	both	the	number	and	color	to	their	defaults.	The	app
also	uses	themes	and	styles	to	define	the	buttons.

Introduction

394

Introduction

395

You'll	start	with	the	starter	app	in	this	practical	and	add	shared	preferences	to	the	main	activity	code.	You'll	also	add	a	reset
button	that	sets	both	the	count	and	the	background	color	to	the	default,	and	clears	the	preferences	file.

Task	1.	Explore	HelloSharedPrefs
The	complete	starter	app	project	for	this	practical	is	available	at	HelloSharedPrefs-Start.	In	this	task	you	will	load	the	project
into	Android	Studio	and	explore	some	of	the	app's	key	features.

1.1	Open	and	Run	the	HelloSharedPrefs	Project

1.	 Download	the	HelloSharedPrefs-Start	app	and	unzip	the	file.
2.	 Open	the	app	in	Android	Studio.
3.	 Build	and	run	the	project	in	Android	Studio.	Try	these	things:

Click	the	Count	button	to	increment	the	number	in	the	main	text	view.
Click	any	of	the	color	buttons	to	change	the	background	color	of	the	main	text	view.
Rotate	the	device	and	note	that	both	background	color	and	count	are	preserved.
Click	the	Reset	button	to	set	the	color	and	count	back	to	the	defaults.

4.	 Force-quit	the	app	using	one	of	these	methods:

In	Android	Studio,	select	Run	>	Stop	'app'	or	click	the	Stop	Icon	 	in	the	toolbar.
On	the	device,	click	the	Recents	button	(the	square	button	in	the	lower	right	corner).	Swipe	the	card	for	the
HelloSharedPrefs	app	to	quit,	or	click	the	X	in	the	right	corner.	If	you	quit	the	app	in	this	manner,	wait	a	few
seconds	before	starting	it	again	so	the	system	can	clean	up.

5.	 Re-run	the	app.

The	app	restarts	with	the	default	appearance	--	the	count	is	0,	and	the	background	color	is	grey.

1.2	Explore	the	Activity	code
1.	 Open	MainActivity	(java/com.example.android.simplecalc/MainActivity).
2.	 Examine	the	code	and	note	these	things:

The	count	(mCount)	is	defined	by	an	integer.	The	countUp()	click	handler	method	increments	this	value	and
updates	the	main	textview.
The	color	(mColor)	is	also	an	integer	that	is	initially	defined	as	grey	in	the	colors.xml	resource	file	as
default_background.
The	changeBackground()	click	handler	method	gets	the	background	color	of	the	button	that	was	clicked	and	then
sets	the	background	color	of	the	main	textview.
Both	the	count	and	color	integers	are	saved	to	the	instance	state	bundle	in	onSaveInstanceState(),	and	restored	in
onCreate().	The	bundle	keys	for	count	and	color	are	defined	by	private	variables	(COUNT_KEY)	and
(COLOR_KEY).

Task	2.	Save	and	restore	data	to	a	shared	preferences	file
In	this	task	you'll	save	the	state	of	the	app	to	a	shared	preferences	file,	and	read	that	data	back	in	when	the	app	is
restarted.	Because	the	state	data	you're	saving	to	the	shared	preferences	(the	current	count	and	color)	are	the	same	data
you	preserve	in	the	instance	state,	you	don't	have	to	do	it	twice	--	you	can	replace	the	instance	state	altogether	with	the
shared	preference	state.

2.1	Initialize	the	preferences
1.	 Add	member	variables	to	the	MainActivity	class	to	hold	the	name	of	the	shared	preferences	file,	and	a	reference	to	a

SharedPreferences	object.

Introduction

396

https://github.com/google-developer-training/android-fundamentals-starter-apps/tree/master/HelloSharedPrefs-Starter
https://github.com/google-developer-training/android-fundamentals-starter-apps/tree/master/HelloSharedPrefs-Starter

private	SharedPreferences	mPreferences;

private	String	sharedPrefFile	=	"com.example.android.hellosharedprefs";

You	can	name	your	shared	preferences	file	anything	you	want	to,	but	conventionally	it	has	the	same	name	as	the
package	name	of	your	app.

2.	 In	the	onCreate()	method,	initialize	the	shared	preferences.	Make	sure	you	insert	this	code	before	the		if		statement.:

mPreferences	=	getSharedPreferences(sharedPrefFile,	MODE_PRIVATE);

The	getSharedPreferences()	method	opens	the	file	at	the	given	file	name	(sharedPrefFile)	with	the	mode
MODE_PRIVATE.

Note:	Older	versions	of	Android	had	other	modes	that	allowed	you	to	create	a	world-readable	or	world-writable	shared
preferences	file.	These	modes	were	deprecated	in	API	17,	and	are	now	strongly	discouraged	for	security	reasons.	If
you	need	to	share	data	with	other	apps,	use	a	service	or	a	content	provider.

Solution	Code	(Main	Activity	-	partial)

public	class	MainActivity	extends	AppCompatActivity	{

			private	int	mCount	=	0;

			private	TextView	mShowCount;

			private	int	mColor;

			private	SharedPreferences	mPreferences;

			private	String	sharedPrefFile	=	"com.example.android.hellosharedprefs";

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							mShowCount	=	(TextView)	findViewById(R.id.textview);

							mColor	=	ContextCompat.getColor(this,	R.color.default_background);

							mPreferences	=	getSharedPreferences(sharedPrefFile,	MODE_PRIVATE);

							//	…

				}

}

2.2	Save	preferences	in	onPause()

Saving	preferences	is	a	lot	like	saving	the	instance	state	--	both	operations	set	aside	the	data	to	a	Bundle	object	as	a
key/value	pair.	For	shared	preferences,	however,	you	save	that	data	in	the	onPause()	lifecycle	callback,	and	you	need	a
shared	editor	object	(SharedPreferences.Editor)	to	write	to	the	shared	preferences	object.

1.	 Click	the	last	line	of	the	MainActivity	class,	just	before	the	closing	bracket.
2.	 Select	Code	>	Generate,	then	select	Override	Methods.
3.	 Type	"onPause",	select	the	method	signature	for	the	onPause()	method,	and	click	OK.

A	skeleton	onPause()	method	is	added	to	the	insertion	point.

4.	 Get	an	editor	for	the	SharedPreferences	object:

SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

A	shared	preferences	editor	is	required	to	write	to	the	shared	preferences	object.	Add	this	line	to	onPause()	after	the
call	to	super.onPause().

5.	 Use	the	putInt()	method	to	put	both	the	mCount	and	mColor	integers	into	the	shared	preferences	with	the	appropriate
keys:

Introduction

397

https://developer.android.com/reference/android/content/SharedPreferences.Editor.html

preferencesEditor.putInt(COUNT_KEY,	mCount);

preferencesEditor.putInt(COLOR_KEY,	mColor);

The	SharedPreferences.Editor	class	includes	multiple	put	methods	for	different	data	types,	including	putInt()	and
putString().

6.	 Call	apply()	to	save	the	preferences:

preferencesEditor.apply();

The	apply()	method	saves	the	preferences	asynchronously,	off	of	the	UI	thread.	The	shared	preferences	editor	also
has	a	commit()	method	to	synchronously	save	the	preferences.	The	commit()	method	is	discouraged	as	it	can	block
other	operations.

7.	 Delete	the	entire	onSaveInstanceState()	method.	Since	the	activity	instance	state	contains	the	same	data	as	the
shared	preferences,	you	can	replace	the	instance	state	altogether.

Solution	Code	(MainActivity	-	onPause()	method)

@Override

protected	void	onPause(){

			super.onPause();

			SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

			preferencesEditor.putInt(COUNT_KEY,	mCount);

			preferencesEditor.putInt(COLOR_KEY,	mColor);

			preferencesEditor.apply();

}

2.3	Restore	preferences	in	onCreate()

As	with	the	instance	state,	your	app	reads	any	saved	shared	preferences	in	the	onCreate()	method.	Again,	since	the
shared	preferences	contain	the	same	data	as	the	instance	state,	we	can	replace	the	state	with	the	preferences	here	as
well.	Every	time	onCreate()	is	called	--	when	the	app	starts,	on	configuration	changes	--	the	shared	preferences	are	used	to
restore	the	state	of	the	view.

1.	 Locate	the	part	of	the	onCreate()	method	that	tests	if	the	savedInstanceState	argument	is	null	and	restores	the
instance	state:

if	(savedInstanceState	!=	null)	{

			mCount	=	savedInstanceState.getInt(COUNT_KEY);

			if	(mCount	!=	0)	{

							mShowCountTextView.setText(String.format("%s",	mCount));

			}

			mColor	=	savedInstanceState.getInt(COLOR_KEY);

			mShowCountTextView.setBackgroundColor(mColor);

}

2.	 Delete	that	entire	block.
3.	 In	the	onCreate()	method,	in	the	same	spot	where	the	save	instance	state	code	was,	get	the	count	from	the

preferences	with	the	COUNT_KEY	key	and	assign	it	to	the	mCount	variable.

mCount	=	mPreferences.getInt(COUNT_KEY,	0);

When	you	read	data	from	the	preferences	you	don't	need	to	get	a	shared	prefrences	editor.	Use	any	of	the	get
methods	on	a	shared	preferences	object	to	retrieve	preference	data.

Note	that	the	getInt()	method	takes	two	arguments:	one	for	the	key,	and	the	other	for	the	default	value	if	the	key	cannot
be	found.	In	this	case	the	default	value	is	0,	which	is	the	same	as	the	initial	value	of	mCount.

Introduction

398

4.	 Update	the	value	of	the	main	text	view	with	the	new	count.

mShowCountTextView.setText(String.format("%s",	mCount));

5.	 Get	the	color	from	the	preferences	with	the	COLOR_KEY	key	and	assign	it	to	the	mColor	variable.

mColor	=	mPreferences.getInt(COLOR_KEY,	mColor);

As	before,	the	second	argument	to	getInt()	is	the	default	value	to	use	in	case	the	key	doesn't	exist	in	the	shared
preferences.	In	this	case	you	can	just	reuse	the	value	of	mColor,	which	was	just	initialized	to	the	default	background
further	up	in	the	method.

6.	 Update	the	background	color	of	the	main	text	view.

mShowCountTextView.setBackgroundColor(mColor);

7.	 Run	the	app.	Click	the	count	button	and	change	the	background	color	to	update	the	instance	state	and	the
preferences.

8.	 Rotate	the	device	or	emulator	to	verify	that	the	count	and	color	are	saved	across	configuration	changes.
9.	 Force-quit	the	app	using	one	of	these	methods:

In	Android	Studio,	select	Run	>	Stop	'app.'
On	the	device,	click	the	Recents	button	(the	square	button	in	the	lower	right	corner).	Swipe	the	card	for	the
HelloSharedPrefs	app	to	quit,	or	click	the	X	in	the	right	corner.

10.	 Re-run	the	app.	The	app	restarts	and	loads	the	preferences,	maintaining	the	state.

Solution	Code	(Main	Activity	-	onCreate())

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	Initialize	views,	color,	preferences

			mShowCountTextView	=	(TextView)	findViewById(R.id.count_textview);

			mColor	=	ContextCompat.getColor(this,	R.color.default_background);

			mPreferences	=	getSharedPreferences(mSharedPrefFile,	MODE_PRIVATE);

			//	Restore	preferences

			mCount	=	mPreferences.getInt(COUNT_KEY,	0);

			mShowCountTextView.setText(String.format("%s",	mCount));

			mColor	=	mPreferences.getInt(COLOR_KEY,	mColor);

			mShowCountTextView.setBackgroundColor(mColor);

}

2.4	Reset	preferences	in	the	reset()	click	handler

The	reset	button	in	the	starter	app	resets	both	the	count	and	color	for	the	activity	to	their	default	values.	Since	the
preferences	hold	the	state	of	the	activity,	it's	important	to	also	clear	the	preferences	at	the	same	time.

1.	 In	the	reset()	click	handler	method,	after	the	color	and	count	are	reset,	get	an	editor	for	the	SharedPreferences	object:

SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

2.	 Delete	all	the	shared	preferences:

preferencesEditor.clear();

3.	 Apply	the	changes:

preferencesEditor.apply();

Introduction

399

Solution	Code	(reset()	method)	:

public	void	reset(View	view)	{

			//	Reset	count

			mCount	=	0;

			mShowCountTextView.setText(String.format("%s",	mCount));

			//	Reset	color

			mColor	=	ContextCompat.getColor(this,	R.color.default_background);

			mShowCountTextView.setBackgroundColor(mColor);

			//	Clear	preferences

			SharedPreferences.Editor	preferencesEditor	=	mPreferences.edit();

			preferencesEditor.clear();

			preferencesEditor.apply();

}

Solution	code
Android	Studio	project:	HelloSharedPrefs

Coding	challenge
Note:	All	coding	challenges	are	optional	and	not	prerequisite	for	the	material	in	the	next	chapter.	

Challenge:	Modify	the	HelloSharedPrefs	app	so	that	instead	of	automatically	saving	the	state	to	the	preferences	file,	add	a
second	activity	to	change,	reset,	and	save	those	preferences.	Add	a	button	to	the	app	named	Settings	to	launch	that
activity.	Include	toggle	buttons	and	spinners	to	modify	the	preferences,	and	Save	and	Reset	buttons	for	saving	and	clearing
the	preferences.

Summary
The	SharedPreferences	class	allows	an	app	to	store	small	amounts	of	primitive	data	as	key-value	pairs.
Shared	preferences	persist	across	different	user	sessions	of	the	same	app.
To	write	to	the	shared	preferences,	get	a	SharedPreferences.Editor	object.
Use	the	various	put*	methods	in	a	SharedPreferences.Editor	object,	such	as	putInt()	or	putString(),	to	put	data	into	the
shared	preferences	with	a	key	and	a	value.
Use	the	various	get*	methods	in	a	SharedPreferences	object,	such	as	getInt()	or	getString(),	to	get	data	out	of	the
shared	preferences	with	a	key.
Use	the	clear()	method	in	a	SharedPreferences.Editor	object	to	remove	all	the	data	stored	in	the	preferences.
Use	the	apply()	method	in	a	SharedPreferences.Editor	object	to	save	the	changes	to	the	preferences	file.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Shared	Preferences

Learn	more
Saving	Data	(Android	Guides)
Storage	Options	(Android	Guides)

Introduction

400

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloSharedPrefs
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/91_c_shared_preferences.html
https://developer.android.com/training/basics/data-storage/index.html
https://developer.android.com/guide/topics/data/data-storage.html

Saving	Key-Value	Sets	(Android	Training)
SharedPreferences	(Android	API	Reference)
SharedPreferences.Editor	(Android	API	Reference)
How	to	use	SharedPreferences	in	Android	to	store,	fetch	and	edit	values	(Stack	Overflow)
onSavedInstanceState	vs.	SharedPreferences	(Stack	Overflow)

Introduction

401

https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
http://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-android-to-store-fetch-and-edit-values
http://stackoverflow.com/questions/5901482/onsavedinstancestate-vs-sharedpreferences

9.2:	Adding	Settings	to	an	App
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Add	a	switch	setting	to	an	app
Task	2:	Using	the	Settings	Activity	template
Coding	challenges
Summary
Related	Concept
Learn	more

Apps	often	include	settings	that	allow	users	to	modify	app	features	and	behaviors.	For	example,	some	apps	allow	users	to
set	their	home	locations,	default	units	for	measurements,	dining	options,	and	other	settings	that	apply	to	the	entire	app.
Settings	are	usually	accessed	infrequently,	because	once	a	user	changes	a	setting,	such	as	a	home	location,	they	rarely
need	to	go	back	and	change	it	again.

Users	expect	to	navigate	to	app	settings	by	tapping	Settings	in	side	navigation,	such	as	a	navigation	drawer	as	shown	on
the	left	side	of	the	figure	below,	or	in	the	options	menu	in	the	app	bar,	shown	on	the	right	side	of	the	figure	below.	

In	the	figure	above:

1.	 Settings	in	side	navigation	(a	navigation	drawer)
2.	 Settings	in	the	options	menu	of	the	app	bar

In	this	practical	you	will	add	a	settings	activity	to	an	app.	Users	will	be	able	to	navigate	to	the	app	settings	by	tapping
Settings,	which	will	be	located	in	the	options	menu	in	the	app	bar.

Introduction

402

What	you	should	already	KNOW
From	the	previous	practicals,	you	should	be	able	to:

Add	an	activity	to	an	app.
Design	layouts	with	buttons	and	text	views.
Extract	string	resources	and	edit	string	and	string	array	values.
Create	an	options	menu	in	the	app	bar.
Add	and	edit	the	menu	items	in	the	options	menu.
Add	the	event	handler	for	menu	item	clicks.
Edit	the	AndroidManifest.xml	file	to	add	Up	navigation	for	a	second	activity.
Read	preferences	from		sharedPreferences	.

What	you	will	LEARN
You	will	learn	to:

Add	an	activity	and	understand	the	use	of	fragments	for	managing	settings.
Create	an	XML	resource	file	of	settings	with	their	attributes.
Create	navigation	to	the	settings	activity.
Set	the	default	values	of	settings.
Read	the	settings	values	changed	by	the	user.
Customize	the	Settings	Activity	template	for	your	own	use.

What	you	will	DO
In	this	practical,	you	will:

Create	an	app	that	includes	Settings	in	the	options	menu.
Add	"Settings	option"	as	a	toggle	switch.
Add	code	to	set	the	default	value	for	the	setting,	and	access	the	setting	value	after	it	has	changed.
Use	and	customize	the	Android	Studio	Settings	Activity	template.

App	overview
Android	Studio	provides	a	shortcut	for	setting	up	an	options	menu	with	Settings.	If	you	start	an	Android	Studio	project	for	a
smartphone	or	tablet	using	the	Basic	Activity	template,	the	new	app	includes	Settings	as	shown	below:

Introduction

403

Introduction

404

The	template	also	includes	a	floating	action	button	in	the	lower	right	corner	of	the	screen	with	an	envelope	icon.	You	can
ignore	this	button	for	this	practical,	as	you	won't	be	using	it.

You'll	start	by	creating	an	app	named	AppWithSettings	using	the	Basic	Activity	template,	and	add	a	settings	activity	that
provides	one	toggle	switch	setting	that	the	user	can	turn	on	or	off:

Introduction

405

Introduction

406

You	will	add	code	to	read	the	setting	and	perform	an	action	based	on	its	value.	For	the	sake	of	simplicity,	the	action	will	be
to	display	a	toast	message	with	the	value	of	the	setting.

In	the	second	task,	you	will	add	the	standard	Settings	Activity	template	provided	by	Android	Studio	to	the	DroidCafe	app
you	created	in	a	previous	lesson.	The	Settings	Activity	template	is	pre-populated	with	settings	you	can	customize	for	an
app,	and	provides	a	different	layout	for	smartphones	and	tablets:

Smartphones:	A	main	Settings	screen	with	a	header	link	for	each	group	of	settings,	such	as	General	for	general
settings,	as	shown	below.	

Introduction

407

Tablets:	A	master/detail	screen	layout	with	a	header	link	for	each	group	on	the	left	(master)	side,	and	the	group	of
settings	on	the	right	(detail)	side,	as	shown	in	the	figure	below.	

All	you	need	to	do	to	customize	the	template	is	change	the	headers,	setting	titles,	setting	descriptions,	and	values	for	the
settings,	and	write	the	code	you	would	normally	write	to	use	the	values	of	the	settings.

The	Droid	Cafe	app	was	created	in	a	previous	lesson	from	the	Basic	Activity	template,	which	provides	an	options	menu	in
the	app	bar	for	placing	the	Settings	option.	You	will	customize	the	supplied	Settings	Activity	template	by	changing	a	single
setting's	title,	description,	values,	and	default	values.	You	will	add	code	to	read	the	setting's	value	after	the	user	changes	it,
and	display	that	value.

Task	1:	Add	a	switch	setting	to	an	app
In	this	task,	you	will:

Create	a	new	project	based	on	the	Basic	Activity	template	(which	provides	an	options	menu).
Add	a	toggle	switch	setting	with	attributes	in	a	preference	XML	file.
Add	an	activity	for	settings	and	a	fragment	for	a	specific	setting.	You	will	use	the		PreferenceFragmentCompat		version	of
PreferenceFragment	in	order	to	maintain	compatibility	with		AppCompatActivity	.	You	will	also	add	the
android.support:preference-v7	library.
Connect	the	Settings	item	in	the	options	menu	to	the	settings	activity.

1.1	Create	the	project	and	add	the	xml	directory	and	resource	file

1.	 In	Android	Studio,	create	a	new	project	with	the	following	parameters:

Introduction

408

Attribute Value

Application	Name AppWithSettings

Company	Name android.example.com	(or	your	own	domain)

Phone	and	Tablet	Minimum	SDK API15:	Android	4.0.3	IceCreamSandwich

Use	a	Fragment? Leave	unchecked

Template Basic	Activity

2.	 Run	the	app,	and	tap	the	overflow	icon	in	the	app	bar	to	see	the	options	menu,	as	shown	in	the	figure	below.	The	only
item	in	the	options	menu	is	Settings.	

3.	 Create	a	new	resource	directory	to	hold	the	XML	file	containing	the	settings:
i.	 Select	the	res	directory	in	the	Project:	Android	view,	and	choose	File	>	New	>	Android	Resource	Directory.	The
New	Resource	Directory	dialog	appears.

ii.	 In	the	Resource	type	drop-down	menu,	choose	xml.	The	Directory	name	automatically	changes	to		xml	.
iii.	 Click	OK.

4.	 The	xml	directory	appears	in	the	Project:	Android	view	inside	the	res	directory.	Select	the	xml	directory	and	choose
File	>	New	>	XML	resource	file	(or	right-click	the	xml	directory	and	choose	New	>	XML	resource	file).

5.	 Enter	the	name	of	the	XML	file,	preferences,	in	the	File	name	field,	and	click	OK.	The	preferences.xml	file	appears
inside	the	xml	directory,	and	the	layout	editor	appears,	as	shown	in	the	figure	below.	

Introduction

409

In	the	figure	above:

1.	 The	preferences.xml	file	inside	the	xml	directory.
2.	 The	layout	editor	showing	the	preferences.xml	contents.

1.2	Add	the	XML	preference	and	attributes	for	the	setting

Introduction

410

1.	 Drag	a	SwitchPreference	from	the	Palette	pane	on	the	left	side	to	the	top	of	the	layout,	as	shown	in	the	figure	below.	

2.	 Change	the	values	in	the	Properties	pane	on	the	right	side	of	the	layout	editor	as	follows	(refer	to	the	figure	below):

i.	 defaultValue:	true
ii.	 key:	example_switch
iii.	 title:	Settings	option
iv.	 summary:	Turn	this	option	on	or	off	

Introduction

411

3.	 Click	the	Text	tab	at	the	bottom	of	the	layout	editor	to	edit	the	XML	code:

<PreferenceScreen	xmlns:android="http://schemas.android.com/apk/res/android">

			<SwitchPreference

						android:defaultValue="true"

						android:title="Settings	option"

						android:key="example_switch"

						android:summary="Turn	this	option	on	or	off"	/>

</PreferenceScreen>

The	Properties	values	you	entered	represent	XML	attributes:

	android:defaultValue	:	The	default	value	of	the	setting	when	the	app	starts	for	the	first	time.
	android:title	:	The	title	of	the	setting.	For	a		SwitchPreference	,	the	title	appears	to	the	left	of	the	toggle	switch.
	android:key	:	The	key	to	use	for	storing	the	setting	value.	Each	setting	has	a	corresponding	key-value	pair	that
the	system	uses	to	save	the	setting	in	a	default	SharedPreferences	file	for	your	app's	settings.
	android:summary	:	The	text	summary	appears	underneath	the	setting.

4.	 Extract	the	string	resources	for	the		android:title		and		android:summary		attribute	values	to		@string/switch_title		and
	@string/switch_summary	.

5.	 Change		<SwitchPreference		in	the	code	to		<android.support.v7.preference.SwitchPreferenceCompat	:

<PreferenceScreen	xmlns:android="http://schemas.android.com/apk/res/android">

			<android.support.v7.preference.SwitchPreferenceCompat

						...	/>

</PreferenceScreen>

In	order	to	use	the		PreferenceFragmentCompat		version	of	PreferenceFragment,	you	must	also	use	the
android.support.v7	version	of	SwitchPreference	(SwitchPreferenceCompat).

The		SwitchPreferenceCompat		line	above	may	show	a	yellow	light	bulb	icon	with	a	warning,	but	you	can	ignore	it.

Introduction

412

https://developer.android.com/reference/android/content/SharedPreferences.html

6.	 Open	the	styles.xml	file,	and	add	the	following		preferenceTheme		declaration	to	the		AppTheme	:

<style	name="AppTheme"	parent="Theme.AppCompat.Light.DarkActionBar">

			...

			<item	name="preferenceTheme">@style/PreferenceThemeOverlay</item>

</style>

In	order	to	use	the		PreferenceFragmentCompat		version	of	PreferenceFragment,	you	must	also	declare		preferenceTheme	
with	the		PreferenceThemeOverlay		style	to	the	app	theme.

7.	 Open	the	build.gradle	(Module:	app)	file,	and	add	the	following	to	the		dependencies		section:

dependencies	{

			...

			compile	'com.android.support:preference-v7:25.0.1'

}

The	above	adds	the	android.support:preference-v7	library	in	order	to	use	the		PreferenceFragmentCompat		version	of
PreferenceFragment.

1.3	Add	an	activity	for	settings	and	a	fragment	for	a	specific	setting

1.	 In	order	to	create	a	Settings	activity	that	provides	a	UI	for	settings,	add	an	Empty	Activity	to	the	app:

i.	 Select	app	at	the	top	of	the	Project:	Android	view.
ii.	 Choose	New	>	Activity	>	Empty	Activity.
iii.	 Name	the	activity	SettingsActivity.
iv.	 Uncheck	the	option	to	generate	a	layout	file	(you	don't	need	one).
v.	 Leave	checked	the	Backwards	Compatibility	(AppCompat)	option.
vi.	 The	Package	name	should	already	be	set	to	com.example.android.projectname,	and	the	Target	Source	Set

should	be	set	to	main.	If	not,	make	these	selections	in	the	drop-down	menus.
vii.	 Click	Finish.
The	result	is	the	following	class	definition	in	SettingsActivity:

				public	class	SettingsActivity	extends	AppCompatActivity	{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

												super.onCreate(savedInstanceState);

								}

				}

2.	 Add	a	blank	fragment	for	a	group	of	similar	settings	(without	a	layout,	factory	methods,	or	interface	callbacks)	to	the
app,	in	order	to	swap	them	into	the	Settings	activity	screen	when	needed:

i.	 Select	app	at	the	top	of	the	Project:	Android	view	again.
ii.	 Choose	New	>	Fragment	>	Fragment	(Blank).
iii.	 Name	the	fragment	SettingsFragment.
iv.	 Uncheck	the	option	to	generate	a	layout	file	(you	don't	need	one).
v.	 Uncheck	the	option	to	include	fragment	factory	methods.
vi.	 Uncheck	the	option	to	include	interface	callbacks.
vii.	 Click	Finish.
The	result	is	the	following	class	definition	in	SettingsFragment:

Introduction

413

				public	class	SettingsFragment	extends	Fragment	{

								public	SettingsFragment()	{

												//	Required	empty	public	constructor

								}

								@Override

								public	View	onCreateView(LayoutInflater	inflater,

																										ViewGroup	container,	Bundle	savedInstanceState)	{

												TextView	textView	=	new	TextView(getActivity());

												textView.setText(R.string.hello_blank_fragment);

												return	textView;

								}

				}

3.	 Change	the	class	definition	of	SettingsFragment	to	extend		PreferenceFragmentCompat	:

public	class	SettingsFragment	extends	PreferenceFragmentCompat	{

...

}

You	use	a	specialized	Fragment	subclass	to	display	a	list	of	settings.	The	best	practice	is	to	use	a	regular	Activity	that
hosts	a	PreferenceFragment	that	displays	the	app	settings.	Fragments	like	PreferenceFragment	provide	a	more
flexible	architecture	for	your	app,	compared	to	using	activities	alone.	A	fragment	is	like	a	modular	section	of	an	activity
—it	has	its	own	lifecycle	and	receives	its	own	input	events,	and	you	can	add	or	remove	a	fragment	while	the	activity	is
running.

Use	the		PreferenceFragmentCompat		version	of	PreferenceFragment	with	an	activity	that	extends	AppCompatActivity.	In
order	to	extend	the	fragment,	you	may	have	to	add	the	following	import	statement:

import	android.support.v7.preference.PreferenceFragmentCompat;

4.	 Replace	the	entire		onCreateView()		method	in	the	fragment	with	this		onCreate()		method:

						@Override

						public	void	onCreatePreferences(Bundle	savedInstanceState,

										String	rootKey)	{

						}

The	reason	why	you	replace		onCreateView()		with		onCreatePreferences()		in	SettingsFragment	is	because	you	will	be
adding	this	fragment	to	the	existing	SettingsActivity	to	display	preferences,	rather	than	showing	a	separate	fragment
screen.	Adding	it	to	the	existing	activity	makes	it	easy	to	add	or	remove	a	fragment	while	the	activity	is	running.	The
preference	fragment	is	rooted	at	the	PreferenceScreen	using		rootKey	.

You	can	safely	remove	the	empty	constructor	from	the	fragment	as	well,	since	the	fragment	is	not	displayed	by	itself:

public	SettingsFragment()	{

								//	Required	empty	public	constructor

						}

5.	 At	the	end	of	the		onCreatePreferences()		method	in	SettingsFragment,	you	need	to	associate	with	this	fragment	the
preferences.xml	settings	resource	you	just	created.	Add	a	call	to	setPreferencesFromResource()	passing	the	id	of	the
XML	file	(R.xml.preferences)		and	the		rootKey		to	identify	the	preference	root	in		PreferenceScreen	:

setPreferencesFromResource(R.xml.preferences,	rootKey);

The		onCreatePreferences()		method	should	now	look	like	this:

Introduction

414

https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/support/v7/preference/PreferenceFragmentCompat.html#setPreferencesFromResource(int, java.lang.String)

@Override

public	void	onCreatePreferences(Bundle	savedInstanceState,

																																String	rootKey)	{

				setPreferencesFromResource(R.xml.preferences,	rootKey);

}

6.	 Add	the	following	code	to	the	end	of	the	SettingsActivity		onCreate()		method	so	that	the	fragment	is	displayed	as	the
main	content:

getSupportFragmentManager().beginTransaction()

																.replace(android.R.id.content,	new	SettingsFragment())

																.commit();

The	above	code	is	the	typical	pattern	used	to	add	a	fragment	to	an	activity	so	that	the	fragment	appears	as	the	main
content	of	the	activity.	You	use:

	getFragmentManager()		if	the	class	extends		Activity		and	the	fragment	extends		PreferenceFragment	.
	getSupportFragmentManager()		if	the	class	extends		AppCompatActivity		and	the	fragment	extends
	PreferenceFragmentCompat	.

The	entire		onCreate()		method	in	SettingsActivity	should	now	look	like	the	following:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								getSupportFragmentManager().beginTransaction()

																.replace(android.R.id.content,	new	SettingsFragment())

																.commit();

}

1.4	Connect	the	Settings	menu	item	to	the	settings	activity

Use	an		intent		to	launch	the	SettingsActivity	from	the	MainActivity.

1.	 Find	the		if		block	in	the		onOptionsItemSelected()		method	in	MainActivity,	which	handles	the	tap	on	Settings	in	the
options	menu:

if	(id	==	R.id.action_settings)	{

			return	true;

}

2.	 Add	an		intent		to	the		if		block	to	launch	the	SettingsActivity:

if	(id	==	R.id.action_settings)	{

			Intent	intent	=	new	Intent(this,	SettingsActivity.class);

			startActivity(intent);

			return	true;

}

3.	 Add	Up-button	navigation	to		SettingsActivity		by	editing	its	declaration	in	the	AndroidManifest.xml	file	to	define	the
activity's	parent	as		MainActivity	.
i.	 Find	the		SettingsActivity		declaration	in	AndroidManifest.xml:

<activity	android:name=".SettingsActivity"></activity>

ii.	 Change	the	declaration	to	the	following:

Introduction

415

<activity	android:name=".SettingsActivity"

				android:label="Settings"

				android:parentActivityName=".MainActivity">

				<meta-data

								android:name="android.support.PARENT_ACTIVITY"

								android:value=".MainActivity"/>

</activity>

4.	 Run	the	app.	Tap	the	overflow	icon	for	the	options	menu	(as	shown	on	the	left	side	of	the	figure	below),	and	tap
Settings	to	see	the	settings	activity	(as	shown	in	the	center	of	the	figure	below).	Tap	the	Up	button	in	the	app	bar	of
the	settings	activity,	shown	on	the	right	side	of	the	figure	below,	to	return	to	the	main	activity.	

1.5	Save	the	default	values	in	shared	preferences

Although	the	default	value	for	the	toggle	switch	setting	has	already	been	set	in	the		android:defaultValue		attribute	(in	Step
1.2	of	this	task),	the	app	must	save	the	default	value	in	the	SharedPreferences	file	for	each	setting	when	the	user	first
opens	the	app.	Follow	these	steps	to	set	the	default	value	for	the	toggle	switch:

1.	 In	MainActivity,	add	the	following	to	the	end	of	the	existing		onCreate()		method:

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			PreferenceManager.setDefaultValues(this,	R.xml.preferences,	false);

}

The	above	code	ensures	that	the	settings	are	properly	initialized	with	their	default	values.	The		setDefaultValues()	
method	takes	three	arguments:

2.	 The	app	context,	such	as		this	.
3.	 The	resource	ID	(preferences)	for	the	XML	resource	file	with	one	or	more	settings.
4.	 A	boolean	indicating	whether	the	default	values	should	be	set	more	than	once.	When		false	,	the	system	sets	the

default	values	only	if	this	method	has	never	been	called	in	the	past.	As	long	as	you	set	this	third	argument	to		false	,
you	can	safely	call	this	method	every	time	the	main	activity	starts	without	overriding	the	user's	saved	settings	values.
However,	if	you	set	it	to		true	,	the	method	will	override	any	previous	values	with	the	defaults.

1.6	Read	the	changed	settings	value	from	shared	preferences

Introduction

416

https://developer.android.com/reference/android/content/Context.html

When	the	app	starts,	the	MainActivity's		onCreate()		method	can	read	setting	values	that	have	changed,	and	use	the
changed	values	rather	than	the	default	values.

Each	setting	is	identified	using	a	key-value	pair.	The	Android	system	uses	this	key-value	pair	when	saving	or	retrieving
settings	from	a	SharedPreferences	file	for	your	app.	When	the	user	changes	a	setting,	the	system	updates	the
corresponding	value	in	the	SharedPreferences	file.	To	use	the	value	of	the	setting,	the	app	can	use	the	key	to	get	the
setting	from	the	SharedPreferences	file.

Follow	these	steps	to	add	that	code:

1.	 Before	adding	code	to	read	the	setting	value,	create	a	static	string	variable	in	SettingsActivity	to	hold	the	key	for	the
value:

public	class	SettingsActivity	extends	AppCompatActivity	{

			public	static	final	String

																			KEY_PREF_EXAMPLE_SWITCH	=	"example_switch";

				...

}

2.	 In	the		onCreate()		method	in	MainActivity,	and	add	the	following	at	end	of	the	method:

protected	void	onCreate(Bundle	savedInstanceState)	{

...

SharedPreferences	sharedPref	=

																PreferenceManager.getDefaultSharedPreferences(this);

Boolean	switchPref	=	sharedPref.getBoolean

																(SettingsActivity.KEY_PREF_EXAMPLE_SWITCH,	false);

}

The	above	code	snippet	uses

	PreferenceManager.getDefaultSharedPreferences(this)		to	get	the	setting	as	a	SharedPreferences	object
(sharedPref).
	getBoolean()		to	get	the	Boolean	value	of	the	setting	that	uses	the	key	(KEY_PREF_EXAMPLE_SWITCH		defined	in
SettingsActivity)	and	assign	it	to		switchPref	.	If	there	is	no	value	for	the	key,	the		getBoolean()		method	sets	the
setting	value	(switchPref)	to		false	.	For	other	values	such	as	strings,	integers,	or	floating	point	numbers,	you
can	use	the		getString()	,		getInt()	,	or		getFloat()		methods	respectively.

3.	 Add	a		Toast.makeText()		method	to		onCreate()		that	displays	the	value	of	the		switchPref		setting	in	a	toast:

Toast.makeText(this,	switchPref.toString(),	Toast.LENGTH_SHORT).show();

4.	 Run	the	app	and	then	follow	these	steps:
i.	 Tap	Settings	to	see	the	settings	activity.
ii.	 Tap	the	setting	to	change	the	toggle	from	on	to	off,	as	shown	on	the	left	side	of	the	figure	below.
iii.	 Tap	the	Up	button	in	the	settings	activity	to	return	to	the	main	activity.	The	toast	message	should	appear	in	the

main	activity	with	the	value	of	the	setting,	as	shown	on	the	right	side	of	the	figure	below.
iv.	 Repeat	these	steps	to	see	the	toast	message	change	as	you	change	the	setting.

Introduction

417

https://developer.android.com/reference/android/content/SharedPreferences.html

Whenever	the	MainActivity	starts	or	restarts,	the		onCreate()		method	should	read	the	setting	values	in	order	to	use	them	in
the	app.	The		Toast.makeText()		method	would	be	replaced	with	a	method	that	initializes	the	settings.

You	now	have	a	working	settings	activity	in	your	app.

Solution	code:

Android	Studio	project:	AppWithSettings

Task	2:	Using	the	Settings	Activity	template
If	you	need	to	build	several	sub-screens	of	settings	and	you	want	to	take	advantage	of	tablet-sized	screens	as	well	as
maintain	compatibility	with	older	versions	of	Android	for	tablets,	Android	Studio	provides	a	shortcut:	the	Settings	Activity
template.

In	the	previous	task	you	learned	how	to	use	an	empty	settings	activity	and	a	blank	fragment	in	order	to	add	a	setting	to	an
app.	Task	2	will	now	show	you	how	to	use	the	Settings	Activity	template	supplied	with	Android	Studio	to:

Divide	multiple	settings	into	groups.
Customize	the	settings	and	their	values.
Display	a	main	Settings	screen	with	a	header	link	for	each	group	of	settings,	such	as	General	for	general	settings,	as
shown	in	the	figure	below.	

Introduction

418

https://github.com/google-developer-training/android-fundamentals/tree/master/AppWithSettings

Display	a	master/detail	screen	layout	with	a	header	link	for	each	group	on	the	left	(master)	side,	and	the	group	of
settings	on	the	right	(detail)	side,	as	shown	in	the	figure	below.	

Introduction

419

Introduction

420

In	a	previous	practical	you	created	an	app	called	Droid	Cafe	using	the	Basic	Activity	template,	which	provides	an	options
menu	in	the	app	bar	as	shown	below.	

In	the	above	figure:

1.	 App	bar.
2.	 Options	menu	action	icons.
3.	 Overflow	button.
4.	 Options	overflow	menu.

Android	Studio	project:	To	start	the	project	from	where	you	left	off	in	the	previous	practical,	download	the	Android	Studio
project	DroidCafe.

2.1	Explore	the	Settings	Activity	template

To	include	the	Settings	Activity	template	in	your	app	project	in	Android	Studio,	follow	these	steps:

1.	 Copy	the	DroidCafe	project	folder,	rename	it	to	DroidCafeWithSettings,	and	refactor	it.	(See	the	Appendixfor
instructions	on	copying	a	project.)	Run	the	app	to	make	sure	it	runs	properly.

2.	 Select	app	at	the	top	of	the	Project:	Android	view,	and	choose	New	>	Activity	>	Settings	Activity.
3.	 In	the	dialog	that	appears,	accept	the	Activity	Name	(SettingsActivity	is	the	suggested	name)	and	the	Title	(Settings).
4.	 Click	the	three	dots	at	the	end	of	the	Hierarchical	Parent	field	and	choose	MainActivity	as	the	parent	activity,	so	that

the	Up	button	in	the	Settings	Activity	returns	the	user	to	the	MainActivity.	Choosing	the	parent	activity	automatically
updates	the	AndroidManifest.xml	file	to	support	Up	button	navigation.

5.	 Click	Finish.

The	Settings	Activity	template	not	only	provides	layouts	for	smartphone-sized	and	tablet-sized	screens,	but	also	provides
the	function	of	listening	to	a	settings	change,	and	changing	the	summary	to	reflect	the	settings	change.	For	example,	if	you
change	the	"Add	friends	to	messages"	setting	(the	choices	are	Always,	When	possible,	or	Never),	the	choice	you	make

Introduction

421

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafe
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

appears	in	the	summary	underneath	the	setting:	

In	general,	you	need	not	change	the	Settings	Activity	template	code	in	order	to	customize	the	activity	for	the	settings	you
want	in	your	app.	You	can	customize	the	settings	titles,	summaries,	possible	values,	and	default	values	without	changing
the	template	code,	and	even	add	more	settings	to	the	groups	that	are	provided.

You	use	the	Settings	Activity	template	code	as-is.	To	make	it	work	for	your	app,	add	code	to	the	Main	Activity	to	set	the
default	settings	values,	and	to	read	and	use	the	settings	values,	as	shown	later	in	this	task.

The	Settings	Activity	template	creates	the	following	for	you:

XML	files	in	the	res	>	xml	directory,	which	you	can	add	to	or	customize	for	the	settings	you	want.

pref_data_sync.xml:	PreferenceScreen	layout	for	"Data	&	sync"	settings.
pref_general.xml:	PreferenceScreen	layout	for	"General"	settings.
pref_headers.xml:	Layout	of	headers	for	the	Settings	main	screen.
pref_notification.xml:	PreferenceScreen	layout	for	"Notifications"	settings.

The	above	XML	layouts	use	various	subclasses	of	the	Preference	class	rather	than	View	objects,	and	direct
subclasses	provide	containers	for	layouts	involving	multiple	settings.	For	example,	PreferenceScreen	represents	a	top-
level	Preference	that	is	the	root	of	a	Preference	hierarchy.	The	above	files	use	PreferenceScreen	at	the	top	of	each
screen	of	settings.	Other	Preference	subclasses	for	settings	provide	the	appropriate	UI	for	users	to	change	the	setting.
For	example:

CheckBoxPreference:	A	checkbox	for	a	setting	that	is	either	enabled	or	disabled.
ListPreference:	A	dialog	with	a	list	of	radio	buttons.
SwitchPreference:	A	two-state	toggleable	option	(such	as	on/off	or	true/false).
EditTextPreference:	A	dialog	with	an	EditText	widget.
RingtonePreference:	A	dialog	with	ringtones	on	the	device.

Tip:	You	can	edit	the	XML	files	to	change	the	default	settings	to	settings	you	need	for	your	app.

String	resources	in	the	strings.xml	file	in	the	res	>	values	directory,	which	you	can	customize	for	the	settings	you	want.

All	strings	used	in	the	Settings	Activity,	such	as	the	titles	for	settings,	string	arrays	for	lists,	and	descriptions	for
settings,	are	defined	as	string	resources	at	the	end	of	this	file.	They	are	marked	by	comments	such	as		<!--	Strings
related	to	Settings	-->		and		<!--	Example	General	settings	-->	.

Tip:	You	can	edit	these	strings	to	customize	the	settings	you	need	for	your	app.

SettingsActivity	in	the	java	>	com.example.android.projectname	directory,	which	you	can	use	as	is.

This	is	the	activity	that	displays	the	settings.		SettingsActivity		extends		AppCompatPreferenceActivity		for	maintaining
compatibility	with	older	versions	of	Android.

AppCompatPreferenceActivity	in	the	java	>	com.example.android.projectname	directory,	which	you	use	as	is.

Introduction

422

https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/preference/PreferenceScreen.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/preference/PreferenceScreen.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/preference/CheckBoxPreference.html
https://developer.android.com/reference/android/preference/ListPreference.html
https://developer.android.com/reference/android/preference/SwitchPreference.html
https://developer.android.com/reference/android/preference/EditTextPreference.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/preference/RingtonePreference.html

This	activity	is	a	helper	class	that	SettingsActivity	uses	to	maintain	backwards	compatibility	with	previous	versions	of
Android.

2.2	Add	the	Settings	menu	item	and	connect	it	to	the	activity

As	you	learned	in	a	previous	practical,	you	can	edit	the	menu_main.xml	file	in	the	res	>	menu	directory	for	the	options
menu	to	add	or	remove	menu	items.

1.	 Edit	the	menu_main.xml	file	to	add	another	menu	item	called	Settings	with	the	new	resource	id		action_settings	:

<item

				android:id="@+id/action_settings"

				android:orderInCategory="50"

				android:title="Settings"

				app:showAsAction="never"	/>

Specify		"never"		for	the		app:showAsAction		attribute	so	that	Settings	appears	only	in	the	overflow	options	menu	and
not	in	the	app	bar	itself,	since	it	should	not	be	used	often.

Specify		"50"		for	the		android:orderInCategory		attribute	so	that	Settings	appears	below	Favorites	(set	to		"40")	but

above	Contact	(set	to		"100").	

2.	 Extract	the	string	resource	for		"Settings"		in	the		android:title		attribute	to	the	resource	name		settings	.
3.	 In	MainActivity,	find	the		switch-case		block	in	the		onOptionsItemSelected()		method	which	handles	the	tap	on	items	in

the	options	menu:

public	boolean	onOptionsItemSelected(MenuItem	item)	{

			switch	(item.getItemId())	{

						case	R.id.action_order:

									displayToast(getString(R.string.action_order_message));

									return	true;

						case	R.id.action_status:

									displayToast(getString(R.string.action_status_message));

									return	true;

						case	R.id.action_favorites:

															displayToast(getString(R.string.action_favorites_message));

									return	true;

						case	R.id.action_contact:

									displayToast(getString(R.string.action_contact_message));

									return	true;

									}

			return	super.onOptionsItemSelected(item);

}

Introduction

423

4.	 Use	an		intent		to	launch	the	SettingsActivity	from	the	MainActivity.	Add	the		intent		to	the	end	of	the		switch	case	
block:

						...

						case	R.id.action_settings:

									Intent	intent	=	new	Intent(this,	SettingsActivity.class);

									startActivity(intent);

									return	true;

									}

			return	super.onOptionsItemSelected(item);

}

5.	 Run	the	app	using	a	smartphone	or	smartphone	emulator	so	that	you	can	see	how	the	Settings	Activity	template
handles	the	smartphone	screen	size,	and	follow	these	steps:

i.	 Tap	the	overflow	icon	for	the	options	menu,	and	tap	Settings	to	see	the	settings	activity,	as	shown	on	the	left	side
of	the	figure	below.

ii.	 Tap	each	setting	header	(General,	Notifications,	and	Data	&	sync),	as	shown	in	the	center	of	the	figure	below,	to
see	the	group	of	settings	on	each	child	screen	of	the	Settings	screen,	shown	on	the	right	side	of	the	figure	below.

iii.	 Tap	the	Up	button	in	the	settings	activity	to	return	to	the	main	activity.	

2.3	Customize	the	settings	provided	by	the	template
To	customize	the	settings	provided	by	the	Settings	Activity	template,	edit	the	string	and	string	array	resources	in	the
strings.xml	file	and	the	layout	attributes	for	each	setting	in	the	files	in	the	xml	directory.	In	this	step	you	will	change	the
"Data	&	sync"	settings.

1.	 Open	the	strings.xml	file	in	the	res	>	values	directory,	and	scroll	the	contents	to	the		<!--	Example	settings	for	Data	&
Sync	-->		comment:

Introduction

424

<!--	Example	settings	for	Data	&	Sync	-->

				<string	name="pref_header_data_sync">Data	&	sync</string>

				<string	name="pref_title_sync_frequency">Sync	frequency</string>

				<string-array	name="pref_sync_frequency_titles">

								<item>15	minutes</item>

								<item>30	minutes</item>

								<item>1	hour</item>

								<item>3	hours</item>

								<item>6	hours</item>

								<item>Never</item>

				</string-array>

				<string-array	name="pref_sync_frequency_values">

								<item>15</item>

								<item>30</item>

								<item>60</item>

								<item>180</item>

								<item>360</item>

								<item>-1</item>

				</string-array>

										...

2.	 Edit	the		pref_header_data_sync		string	resource,	which	is	set	to		Data	&	sync	(the		&		is	HTML	code	for	an
ampersand).	Change	the	value	to	Account	(without	quotation	marks).

3.	 Refactor	the	resource	name	by	following	these	steps	(the	app	will	still	work	without	refactoring	the	names,	but
refactoring	makes	the	code	easier	to	understand):

i.	 Control-click	(or	right-click)	the	pref_header_data_sync	resource	name	and	choose	Refactor	>	Rename.
ii.	 Change	the	name	to	pref_header_account,	click	the	option	to	search	in	comments	and	strings,	and	click

Refactor.
4.	 Edit	the		pref_title_sync_frequency		string	resource	(which	is	set	to		Sync	frequency)	to	Market.

5.	 Refactor	>	Rename	the	resource	name	to	pref_title_account	as	you	did	previously.
6.	 Refactor	>	Rename	the	string	array	resource	name		pref_sync_frequency_titles		to	pref_market_titles.
7.	 Change	each	value	in	the		pref_market_titles		string	array	(15	minutes	,		30	minutes	,		1	hour	,	etc.)	to	be	the	titles	of

markets,	such	as	United	States,	Canada,	etc.,	rather	than	frequencies:

<string-array	name="pref_market_titles">

								<item>United	States</item>

								<item>Canada</item>

								<item>United	Kingdom</item>

								<item>India</item>

								<item>Japan</item>

								<item>Other</item>

</string-array>

8.	 Refactor	>	Rename	the	string	array	resource	name		pref_sync_frequency_values		to	pref_market_values.
9.	 Change	each	value	in	the		pref_market_values		string	array	(15	,		30	,		60	,	etc.)	to	be	values	for	the	markets—

abbreviations	such	as	US,	CA,	etc.:

<string-array	name="pref_market_values">

								<item>US</item>

								<item>CA</item>

								<item>UK</item>

								<item>IN</item>

								<item>JA</item>

								<item>-1</item>

				</string-array>

10.	 Scroll	down	to	the		pref_title_system_sync_settings		string	resource,	and	edit	the	resource	(which	is	set	to		System	sync
settings)	to	Account	settings.

11.	 Refactor	>	Rename	the	string	array	resource	name		pref_title_system_sync_settings		to
pref_title_account_settings.

Introduction

425

12.	 Open	the	pref_data_sync.xml	file.	The		ListPreference		in	this	layout	defines	the	setting	you	just	changed.	Note	that
the	string	resources	for	the		android:entries	,		android:entryValues		and		android:title		attributes	are	now	changed	to
the	values	you	supplied	in	the	previous	steps:

<ListPreference

								android:defaultValue="180"

								android:entries="@array/pref_market_titles"

								android:entryValues="@array/pref_market_values"

								android:key="sync_frequency"

								android:negativeButtonText="@null"

								android:positiveButtonText="@null"

								android:title="@string/pref_title_account"	/>

13.	 Change	the		android:defaultValue		attribute:

android:defaultValue="US"

Since	the	key	for	this	setting	preference	("sync_frequency")	is	hard-coded	elsewhere	in	the	Java	code,	don't	change	the
	android:key		attribute—keep	using		"sync_frequency"		as	the	key	for	this	setting	in	this	example.	If	you	are	thoroughly
customizing	the	settings	for	a	real-world	app,	you	would	spend	the	time	changing	the	hard-coded	keys	throughout	the	code.

Note:	Why	not	use	a	string	resource	for	the	key?	Because	string	resources	can	be	localized	for	different	languages	using
multiple-language	XML	files,	and	the	key	string	might	be	inadvertently	translated	along	with	the	other	strings,	which	would
cause	the	app	to	crash.

2.4	Add	code	to	set	the	default	values	for	the	settings
Find	the		onCreate()		method	in	MainActivity,	and	add	the	following		PreferenceManager.setDefaultValues		statements	at	the
end	of	the	method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			PreferenceManager.setDefaultValues(this,	R.xml.pref_general,	false);

			PreferenceManager.setDefaultValues(this,	R.xml.pref_notification,	false);

			PreferenceManager.setDefaultValues(this,	R.xml.pref_data_sync,	false);

}

The	default	values	are	already	specified	in	the	XML	file	with	the		android:defaultValue		attribute,	but	the	above	statements
ensure	that	the	Shared	Preferences	file	is	properly	initialized	with	the	default	values.	The		setDefaultValues()		method
takes	three	arguments:

The	app	context,	such	as		this	.
The	resource	ID	for	the	settings	layout	XML	file	which	includes	the	default	values	set	by	the		android:defaultValue	
attribute.
A	boolean	indicating	whether	the	default	values	should	be	set	more	than	once.	When		false	,	the	system	sets	the
default	values	only	if	this	method	has	never	been	called	in	the	past.	As	long	as	you	set	this	third	argument	to		false	,
you	can	safely	call	this	method	every	time	your	activity	starts	without	overriding	the	user's	saved	settings	values	by
resetting	them	to	the	default	values.	However,	if	you	set	it	to		true	,	the	method	will	override	any	previous	values	with
the	defaults.

2.5	Add	code	to	read	values	for	the	settings

1.	 Add	the	following	code	at	the	end	of	the	MainActivity		onCreate()		method.	You	can	add	it	immediately	after	the	code
you	added	in	the	previous	step	to	set	the	defaults	for	the	settings:

Introduction

426

https://developer.android.com/reference/android/content/Context.html

...

SharedPreferences	sharedPref	=

												PreferenceManager.getDefaultSharedPreferences(this);

String	marketPref	=	sharedPref.getString("sync_frequency",	"-1");

Toast.makeText(this,	marketPref,	Toast.LENGTH_SHORT).show();

}

As	you	learned	in	the	previous	task,	you	use		PreferenceManager.getDefaultSharedPreferences(this)		to	get	the	setting
as	a	SharedPreferences	object	(marketPref).	You	then	use		getString()		to	get	the	string	value	of	the	setting	that
uses	the	key	(sync_frequency)	and	assign	it	to		marketPref	.	If	there	is	no	value	for	the	key,	the		getString()		method
sets	the	setting	value	of		marketPref		to		-1	,	which	is	the	value	of		Other		in	the		pref_market_values		array.

2.	 Run	the	app,	again	using	a	smartphone	or	smartphone	emulator.	When	the	app's	main	screen	first	appears,	you	see	a
toast	message	at	the	bottom	of	the	screen.	The	first	time	you	run	the	application,	you	should	see	"-1"	displayed	in	the
toast	because	you	haven't	changed	the	setting	yet.

3.	 Tap	Settings	in	the	options	menu,	and	tap	Account	in	the	Settings	screen.	Choose	Canada	under	"Market"	as	shown
below:

Introduction

427

Introduction

428

4.	 Tap	the	Up	button	in	the	app	bar	to	return	to	the	Settings	screen,	and	tap	it	again	to	return	to	the	main	screen.	You
should	see	a	toast	message	with	"CA"	(for	Canada):	

You	have	successfully	integrated	the	Settings	Activity	with	the	Droid	Cafe	app.

5.	 Now	run	the	app	on	a	tablet	or	tablet	emulator.	Because	a	tablet	has	a	physically	larger	screen,	the	Android	runtime
takes	advantage	of	the	extra	space.	On	a	tablet,	the	settings	and	details	are	displayed	on	the	same	screen	making	it
easier	for	users	to	manage	their	settings.	

Solution	code
Android	Studio	project:	DroidCafeWithSettings	(Includes	coding	challenge	#1.)

Android	Studio	project:	DroidCafeWithSettingsChallenge	(Includes	coding	challenge	#2.)

Coding	challenges

Introduction

429

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafeWithSettings
https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafeWithSettingsChallenge

Note:	All	coding	challenges	are	optional	and	not	prerequisite	for	the	material	in	the	next	chapter.	

Challenge	1:	Add	code	to	DroidCafeWithSettings	that	reads	the	value	of	the	toggle	switch	"Enable	social
recommendations"	on	the	General	child	screen	of	Settings,	and	displays	its	value	along	with	the	"Market"	setting	in	the
same	toast	message	on	the	main	screen.

Hint:	Use	a		Boolean		variable	with		shared.Pref.getBoolean		and	the	key		"example_switch"	.

Challenge	2:	The	DroidCafeWithSettings	app	displays	the	settings	on	a	tablet-sized	screen	properly,	but	the	Up	button	in
the	app	bar	doesn't	return	the	user	to	the	MainActivity	as	it	does	on	a	smartphone-sized	screen.	This	is	due	to	the
	onOptionsItemSelected()		method	in	each	fragment	in	SettingsActivity.	It	uses	the	following	to	restart	the	SettingsActivity
when	the	user	taps	the	Up	button:

startActivity(new	Intent(getActivity(),	SettingsActivity.class));

The	above	is	the	appropriate	action	on	smartphone	screens	in	which	Settings	headers	(General,	Notifications,	and
Account)	appear	in	a	separate	screen.	After	changing	a	setting,	you	want	the	user's	tap	on	the	Up	button	to	take	them
back	to	the	Settings	headers.

However,	on	a	tablet,	the	headers	are	always	visible	in	the	left	pane	(while	the	settings	are	in	the	right	pane).	As	a	result,
tapping	the	Up	button	doesn't	take	the	user	to	MainActivity.

Find	a	way	to	make	the	Up	button	work	properly	in	SettingsActivity	on	tablet-sized	screens.

Hint:	There	are	several	ways	to	fix	this	problem.	Consider	the	following:

You	can	use	multiple		dimens.xml		files	in	your	app	to	accommodate	different	screen	sizes.	When	the	app	runs	on	a
specific	device,	the	appropriate		dimens.xml		file	is	chosen	based	on	the	qualifiers	for	the		dimens.xml		files.	For
example,	the	app	already	has	a		dimens.xml	(w820dp)		file	in	the	res	>	values	directory,	using	the		(w820dp)		qualifier	to
specify	a	device	with	an	820dp	screen	width	or	larger.	You	can	add	another		dimens.xml		file	with	the		Large		qualifier	to
specify	any	device	with	a	large	screen,	such	as	a	tablet.	The	app	also	includes	a		dimens.xml		file	in	the	res	>	values
directory	for	all	other	devices,	such	as	smartphones.
You	can	add	the	following		bool		resource	between	the		<resources>		and		</resources>		tags	in	the		dimens.xml
(large)		file,	which	is	automatically	chosen	for	tablets:

<resources>

				<bool	name="isTablet">true</bool>

</resources>

You	can	add	the	following		bool		resource	to	the		dimens.xml		file,	which	is	chosen	when	the	app	runs	on	any	device
that	is	not	large:

<bool	name="isTablet">false</bool>

Now	you	can	add	an	if-else	block	to	the		onOptionsItemSelected()		method	in	each	fragment	in	SettingsActivity	that
checks	to	see	if		isTablet		is	true.	If	it	is,	your	code	can	redirect	the	Up	button	action	to	MainActivity.

Summary
In	this	practical	you	learned	to:

Add	a	toggle	switch	setting	(SwitchPreference)	with	attributes	in	a	preference	XML	file,	and	set	its	attributes:
	android:defaultValue	:	The	setting	default	value.
	android:title	:	The	setting	title.
	android:key	:	The	setting	key.
	android:summary	:	The	setting	summary.

Add	a	settings	activity	to	view	settings,	and	a	fragment	that	extends		PreferenceFragment		for	each	specific	setting.

Introduction

430

Use		getFragmentManager()		to	add	the	fragment	to	the	settings	activity
Use		addPreferencesFromResource()		in	each	fragment	to	load	the	appropriate	preferences	XML	file	for	that
fragment.

Use	an		intent		to	connect	the	Settings	item	in	the	options	menu	to	the	settings	activity.
Set	the	default	values	for	settings	using		PreferenceManager.setDefaultValues()	.
Read	the	settings	values	from	SharedPreferences	using		PreferenceManager.getDefaultSharedPreferences()	,	and	obtain
each	setting	value	using		.getString	,		.getBoolean	,	etc.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

App	Settings

Learn	more
Android	Studio	documentation:

Android	Studio	User	Guide
Android	API	Guide,	"Develop"	section:

Settings	(coding)
Preference	class
PreferenceFragment
Fragment
SharedPreferences
Saving	Key-Value	Sets
Supporting	Different	Screen	Sizes

Material	Design	Specification:
Settings	(design)

Other:
Stack	Overflow:	How	does	one	get	dimens.xml	into	Android	Studio?
Stack	Overflow:	Determine	if	the	device	is	a	smartphone	or	tablet?

Introduction

431

https://developer.android.com/reference/android/content/SharedPreferences.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/92_c_app_settings.html
https://developer.android.com/studio/intro/index.html
https://developer.android.com/guide/topics/ui/settings.html
https://developer.android.com/reference/android/preference/Preference.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/training/basics/data-storage/shared-preferences.html
https://developer.android.com/training/multiscreen/screensizes.html
https://material.google.com/patterns/settings.html
http://stackoverflow.com/questions/32684869/how-does-one-get-dimens-xml-sw600dp-into-android-studio
http://stackoverflow.com/questions/9279111/determine-if-the-device-is-a-smartphone-or-tablet

10.1A:	SQLite	Database
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	0.	Download	and	run	the	base	code
Task	1.	Create	a	data	model	for	word	list	data
Task	2:	Extend	SQLiteOpenHelper	to	create	and	populate	the	database
Task	3:	Display	the	data	in	the	RecyclerView
Task	4:	Edit	words	in	the	UI	and	store	changes	in	the	database
Task	5:	Create	UI	Elements
Task	6:	Handle	Clicks
Coding	challenges
Summary
Related	Concept
Learn	More

A	SQLite	database	is	a	good	storage	solution	when	you	have	structured	data	that	you	need	to	store	persistently	and
access,	search,	and	change	frequently.

When	you	use	a	SQLite	database,	all	interactions	with	the	database	are	through	an	instance	of	the	SQLiteOpenHelper
class	which	executes	your	requests	and	manages	your	database	for	you.

In	this	practical,	you	will	create	a	SQLite	database	for	a	set	of	data,	display	retrieved	data	in	a	RecyclerView,	add
functionality	to	add,	delete,	and	edit	the	data	in	the	RecyclerView	and	store	it	in	the	database.

Note:	A	database	that	persistently	stores	your	data	and	abstracts	your	data	into	a	data	model	is	sufficient	for	small	Android
apps	with	minimal	complexity.	In	later	chapters,	you	will	learn	to	architect	your	app	using	loaders	and	content	providers	to
further	separate	data	from	the	user	interface.	These	classes	will	help	to	move	work	off	the	UI	thread	to	assist	in	making	the
user's	experience	as	smooth	and	natural	as	possible.	In	addition	to	improving	the	user	experience	by	removing	a	potential
performance	issue,	they	improve	your	ability	to	extend	and	maintain	your	app.
Important:	In	this	practical,	the	SQLiteOpenHelper	executes	database	operations	in	the	main	thread.	In	a	production	app,
where	database	operations	might	take	quite	some	time,	you	would	perform	these	operations	on	a	background	thread,	for
example,	using	a	loader	such	as	AsyncTaskLoader	and	CursorLoader.

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Displaying	data	in	a	RecyclerView.
Using	adapters	as	intermediaries	between	data	and	views.
Adding	onClick	event	handlers	to	views	and	dynamically	creating	onClick	handlers.
Starting	a	second	activity	and	returning	data	from	a	it.
Passing	data	between	activities	using	intent	extras.
Using	an	EditText	view	to	get	data	entered	by	the	user.

You	also	need	a	basic	understanding	of	SQL	databases,	how	they	are	organized	into	tables	of	rows	and	columns,	and	the
SQL	language.	See	the	SQLite	Primer

Introduction

432

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/guide/components/loaders.html

What	you	will	LEARN
In	this	practical	you	will	learn	to:

Create	and	manage	a	SQLite	database	with	an	SQLiteOpenHelper.
Implement	insert,	delete,	update,	and	query	functionality	through	your	open	helper.
Use	an	adapter	and	custom	click	handler	to	let	users	interact	with	the	database	from	the	user	interface.

What	you	will	DO
You	start	with	an	app	that	is	the	same	as	the	RecyclerView	word	list	app	you	created	previously,	with	additional	user
interface	elements	already	added	for	you,	so	that	you	can	focus	on	the	database	code.

You	will	extend	and	modify	the	base	app	to:

Implement	a	custom	class	to	model	your	data.
Create	a	subclass	of	SQLiteOpenHelper	that	creates	and	manages	your	app's	database.
Display	data	from	the	database	in	the	RecyclerView.
Implement	functionality	to	add,	modify,	and	delete	data	in	the	UI,	and	store	the	changes	in	the	database.

App	Overview
Starting	from	a	skeleton	app,	you	will	add	functionality	to:

Display	words	from	a	SQLite	database	in	a	RecyclerView.
Each	word	can	be	edited	or	deleted.
You	can	add	new	words	and	store	them	in	the	database.

Introduction

433

Minimum	SDK	Version	is	API15:	Android	4.0.3	IceCreamSandwich	and	*target*	SDK	is	the	current	version	of	Android
(version	23	as	of	the	writing	of	this	book).

Task	0.	Download	and	run	the	starter	code
In	order	to	save	you	some	work,	in	particular	writing	database-unrelated	activities	and	user	interface	code,	you	need	to	get
the	starter	code	for	this	practical.

1.	 Download	the	WordListSqlStarterCode	starter	code.

2.	 Open	the	app	in	Android	Studio.

3.	 Run	the	app.	You	should	see	the	UI	as	shown	in	the	previous	screenshot.	All	the	displayed	words	should	be
"placeholder".	Clicking	the	buttons	does	nothing.

Task	1.	Extend	SQLiteOpenHelper	to	create	and	populate	a
database
Android	apps	can	use	standard	SQLite	databases	to	store	data.	This	practical	does	not	teach	SQLite,	but	shows	how	to
use	it	in	an	Android	app.	For	info	on	learning	about	SQLite,	see	the	SQL	Primer	in	the	previous	chapter.

Introduction

434

https://github.com/google-developer-training/android-fundamentals-starter-apps/tree/master/WordListSql-Starter

SQLOpenHelper	is	a	utility	class	in	the	Android	SDK	for	interacting	with	a	SQLite	database	object.	It	includes	onCreate()
and	onUpdate()	methods	that	you	must	implement,	and	insert,	delete,	update,	and	query	convenience	methods	for	all	your
database	interactions.

The	SQLOpenHelper	class	takes	care	of	opening	the	database	if	it	exists,	creating	it	if	it	does	not,	and	upgrading	it	as
necessary.

Note:	You	can	have	more	than	one	database	per	app,	and	more	than	one	open	helper	managing	them.	However	consider
creating	multiple	tables	in	the	same	database	instead	of	using	multiple	databases	for	performance	and	architectural
simplicity

1.1	Create	a	skeleton	WordListOpenHelper	class
The	first	step	in	adding	a	database	to	your	code	is	always	to	create	a	subclass	of	SQLiteOpenHelper	and	implement	its
methods.

1.	 Create	a	new	Java	class	WordListOpenHelper	with	the	following	signature.

public	class	WordListOpenHelper	extends	SQLiteOpenHelper	{}

2.	 In	the	code	editor,	hover	over	the	error,	then	click	the	light	bulb	image	and	select	Implement	methods.	Make	sure
both	methods	are	highlighted	and	click	OK.

3.	 Add	the	missing	constructor	for	WordListOpenHelper.	(You	will	define	the	undefined	constants	next.)

public	WordListOpenHelper(Context	context)	{

			super(context,	DATABASE_NAME,	null,	DATABASE_VERSION);

}

1.2.	Add	database	constants	to	WordListOpenHelper

1.	 At	the	top	of	the	WordListOpenHelper	class,	define	the	constants	for	the	tables,	rows,	and	columns	as	shown	in	the
code	below.	This	should	get	rid	of	all	the	errors.

//	It's	a	good	idea	to	always	define	a	log	tag	like	this.

private	static	final	String	TAG	=	WordListOpenHelper.class.getSimpleName();

//	has	to	be	1	first	time	or	app	will	crash

private	static	final	int	DATABASE_VERSION	=	1;

private	static	final	String	WORD_LIST_TABLE	=	"word_entries";

private	static	final	String	DATABASE_NAME	=	"wordlist";

//	Column	names...

public	static	final	String	KEY_ID	=	"_id";

public	static	final	String	KEY_WORD	=	"word";

//	...	and	a	string	array	of	columns.

private	static	final	String[]	COLUMNS	=	{	KEY_ID,	KEY_WORD	};

2.	 Run	your	code	to	make	sure	it	has	no	more	errors.

1.3.	Build	the	SQL	query	and	code	to	create	the	database
SQL	queries	can	become	quite	complex.	It	is	a	best	practice	to	construct	the	queries	separately	from	the	code	that	uses
them.	This	increases	code	readability	and	helps	with	debugging.

Continue	adding	code	to	WordListOpenHelper.java:

1.	 Below	the	constants,	add	the	following	code	to	construct	the	query.	Refer	to	the	SQLite	Primer	if	you	need	help
understanding	this	query.

Introduction

435

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

//	Build	the	SQL	query	that	creates	the	table.

private	static	final	String	WORD_LIST_TABLE_CREATE	=

							"CREATE	TABLE	"	+	WORD_LIST_TABLE	+	"	("	+

															KEY_ID	+	"	INTEGER	PRIMARY	KEY,	"	+

															//	id	will	auto-increment	if	no	value	passed

															KEY_WORD	+	"	TEXT);";

2.	 Add	instance	variables	for	the	references	to	writable	and	readable	databases.	Storing	these	references	saves	you	to
work	of	getting	a	database	reference	every	time	you	need	to	read	or	write.

private	SQLiteDatabase	mWritableDB;

private	SQLiteDatabase	mReadableDB;

3.	 In	the	onCreate	method,	add	code	to	create	a	database	and	the	table	(The	helper	class	does	not	create	another
database,	if	one	already	exists.)

@Override

public	void	onCreate(SQLiteDatabase	db)	{

				db.execSQL(WORD_LIST_TABLE_CREATE);

}

4.	 Fix	the	error	by	renaming	the	method	argument	from	SQLiteDatabase	to	db.

1.4	Create	the	database	in	onCreate	of	the	MainActivity
To	create	the	database,	create	an	instance	of	the	WordListOpenHelper	class	you	just	wrote.

1.	 Open	MainActivity.java	and	add	an	instance	variable	for	the	open	helper:

private	WordListOpenHelper	mDB;

2.	 In	onCreate,	initialize	mDB	with	an	instance	of	WordListOpenHelper.	This	calls	onCreate	of	the	WordListOpenHelper,
which	creates	the	database.

mDB	=	new	WordListOpenHelper(this);

3.	 Add	a	breakpoint,	run	the	app	with	the	debugger,	and	check	that	mDB	is	an	instance	for	WordListOpenHelper.

1.5	Add	data	to	the	database
The	list	of	words	for	your	app	could	come	from	many	sources.	It	could	be	completely	user	created,	or	downloaded	from	the
internet,	or	generated	from	a	file	that's	part	of	your	APK.	For	this	practical,	you	will	seed	your	database	with	a	small	amount
of	hard-coded	data.

Note	that	acquiring,	creating,	and	formatting	data	is	a	whole	separate	topic	that	is	not	covered	in	this	course.

1.	 Open	WordListOpenHelper.java.
2.	 In	onCreate,	after	creating	the	database,	add	a	function	call	to

fillDatabaseWithData(db);

Next,	implement	the		fillDatabaseWithData()		method	in	WordListOpenHelper.

3.	 Implement	the	method	stub.

	private	void	fillDatabaseWithData(SQLiteDatabase	db){}	

4.	 Inside	the	method,	declare	a	string	of	words	as	your	mock	data.

Introduction

436

String[]	words	=	{"Android",	"Adapter",	"ListView",	"AsyncTask",

				"Android	Studio",	"SQLiteDatabase",	"SQLOpenHelper",

				"Data	model",	"ViewHolder","Android	Performance",

				"OnClickListener"};

5.	 Create	a	container	for	the	data.	The	insert	method	that	you	will	call	next	requires	the	values	to	fill	a	row	as	an	instance
of	ContentValues.	A	ContentValues	stores	the	data	for	one	row	as	key-value	pairs,	where	the	key	is	the	name	of	the
column	and	the	value	is	the	value	to	set.

//	Create	a	container	for	the	data.

ContentValues	values	=	new	ContentValues();

6.	 Add	key/value	for	the	first	row	to	values,	then	insert	that	row	into	the	database.	Repeat	for	all	the	words	in	your	array	of
words.

db.insert	is	a	SQLiteDatabase	convenience	method	to	insert	one	row	into	the	database.	(It's	a	convenience
method,	because	you	do	not	have	to	write	the	SQL	query	yourself.)
The	first	argument	to	db.insert	is	the	table	name,		WORD_LIST_TABLE	.
The	second	argument	is	a		String	nullColumnHack	.	It's	a	SQL	workaround	that	allows	you	to	insert	empty	rows.
See	the	documentation	for	insert().	Use	null	for	this	argument.
The	third	argument	must	be	a	ContentValues	container	with	values	to	fill	the	row.	This	sample	only	has	one
column	"words"	as	represented	by	the	constant	KEY_WORD	set	earlier;	for	tables	with	multiple	columns,	add	the
values	for	each	column	to	this	container.

for	(int	i=0;	i	<	words.length;	i++)	{

					//	Put	column/value	pairs	into	the	container.

					//	put()	overrides	existing	values.

					values.put(KEY_WORD,	words[i]);

					db.insert(WORD_LIST_TABLE,	null,	values);

	}

7.	 Before	you	run	and	test	your	app,	you	should	clear	the	data	from	your	SQLite	database	and	delete	the	database.	Then
we	can	run	our	app	and	recreate	it	so	that	the	database	is	initialized	with	the	seed	data.	You	can	uninstall	the	app	from
your	device,	or	you	can	clear	all	the	data	in	the	app	from	Settings	>	Apps	>	WordList	>	Storage	>	Clear	Data	on
your	Android	emulator	or	physical	device

8.	 Run	your	app.	You	will	not	see	any	changes	in	the	user	interface.
Check	the	logs	and	make	sure	there	are	no	errors	before	you	continue.	If	you	encounter	errors,	read	the	logcat
messages	carefully	and	use	resources,	such	as	Stack	Overflow,	if	you	get	stuck.
You	can	also	check	in	settings,	that	the	app	users	storage.

Task	2.	Create	a	data	model	for	a	single	word
A	data	model	is	a	class	that	encapsulates	a	complex	data	structure	and	provides	an	API	for	accessing	and	manipulating	the
data	in	that	structure.	You	need	a	data	model	to	pass	data	retrieved	from	the	database	to	the	UI.

For	this	practical,	the	data	model	only	contains	the	word	and	its	id.	While	the	unique	id	will	be	generated	by	the	database,
you	need	a	way	of	passing	the	id	to	the	user	interface.	This	will	identify	the	word	the	user	is	changing.

2.1.	Create	a	data	model	for	your	word	data

1.	 Create	a	new	class	and	call	it		WordItem	.
2.	 Add	the	following	class	variables.

private	int	mId;

private	String	mWord;

3.	 Add	an	empty	constructor.

Introduction

437

http://developer.android.com/reference/android/content/ContentValues.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#insert
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/content/ContentValues.html

4.	 Add	getters	and	setters	for	the	id	and	word.
5.	 Run	your	app.	You	will	not	see	any	visible	UI	changes,	but	there	should	be	no	errors.

Solution:

public	class	WordItem	{

			private	int	mId;

			private	String	mWord;

			public	WordItem()	{}

			public	int	getId()	{return	this.mId;}

			public	String	getWord()	{return	this.mWord;}

			public	void	setId(int	id)	{this.mId	=	id;}

			public	void	setWord(String	word)	{this.mWord	=	word;}

}

Task	3.	Implement	the	query()	method	in	WordListOpenHelper
The	query()	method	retrieves	rows	from	the	database	as	selected	by	a	SQL	query.

For	this	sample,	in	order	to	display	words	in	the	RecyclerView,	we	need	to	get	them	from	the	database,	one	at	a	time,	as
needed.	The	word	needed	is	identified	by	its	position	in	the	view.

As	such,	the	query	method	has	a	parameter	for	the	requested	position	and	returns	a	WordItem.

3.1.	Implement	the	query()	method

1.	 Create	a	query	method	that	takes	an	integer	position	argument	and	returns	a	WordItem.

public	WordItem	query(int	position)	{

}

2.	 Construct	a	query	that	returns	only	the	nth	row	of	the	result.	Use	LIMIT	with	position	as	the	row,	and	1	as	the	number
of	rows.

	String	query	=	"SELECT		*	FROM	"	+	WORD_LIST_TABLE	+

																"	ORDER	BY	"	+	KEY_WORD	+	"	ASC	"	+

																"LIMIT	"	+	position	+	",1";

3.	 Instantiate	a	Cursor	variable	to	null	to	hold	the	result	from	the	database.

Cursor	cursor	=	null;

The	SQLiteDatabase	always	presents	the	results	as	a	Cursor	in	a	table	format	that	resembles	of	a	SQL	database.

A	cursor	is	a	pointer	into	a	row	of	structured	data.	You	can	think	of	it	as	an	array	of	rows.	The	Cursor	class	provides
methods	for	moving	the	cursor	through	that	structure,	and	methods	to	get	the	data	from	the	columns	of	each	row.

4.	 Instantiate	a	WordItem	entry.

WordItem	entry	=	new	WordItem();

5.	 Add	a	try/catch/finally	block.

try	{}	catch	(Exception	e)	{}	finally	{}

Introduction

438

https://developer.android.com/reference/android/database/Cursor.html

6.	 Inside	the	try	block,

i.	 get	a	readable	database	if	it	doesn't	exist.

if	(mReadableDB	==	null)	{

				mReadableDB	=	getReadableDatabase();

}

ii.	 send	a	raw	query	to	the	database	and	store	the	result	in	a	cursor.

cursor	=	mReadableDB.rawQuery(query,	null);

The	open	helper	query	method	can	construct	a	SQL	query	string	and	send	it	as	a	rawQuery	to	the	database	which
returns	a	cursor.	If	your	data	is	supplied	by	your	app,	and	under	your	full	control,	you	can	use	raw	query().

i.	 Move	the	cursor	to	the	first	item.

cursor.moveToFirst();

ii.	 Set	the	the	id	and	word	of	the	WordItem	entry	to	the	values	returned	by	the	cursor.

entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));

entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));

7.	 In	the	catch	block,	log	the	exception.

Log.d(TAG,	"EXCEPTION!	"	+	e);

8.	 In	the	finally	block,	close	the	cursor	and	return	the	WordItem	entry.

cursor.close();

return	entry;

Solution:

public	WordItem	query(int	position)	{

				String	query	=	"SELECT		*	FROM	"	+	WORD_LIST_TABLE	+

												"	ORDER	BY	"	+	KEY_WORD	+	"	ASC	"	+

												"LIMIT	"	+	position	+	",1";

				Cursor	cursor	=	null;

				WordItem	entry	=	new	WordItem();

				try	{

								if	(mReadableDB	==	null)	{

												mReadableDB	=	getReadableDatabase();

								}

								cursor	=	mReadableDB.rawQuery(query,	null);

								cursor.moveToFirst();

								entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));

								entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));

				}	catch	(Exception	e)	{

								Log.d(TAG,	"QUERY	EXCEPTION!	"	+	e.getMessage());

				}	finally	{

								cursor.close();

								return	entry;

				}

}

3.2.	The	onUpgrade	method

Introduction

439

Every	SQLiteOpenHelper	must	implement	the	onUpgrade()	method,	which	determines	what	happens	if	the	database
version	number	changes.	This	may	happen	if	you	have	existing	users	of	your	app	that	use	an	older	version	of	the
database.	This	method	is	triggered	when	a	database	is	first	opened.	The	customary	default	action	is	to	delete	the	current
database	and	recreate	it.

Important:	While	it's	OK	to	drop	the	table	in	a	sample	app,	In	a	production	app	you	need	to	carefully	migrate	the	user's
valuable	data.
You	can	use	the	code	below	to	implement	the	onUpgrade()	method	for	this	sample.

Boilerplate	code	for	onUpgrade():

@Override

public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,	int	newVersion)	{

			Log.w(WordListOpenHelper.class.getName(),

											"Upgrading	database	from	version	"	+	oldVersion	+	"	to	"

																			+	newVersion	+	",	which	will	destroy	all	old	data");

			db.execSQL("DROP	TABLE	IF	EXISTS	"	+	WORD_LIST_TABLE);

			onCreate(db);

}

Task	4.	Display	data	in	the	RecyclerView
You	now	have	a	database,	with	data.	Next,	you	will	update	the	WordListAdapter	and	MainActivity	to	fetch	and	display	this
data.

4.1.	Update	WordListAdapter	to	display	WordItems
1.	 Open	WordListAdapter.
2.	 In	onBindViewHolder	replace	the	code	that	displays	mock	data	with	code	to	get	an	item	from	the	database	and	display

it.	You	will	notice	an	error	on	mDB.

WordItem	current	=	mDB.query(position);

holder.wordItemView.setText(current.getWord());

3.	 Declare	mDB	as	an	instance	variable.

WordListOpenHelper	mDB;

4.	 To	get	the	value	for	mDB,	change	the	constructor	for	WordListAdapter	and	add	a	second	parameter	for	the
WordListOpenHelper.

5.	 Assign	the	value	of	the	parameter	to	mDB.	Your	constructor	should	look	like	this:

public	WordListAdapter(Context	context,	WordListOpenHelper	db)	{

								mInflater	=	LayoutInflater.from(context);

								mContext	=	context;

								mDB	=	db;

}

This	generates	an	error	in	MainActivity,	because	you	added	an	argument	to	the	WordListAdapter	constructor.

6.	 Open	MainActivity	and	add	the	missing	mDB	argument.

mAdapter	=	new	WordListAdapter	(this,	mDB);

7.	 Run	your	app.	You	should	see	all	the	words	from	the	database.

Task	5.	Add	new	words	to	the	database

Introduction

440

When	the	user	clicks	the	FAB,	an	activity	opens	that	lets	them	enter	a	word	that	gets	added	to	the	database	when	they	click
save.

The	starter	code	provides	you	with	the	click	listener	and	the	EditWordActivity	started	by	clicking	the	FAB.	You	will	add	the
database	specific	code	and	tie	the	pieces	together,	from	the	bottom	up,	like	you	just	did	with	the	query	method.

5.1.	Write	the	insert()	method

In	WordListOpenHelper:

1.	 Create	the	insert()	method	with	the	following	signature.	The	user	supplies	a	word,	and	the	method	returns	the	id	for	the
new	entry.	Generated	id's	can	be	big,	so	insert	returns	a	number	of	type	long.

public	long	insert(String	word){}

2.	 Declare	a	variable	for	the	id.	If	the	insert	operation	fails,	the	method	returns	0.

long	newId	=	0;

3.	 As	before,	create	a	ContentValues	value	for	the	row	data.

ContentValues	values	=	new	ContentValues();

values.put(KEY_WORD,	word);

4.	 Put	your	database	operation	into	a	try/catch	block.

try	{}	catch	(Exception	e)	{}

5.	 Get	a	writable	database	if	one	doesn't	already	exist.

if	(mWritableDB	==	null)	{

				mWritableDB	=	getWritableDatabase();

}

6.	 Insert	the	row.

newId	=	mWritableDB.insert(WORD_LIST_TABLE,	null,	values);

7.	 Log	the	exception.

Log.d(TAG,	"INSERT	EXCEPTION!	"	+	e.getMessage());

8.	 Return	the	id.

return	newId;

Solution:

Introduction

441

public	long	insert(String	word){

				long	newId	=	0;

				ContentValues	values	=	new	ContentValues();

				values.put(KEY_WORD,	word);

				try	{

								if	(mWritableDB	==	null)	{

												mWritableDB	=	getWritableDatabase();

								}

								newId	=	mWritableDB.insert(WORD_LIST_TABLE,	null,	values);

				}	catch	(Exception	e)	{

								Log.d(TAG,	"INSERT	EXCEPTION!	"	+	e.getMessage());

				}

				return	newId;

}

5.2.	Get	the	word	to	insert	from	the	user	and	update	the	database
The	starter	code	comes	with	an	EditWordActivity	that	gets	a	word	from	the	user	and	returns	it	to	the	main	activity.	In
MainActivity,	you	just	have	to	fill	in	the	onActivityResult()	method.

1.	 Check	to	ensure	the	result	is	from	the	correct	activity	and	get	the	word	that	the	user	entered	from	the	extras.

if	(requestCode	==	WORD_EDIT)	{

			if	(resultCode	==	RESULT_OK)	{

								String	word	=	data.getStringExtra(EditWordActivity.EXTRA_REPLY);

2.	 If	the	word	is	not	empty,	check	whether	we	have	been	passed	an	id	with	the	extras.	If	there	is	no	id,	insert	a	new	word.
In	the	next	task,	you	will	update	the	existing	word	if	an	id	is	passed.

if	(!TextUtils.isEmpty(word))	{

				int	id	=	data.getIntExtra(WordListAdapter.EXTRA_ID,	-99);

				if	(id	==	WORD_ADD)	{

								mDB.insert(word);

}

3.	 To	update	the	UI,	notify	the	adapter	that	the	underlying	data	has	changed.

mAdapter.notifyDataSetChanged();

4.	 If	the	word	is	empty	because	the	user	didn't	enter	anything,	show	a	toast	letting	them	know.	And	don't	forget	to	close
all	the	parentheses.

}	else	{

				Toast.makeText(

								getApplicationContext(),

								R.string.empty_not_saved,

								Toast.LENGTH_LONG).show();

								}

					}

}

Solution:

Introduction

442

if	(requestCode	==	WORD_EDIT)	{

				if	(resultCode	==	RESULT_OK)	{

								String	word	=	data.getStringExtra(EditWordActivity.EXTRA_REPLY);

								//	Update	the	database

								if	(!TextUtils.isEmpty(word))	{

												int	id	=	data.getIntExtra(WordListAdapter.EXTRA_ID,	-99);

												if	(id	==	WORD_ADD)	{

																mDB.insert(word);

												}

												//	Update	the	UI

												mAdapter.notifyDataSetChanged();

								}	else	{

												Toast.makeText(

																				getApplicationContext(),

																				R.string.empty_not_saved,

																				Toast.LENGTH_LONG).show();

								}

				}

}

5.3.	Implement	getItemCount()
In	order	for	the	new	items	to	be	displayed	properly,	getItemCount	in	WordListAdapter	has	to	return	the	actual	number	of
entries	in	the	database	instead	of	the	number	of	words	in	the	starter	list	of	words.

1.	 Change	getItemCount	to	the	code	below,	which	will	trigger	an	error.

return	(int)	mDB.count();

2.	 Open	WordListOpenHelper	and	implement	count()	to	return	the	number	of	entries	in	the	database.

public	long	count(){

				if	(mReadableDB	==	null)	{

								mReadableDB	=	getReadableDatabase();

				}

				return	DatabaseUtils.queryNumEntries(mReadableDB,	WORD_LIST_TABLE);

}

3.	 Run	your	app	and	add	some	words.

Task	6.	Delete	words	from	the	database
To	implement	the	delete	functionality	you	need	to:

Implement	the	delete()	method	in	WordListOpenHelper
Add	a	click	handler	to	the	DELETE	button	in	WordListAdapter

6.1.	Write	the	delete()	method

You	use	the	delete()	method	on	SQLiteDatabase	to	delete	an	entry	in	the	database.

Add	a	method	delete	to	the	WordListOpenHelper	that:

1.	 Create	the	method	stub	for	delete(),	which	takes	an	int	argument	for	the	id	of	the	item	to	delete,	and	returns	the
number	of	rows	deleted.

public	int	delete(int	id)	{}

2.	 Declare	a	variable	to	hold	the	result.

int	deleted	=	0;

Introduction

443

3.	 As	for	insert,	add	a	try	block.

try	{}	catch	(Exception	e)	{}

4.	 Get	a	writable	database,	if	necessary.

if	(mWritableDB	==	null)	{

				mWritableDB	=	getWritableDatabase();

}

5.	 Call	delete	on	the	WORD_LIST_TABLE,	selecting	by	KEY_ID	and	passing	the	value	of	the	id	as	the	argument.	The	"?"
is	a	placeholder	that	gets	filled	with	the	string.	This	is	a	more	secure	way	of	building	queries.

deleted	=	mWritableDB.delete(WORD_LIST_TABLE,

				KEY_ID	+	"	=	?	",	new	String[]{String.valueOf(id)});

6.	 Print	a	log	message	for	exceptions.

Log.d	(TAG,	"DELETE	EXCEPTION!	"	+	e.getMessage());

7.	 Return	the	number	of	rows	deleted.

	return	deleted;

Solution:

public	int	delete(int	id)	{

				int	deleted	=	0;

				try	{

								if	(mWritableDB	==	null)	{

											mWritableDB	=	getWritableDatabase();

				}

								deleted	=	mWritableDB.delete(WORD_LIST_TABLE,	//table	name

																KEY_ID	+	"	=?	",	new	String[]{String.valueOf(id)});

				}	catch	(Exception	e)	{

								Log.d	(TAG,	"DELETE	EXCEPTION!	"	+	e.getMessage());								

				}

				return	deleted;

}

6.2.	Add	a	click	handler	to	DELETE	button

You	can	now	add	a	click	handler	to	the	DELETE	button	that	calls	the	delete()	method	you	just	wrote.

Take	a	look	at	the	MyButtonOnClickListener	class	in	your	starter	code.	The	MyButtonOnClickListener	class	implements	a
click	listener	that	stores	the	id,	and	the	word	that	you	need	to	make	changes	to	the	database.

Each	view	holder,	when	attached	(bound)	to	the	RecyclerView	in	the	onBindViewHolder	method	of	WordListAdapter,	needs
to	also	attach	a	click	listener	to	the	DELETE	button,	passing	the	id,	and	word	to	the	MyButtonOnClickListener	constructor.
These	values	are	then	used	by	the	onClick	handler	to	delete	the	correct	item	and	notify	the	adapter,	which	item	has	been
removed.

Note	that	you	cannot	use	the	position	argument	passed	into	onBindViewHolder,	because	it	may	be	stale	by	the	time	the
click	handler	is	called.	You	have	to	keep	a	reference	to	the	view	holder	and	get	the	position	with	getAdapterPosition().

Solution:

Introduction

444

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html#getAdapterPosition()

//	Keep	a	reference	to	the	view	holder	for	the	click	listener

final	WordViewHolder	h	=	holder;	//	needs	to	be	final	for	use	in	callback

				//	Attach	a	click	listener	to	the	DELETE	button.

				holder.delete_button.setOnClickListener(

								new	MyButtonOnClickListener(current.getId(),	null)		{

												@Override

												public	void	onClick(View	v)	{

																int	deleted	=	mDB.delete(id);

																if	(deleted	>=	0)

																				notifyItemRemoved(h.getAdapterPosition());

												}

								});

Task	7.	Update	words	in	the	database
To	update	existing	words	you	have	to:

Add	an	update()	method	to	WordListOpenHelper.
Add	a	click	handler	to	the	EDIT	button	of	your	view.

7.1.	Write	the	update()	method

You	use	the	update()	method	on	SQLiteDatabase	to	update	an	existing	entry	in	the	database.

1.	 Add	a	method	to	the	WordListOpenHelper	that:
Takes	an	integer	id	and	a	String	word	for	its	arguments	and	returns	an	integer.

public	int	update(int	id,	String	word)

Initializes	int	mNumberOfRowsUpdated	to	-1.

int	mNumberOfRowsUpdated	=	-1;

2.	 Inside	a	try	block,	do	the	following	steps:
3.	 Get	a	writable	SQLiteDatabase	db	if	there	isn't	one	already.

if	(mWritableDB	==	null)	{

				mWritableDB	=	getWritableDatabase();

}

4.	 Create	a	new	instance	of	ContentValues	and	at	the	KEY_WORD	word	to	it.

ContentValues	values	=	new	ContentValues();

values.put(KEY_WORD,	word);

5.	 Call	db.update	using	the	following	arguments:

mNumberOfRowsUpdated	=	db.update(WORD_LIST_TABLE,

							values,	//	new	values	to	insert

							//	selection	criteria	for	row	(the	_id	column)

							KEY_ID	+	"	=	?",

							//selection	args;	value	of	id

							new	String[]{String.valueOf(id)});

6.	 In	the	catch	block,	print	a	log	message	if	any	exceptions	are	encountered.

Log.d	(TAG,	"UPDATE	EXCEPTION:	"	+	e.getMessage());

7.	 Return	the	number	of	rows	updated,	which	should	be	-1	(fail),	0	(nothing	updated),	or	1	(success).

Introduction

445

return	mNumberOfRowsUpdated;

Solution:

public	int	update(int	id,	String	word)	{

				int	mNumberOfRowsUpdated	=	-1;

				try	{

								if	(mWritableDB	==	null)	{

												mWritableDB	=	getWritableDatabase();

				}

								ContentValues	values	=	new	ContentValues();

								values.put(KEY_WORD,	word);

								mNumberOfRowsUpdated	=	mWritableDB.update(WORD_LIST_TABLE,

																values,

																KEY_ID	+	"	=	?",

																new	String[]{String.valueOf(id)});

				}	catch	(Exception	e)	{

								Log.d	(TAG,	"UPDATE	EXCEPTION!	"	+	e.getMessage());

				}

				return	mNumberOfRowsUpdated;

}

7.2.	Add	a	click	listener	to	the	EDIT	button

And	here	is	the	code	for	the	Edit	click	listener	when	we	bind	the	View	in	the	onBindViewHolder	method	of	WordListAdapter.
This	listener	has	nothing	database	specific.	It	starts	the	EditWordActivity	Activity	using	an	Intent	and	passes	it	the	current
id,	position,	and	word	in	the	Extras.

If	you	get	an	error	on	the	EXTRA_POSITION	constant,	add	it	with	a	value	of	"POSITION",

Solution:

//	Attach	a	click	listener	to	the	EDIT	button.

holder.edit_button.setOnClickListener(new	MyButtonOnClickListener(

								current.getId(),	current.getWord())	{

				@Override

				public	void	onClick(View	v)	{

								Intent	intent	=	new	Intent(mContext,	EditWordActivity.class);

								intent.putExtra(EXTRA_ID,	id);

								intent.putExtra(EXTRA_POSITION,	h.getAdapterPosition());

								intent.putExtra(EXTRA_WORD,	word);

								//	Start	an	empty	edit	activity.

								((Activity)	mContext).startActivityForResult(

																intent,	MainActivity.WORD_EDIT);

				}

});

7.3.	Add	updating	to	onActivityResult

As	implemented,	clicking	edit	starts	an	activity	that	shows	the	user	the	current	word,	and	they	can	edit	it.	To	make	the
update	happen,

1.	 Add	one	line	of	code	to	the	onActivityResult	method	in	your	MainActivity.

else	if	(id	>=	0)	{

				mDB.update(id,	word);

}

2.	 Run	your	app	and	play	with	it!

Introduction

446

7.4.	Design	and	error	considerations

The	methods	you	wrote	to	add,	update	and	delete	entries	in	the	database	all	assume	that	their	input	is	valid.	This	is
acceptable	for	sample	code	because	the	purpose	of	this	sample	code	is	to	teach	you	the	basic	functionality	of	a	SQLite
database,	and	so	not	every	edge	case	is	considered,	not	every	value	is	tested,	and	everybody	is	assumed	to	be	well
behaved.	If	this	were	a	production	app,	you	would	have	greater	security	considerations,	and	content	would	need	to	be
tested	for	validity	until	you	know	it	is	not	malicious.
In	a	production	app,	you	must	catch	specific	exceptions	and	handle	them	appropriately.
You	tested	the	correct	functioning	of	the	app	by	running	it.	For	a	production	app	with	real	data,	you	will	need	more
thorough	testing,	for	example,	using	unit	and	interface	testing.
For	this	practical,	you	created	the	the	database	schema/tables	from	the	SQLiteOpenHelper	class.	This	is	sufficient	for
a	simple	example,	like	this	one.	For	a	more	complex	app,	it	is	a	better	practice	to	separate	the	schema	definitions	from
the	rest	of	the	code	in	a	helper	class	that	cannot	be	instantiated.	You	will	learn	how	to	do	that	in	the	chapter	on	content
providers.
As	mentioned	above,	some	database	operations	can	be	lengthy	and	should	be	done	on	a	background	thread.	Use
AsyncTask	for	operations	that	take	a	long	time.	Use	loaders	to	load	large	amounts	of	data.

Solution	code
Android	Studio	project:	WordListSql	finished

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Challenge	1:	Extend	the	app	to	have	an	editable	definition	for	each	word	in	the	database.

Challenge	2:	Add	a	confirmation	dialog	to	the	delete	functionality.

Summary
In	this	chapter,	you	learned	how	to

Use	a	SQLiteDatabase	to	store	user	data	persistently.
Work	with	a	SQLiteOpenHelper	to	manage	your	database.
Retrieve	and	display	data	from	the	database
Edit	data	in	the	user	interface	and	reflect	those	changes	in	the	database

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

SQLite	Database

Learn	more
Developer	Documentation:

Storage	Options
Saving	Data	in	SQL	Databases

Introduction

447

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/101_c_sqlite_database.html
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/training/basics/data-storage/databases.html

Introduction

448

10.1B:	Searching	a	SQLite	Database
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	0.	Download	and	run	the	base	code
Task	1.	Add	a	Search	Menu	Item
Coding	challenge
Summary
Related	Concept
Learn	More

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with:

SQLite	databases
Writing	basic	SQLite	queries

What	you	will	LEARN
You	will	learn	to:

Add	search	functionality	to	your	app	via	the	options	menu
Build	search	queries	for	the	SQLite	database	from	user	input.

What	you	will	DO
In	this	practical	you	will	add	an	item	to	the	options	menu	for	searching	the	database,	and	an	activity	that	allows	users	to
enter	a	search	string	and	displays	the	result	of	the	search	in	a	text	view.

Why:	Users	should	always	be	able	to	search	the	data	on	their	own	terms.

Note:	The	focus	of	this	practical	is	not	optimizing	the	UX	of	the	search	request,	but	showing	you	how	to	query	the	database.

App	Overview
You	will	make	a	copy	of	the	finished	WordListSQLInteractive	app	(or	WordListSqlStarterCode	if	you	didn't	rename	it;	from	a
previous	practical),	call	it	WordListSQLInteractiveWithSearch,	and	add	an	activity	that	lets	users	search	for	partial	and	full
words	in	the	database.	For	example,	entering	"Android"	will	return	all	entries	that	contain	the	substring	"Android".	

Introduction

449

Task	0.	Download	and	run	the	base	code
In	order	to	save	you	some	work,	this	practical	will	build	on	an	app	you	have	already	built.	In	a	production	environment,
building	on	existing	application	code	is	a	common	developer	task	to	add	features	or	fix	problems.

1.	Create	your	project

1.	 Download	the	WordListSQL	finished	app.

You	can	use	your	own	app,	or	download	the	base	app.	As	long	as	the	app	uses	a	SQLite	database,	you	can	use	these
instructions	to	extend	it.

2.	 Load	a	copy	of	the	app	into	Android	Studio.	Refer	to	the	Appendix	for	information	on	copying	a	project.
3.	 Rename	the	package	using	Refactor	>	Rename.
4.	 Change	the	package	name	in	your	build.gradle	file.
5.	 Run	the	app	to	ensure	it	builds	and	functions	correctly.

Task	1.	Add	Search

1.1.	Add	an	Options	Menu	with	Search	item

Use	the	OptionsMenuSample	code	from	your	previous	practicals	if	you	need	an	example	of	how	to	do	this.

1.	 In	your	project,	create	an	Android	Resource	directory	and	call	it	menu	with	"menu"	as	the	resource	type	(res	>	menu).
2.	 Add	a	main_menu.xml	menu	resource	file	to	res	>	menu.
3.	 Create	a	menu	with	one	item	Search.	Reference	the	code	snippet	for	values.

Introduction

450

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html#copy_project

<menu

			xmlns:android="http://schemas.android.com/apk/res/android"

			xmlns:app	=	"http://schemas.android.com/apk/res-auto"

			xmlns:tools="http://schemas.android.com/tools"

			tools:context="com.android.example.wordlistsqlsearchable.MainActivity">

			<item

							android:id="@+id/action_search"

							android:title="Search..."

							android:orderInCategory="1"

							app:showAsAction="never"	/>

</menu>

4.	 In	MainAcvitiy,	inflate	the	menu	by	overriding	onCreateOptionsMenu.

@Override

public	boolean	onCreateOptionsMenu(Menu	menu)	{

			getMenuInflater().inflate(R.menu.menu_main,	menu);

			return	true;

}

5.	 Override	onOptionsItemSelected	method.	Switch	on	action_search,	and	just	return	true.

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

			switch	(item.getItemId())	{

							case	R.id.action_search:

											return	true;

			}

			return	super.onOptionsItemSelected(item);

}

6.	 Run	your	app.	You	should	see	the	dots	for	the	options	menu.	When	you	click	it,	you	should	see	one	menu	item	for
search	that	does	nothing.

1.2.	Create	the	layout	for	the	search	activity
This	layout	is	similar	to	activity_edit_word,	so	you	can	take	advantage	of	existing	code	and	copy	it.

1.	 Create	a	copy	of	activity_editword	and	call	it	activity_search.xml.
2.	 In	activity_search.xml,	change	the	id's	and	strings	to	be	representative	of	searching.
3.	 Change	the	onClick	method	for	the	button	to	showResult.
4.	 Add	a	TextView	with	an	id	of	search_result,	at	least	300dp	height,	and	18sp	font	size.
5.	 Run	your	app.	You	should	notice	no	difference.

1.3.	Add	an	Activity	for	searching

1.	 Create	a	new	activity,	SearchActivity.	If	your	create	it	by	New	>	Android	>	Activity	then	DON'T	generate	the	layout	file
because	we	created	it	in	the	previous	task.

2.	 Add	a	private	TextView	class	variable	mTextView.
3.	 Add	a	private	EditText	class	variable	mEditWordView.
4.	 Add	a	private	WordListOpenHelper	variable	mDB.
5.	 In	onCreate,	initialize	mDB	with	a	new	WordListOpenHelper(this).
6.	 In	onCreate,	initialize	mTextView	and	mEditWordView	to	their	respective	views.

Introduction

451

public	class	SearchActivity	extends	AppCompatActivity	{

			private	static	final	String	TAG	=	EditWordActivity.class.getSimpleName();

			private	TextView	mTextView;

			private	EditText	mEditWordView;

			private	WordListOpenHelper	mDB;

			@Override

			public	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_search);

							mEditWordView	=	((EditText)	findViewById(R.id.search_word));

							mTextView	=	((TextView)	findViewById(R.id.search_result));

							mDB	=	new	WordListOpenHelper(this);

			}

}

7.	 Add	the	activity	to	the	AndroidManifest.

<activity

				android:name="com.android.example.wordlistsqlsearchable.SearchActivity">

</activity>

1.4.	Trigger	SearchActivity	from	the	menu
1.	 To	start	SearchActivity	when	the	menu	item	is	selected,	insert	code	to	start	SearchActivity	into	the	switch	statement	in

the	onOptionSelected()	method	in	MainActivity.

Intent	intent	=	new	Intent(getBaseContext(),	SearchActivity.class);

startActivity(intent);

2.	 Build	and	run	your	app	to	make	sure	SearchActivity	is	launched	when	the	"Search"	menu	item	is	selected	from	the
OptionsMenu.

3.	 Enter	a	search	string	and	press	"Search".	Your	app	crashes.
4.	 Find	out	why	the	app	has	crashed,	then	move	to	the	next	task.

1.5.	Implement	the	onClick	handler	for	the	Search	button	in	the	SearchActivity

Your	app	crashed,	because	the	onClick	handler	set	for	the	Search	button	in	the	XML	code	doesn't	exist	yet.	So	you	will
build	showResult	next.

When	the	Search	button	is	pressed,	several	things	need	to	happen:

The	event	handler	calls	public	void	showResult(View	view)	in	SearchActivity.
Your	app	has	to	get	the	current	value	from	the	mEditWordView,	which	is	your	search	string.
You	print	the	"Result	for"	and	the	word	in	mTextView.
You	call	the	(not	yet	written)	search	function	on	mDB	(mDB.search(word)	and	get	back	a	SQlite	database	cursor.	You
will	implement	the	search	function	in	the	next	task.
You	process	the	cursor	and	add	the	result	to	mTextView.

1.	 In	SearchActivity,	create	the	showResult	function.	It	is	public,	takes	a	View	argument,	and	returns	nothing.
2.	 Create	a		String	variable	called		word		and	initialize	it	with	the	contents	of	the	input	edit	text	view,		mEditWordView	.
3.	 Show	the	search	term	in	the	search	results	TextView;	something	like

"Search	term:	"	+	word

4.	 Search	the	database	and	get	the	cursor.

Cursor	cursor	=	mDB.search(word);

Introduction

452

5.	 To	process	the	cursor,	you	need	to	do	do	the	following:

i.	 Make	sure	the	cursor	is	not	null.

ii.	 Move	the	cursor	to	the	first	entry.

iii.	 Iterate	over	the	cursor	processing	the	current	entry,	then	advancing	the	cursor.

iv.	 Extract	the	word.

v.	 Display	the	word	in	the	text	view.

6.	 Close	the	cursor.
7.	 If	no	results	are	found,	the	user	sees	a	blank	screen	with	no	results.	You	would	want	this	to	be	handled	in	a	production

app.
8.	 Check	the	annotated	code	for	additional	details.

				public	void	showResult(View	view){

								String	word	=	mEditWordView.getText().toString();

								mTextView.setText("Result	for	"	+	word	+	":\n\n");

								//	Search	for	the	word	in	the	database.

								Cursor	cursor	=	mDB.search(word);

								//	Only	process	a	non-null	cursor	with	rows.

								if	(cursor	!=	null	&	cursor.getCount()	>	0)	{

												//	You	must	move	the	cursor	to	the	first	item.

												cursor.moveToFirst();

												int	index;

												String	result;

												//	Iterate	over	the	cursor,	while	there	are	entries.

												do	{

																//	Don't	guess	at	the	column	index.

																//	Get	the	index	for	the	named	column.

																index	=	cursor.getColumnIndex(WordListOpenHelper.KEY_WORD);

																//	Get	the	value	from	the	column	for	the	current	cursor.

																result	=	cursor.getString(index);

																//	Add	result	to	what's	already	in	the	text	view.

																mTextView.append(result	+	"\n");

												}	while	(cursor.moveToNext());	//	Returns	true	or	false

												cursor.close();

								}	//	You	should	add	some	handling	of	null	case.	Right	now,	nothing	happens.

				}

Your	app	will	not	run	without	at	least	a	stub	for	search()	implemented.	Android	Studio	will	create	the	stub	for	you.	In	the
light	bulb,	choose	create	method.

9.	 Open	WordListOpenHelper.
10.	 Implement	a	stub	for	search,	with	a	String	parameter,	that	returns	a	null	cursor.
11.	 Run	your	app	and	fix	any	errors	you	may	have.	Note	that	most	of	the	code	in	showResult()	is	not	exercised	yet.

1.6.	Implement	the	search	method	in	WordListOpenHelper

The	final	step	is	to	implement	the	actual	searching	of	the	database.

Inside	the	search()	method,	you	need	to	build	a	query	with	the	search	string	and	send	the	query	to	the	database.

A	more	secure	way	to	do	this	is	by	using	parameters	for	each	part	of	the	query.

WHY:	In	the	previous	practical,	for	the	query	in	WordListOpenHelper,	you	could	build	the	query	string	directly	and	submit	it
as	a	rawQuery(),	because	you	had	full	control	over	the	contents	of	the	query.	As	soon	as	you	are	handling	user	input,	you
must	assume	that	it	could	be	malicious.

Important:	For	security	reasons,	you	should	always	validate	user	input	before	you	build	your	query!
You	will	learn	more	about	security	in	the	Security	chapter	and	Security	Tips.

Introduction

453

https://developer.android.com/training/articles/security-tips.html

The	SQL	query	for	searching	for	all	entries	in	the	wordlist	matching	a	substring	has	this	form:

SELECT	*	FROM	WORD_LIST_TABLE	WHERE	KEY_WORD	LIKE	%searchString%;

The	parametrized	form	of	the	query	method	you	will	call	looks	like	this:

Cursor	query	(String	table,	//	The	table	to	query

														String[]	columns,	//	The	columns	to	return

														String	selection,	//	WHERE	statement

														String[]	selectionArgs,	//	Arguments	to	WHERE

														String	groupBy,	//	Grouping	filter.	Not	used.

														String	having,	//	Additional	condition	filter.	Not	used.

														String	orderBy)	//	Ordering.	Setting	to	null	uses	default.

See	the	SQLite	Database	Android	and	the	documentation	for	various	query())	methods.

For	the	query	in	the	search()	method,	you	need	to	assign	only	the	first	four	arguments.

1.	 The	table	is	already	defined	as	the		WORD_LIST_TABLE		constant.
2.	 In	search(),	create	a	variable	for	the	columns.	You	need	only	the	value	from	the		KEY_WORD		column.

String[]	columns	=	new	String[]{KEY_WORD};

3.	 Add	the	%	to	the	searchString	parameter.

searchString	=	"%"	+	searchString	+	"%";

4.	 Create	the	where	clause.	Omit	"WHERE"	as	it's	implied.	Use	a	question	mark	for	the	argument	to	LIKE.	Make	sure	you
have	the	correct	spacing.

String	where	=	KEY_WORD	+	"	LIKE	?";

5.	 Specify	the	argument	to	the	where	clause,	which	is	the	searchString.

String[]	whereArgs	=	new	String[]{searchString};

6.	 Add	a	Cursor	cursor	variable	and	initialize	it	to	null.
7.	 In	a	try/catch	block.

i.	 Get	a	readable	database	if	mReadable	is	not	set	yet.

ii.	 Query	the	database	using	the	above	form	of	the	query.	Pass	null	for	the	unused	parameters.

iii.	 Handle	the	exception.	You	can	just	log	it.

8.	 Return	the	cursor.
9.	 Run	your	app	and	search	for	some	strings.

Here	is	the	solution	for	the	complete	method:

Introduction

454

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

public	Cursor	search	(String	searchString)	{

			String[]	columns	=	new	String[]{KEY_WORD};

			searchString	=	"%"	+	searchString	+	"%";

			String	where	=	KEY_WORD	+	"	LIKE	?";

			String[]whereArgs	=	new	String[]{searchString};

			Cursor	cursor	=	null;

			try	{

							if	(mReadableDB	==	null)	{mReadableDB	=	getReadableDatabase();}

							cursor	=	mReadableDB.query(WORD_LIST_TABLE,	columns,	where,	whereArgs,	null,	null,	null);

			}	catch	(Exception	e)	{

							Log.d(TAG,	"SEARCH	EXCEPTION!	"	+	e);

			}

			return	cursor;

}

Solution	code
Android	Studio	project:	WordListSqlSearchable

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Handle	the	case	where	no	results	are	found	in	a	more	user-friendly	way.
Most	of	the	code	samples	use	the	default	AppBar	that	comes	with	the	Empty	Template.	In	some	of	the	previous
chapters,	you	learned	about	the	Toolbar,	for	example,	when	using	the	Basic	Template.

Change	the	app	to	use	the	Toolbar	and	SearchView	and	show	the	search	icon	on	the	toolbar.

https://developer.android.com/training/search/setup.html

https://developer.android.com/training/appbar/setting-up.html

As	written,	this	app	is	not	very	secure.	Consider	how	to	add	basic	input	validation	for	the	search	string.	See	Security
Tips.

Summary
An	options	menu	can	be	an	effective	UI	for	searching	a	SQlite	database
A	separate	activity	to	handle	the	UX	for	search	can	help	focus	the	user
In	a	production	application,	SQlite	queries	should	be	managed	carefully	to	avoid	data	corruption	or	security	issues
SQLite	search	queries	can	be	constructed	dynamically	using	user	input	for	the	query	parameters.
The	query()	method	searches	a	database	for	matching	words.
The	query()	method	returns	a	database	cursor	which	can	traverse	the	result	set	efficiently
The	cursor	can	be	used	to	display	the	results	to	the	user.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

SQLite	Database

Introduction

455

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSqlSearchable
https://developer.android.com/training/search/setup.html
https://developer.android.com/training/appbar/setting-up.html
https://developer.android.com/training/articles/security-tips.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/101_c_sqlite_database.html

Learn	more
Developer	Documentation:

Storage	Options
Saving	Data	in	SQL	Databases

Introduction

456

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/training/basics/data-storage/databases.html

11.1A:	Implement	a	Minimalist	Content	Provider
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Create	the	MinimalistContentProvider	project
Task	2:	Create	a	Contract	class,	a	URI	scheme,	and	mock	data
Task	3:	Implement	the	MiniContentProvider	class
Task	4:	Use	a	ContentResolver	to	get	data
Coding	challenges
Summary
Related	concept
Learn	more

A	content	provider	is	a	component	that	securely	manages	access	to	a	shared	repository	of	data.	It	provides	a	consistent
interface	for	applications	to	access	the	shared	data.	Applications	do	not	access	the	provider	directly	but	use	a	content
resolver	object	that	provides	an	interface	to	and	manages	the	connection	with	the	content	provider.

Content	providers	are	useful	because:

Apps	cannot	share	data	in	Android—except	through	content	providers.
Content	providers	allow	multiple	apps	to	securely	access,	use,	and	modify	a	single	data	source.	Examples:	Contacts,
game	scores,	spell-checking	dictionary.
You	can	specify	levels	of	access	control	(permissions)	for	your	content	provider.
You	can	store	data	independently	from	the	app.	Having	a	content	provider	allows	you	to	change	how	the	data	is	stored
without	needing	to	change	the	user	interface.	For	example,	you	can	build	a	prototype	using	mock	data,	then	use	an
SQL	database	for	the	real	app.	You	could	even	store	some	of	your	data	in	the	cloud	and	some	data	locally,	and	the
user	interface	would	remain	the	same	to	your	application.
This	architecture	separates	data	from	the	user	interface	so	development	teams	can	work	independently	on	the	client-
facing	application	and	server-side	components	of	your	app.	For	larger,	complex	apps	it	is	very	common	that	the	user
interface	and	the	data	services	are	developed	by	different	teams.	They	can	even	be	separate	apps.	It	is	not	even
required	that	an	app	with	a	content	provider	has	a	user	interface.
You	can	use	CursorLoader	and	other	classes	that	expect	to	interact	with	a	content	provider.
Note:	If	your	app	does	not	share	data	with	other	apps,	then	your	app	does	not	require	a	content	provider.	However,
because	the	content	provider	cleanly	separates	the	implementation	of	your	backend	from	the	user	interface,	it	can	also
be	useful	for	architecting	more	complex	applications.

Introduction

457

The	following	diagram	summarizes	the	parts	of	the	content	provider	architecture.	

Data:	The	app	that	creates	the	content	provider	owns	the	data	and	specifies	what	permissions	other	apps	have	to	work
with	the	data.

The	data	is	often	stored	in	a	SQLite	database,	but	this	is	not	mandatory.	Typically,	the	data	is	made	available	to	the	content
provider	as	tables,	similar	to	database	tables,	where	each	row	represents	one	entry,	and	each	column	represents	an
attribute	for	that	entry.	For	example,	each	row	in	a	contact	database	contains	one	entry	and	that	entry	may	have	columns
for	email	addresses	and	phone	numbers.

ContentProvider:	The	content	provider	provides	a	public	and	secure	interface	to	the	data,	so	that	other	apps	can	access
the	data	with	the	appropriate	permissions.

ContentResolver:	Used	by	the	Activity	to	query	the	content	provider.	The	content	resolver	returns	data	as	a	Cursor	object
which	can	then	be	used,	for	example,	by	an	adapter,	to	display	the	data.

Contract	class	(not	shown):	The	contract	is	a	public	class	that	exposes	important	information	about	the	content	provider
to	other	apps.	This	usually	includes	the	URIs	to	access	the	data,	important	constants,	and	the	structure	of	the	data	that	will
be	returned.

Apps	send	requests	to	the	content	provider	using	content	Uniform	Resource	Identifiers	or	URIs.	A	content	URI	for	content
providers	has	this	general	form:

scheme://authority/path-to-data/dataset-name

scheme	(for	content	URI,	this	is	always	content://)
authority	(represents	the	domain,	and	for	content	providers	customarily	ends	in		.provider)
path	(this	represents	the	path	to	the	data)
ID	(uniquely	identifies	the	data	set	to	search;	such	as	a	file	name	or	table	name)

The	following	URI	could	be	used	to	request	all	the	entries	in	the	"words"	table:

content://com.android.example.wordcontentprovider.provider/words

Designing	URI	schemes	is	a	topic	in	and	of	itself	and	is	not	covered	in	this	course.

Introduction

458

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Content	Resolver:	The	ContentResolver	object	provides	query(),	insert(),	update(),	and	delete()	methods	for	accessing
data	from	a	content	provider	and	manages	all	interaction	with	the	content	provider	for	you.	In	most	situations,	you	can	just
use	the	default	content	resolver	provided	by	the	Android	system.

In	this	practical,	you	will	build	a	basic	content	provider	from	scratch.	You	will	create	and	process	mock	data	so	that	you	can
focus	on	understanding	content	provider	architecture.	Likewise,	the	user	interface	to	display	the	data	is	minimal.	In	the	next
practical,	you	will	add	a	content	provider	to	the	WordList	app,	using	this	minimalist	app	as	your	template.

What	you	should	already	KNOW
For	this	practical	you	should	understand	how	to:

Create,	build	and	run	interactive	apps	in	Android	Studio.
Display	data	in	a	RecyclerView	using	an	adapter.
Abstract	and	encapsulate	data	with	data	models.
Create,	manage,	and	interact	with	a	SQLite	database	using	a	SQLiteOpenHelper.

What	you	will	LEARN
You	will	learn:

The	architecture	and	anatomy	of	a	content	provider.
What	you	need	to	do	to	build	a	minimal	content	provider	that	you	can	use	as	a	template	for	creating	other	content
providers.

What	you	will	DO
You	will	build	a	stand-alone	app	to	learn	the	mechanics	of	building	a	content	provider.

App	Overview
This	app	generates	mock	data	and	stores	it	in	a	linked	list	called	"words".
The	app	requests	data	through	a	content	resolver	and	displays	it.	The	UI	consists	of	one	activity	with	a	TextView	and
two	Buttons.	The	"List	all	words"	button	displays	all	the	words,	and	the	"List	first	word"	button	displays	the	first	word	in
the	text	view.
The	content	provider	abstracts	and	manages	the	interaction	between	the	data	source	and	the	user	interface.
The	Contract	defines	URIs	and	public	constants.

Introduction

459

Introduction

460

Note:	Minimum	SDK	Version	is	API15:	Android	4.0.3	IceCreamSandwich	and	target	SDK	is	the	current	version	of	Android
(version	23	as	of	the	writing	of	this	book).

Task	1.	Create	the	MinimalistContentProvider	project

1.1.	Create	a	project	within	the	given	constraints

Create	an	app	with	one	activity	that	shows	one	text	view	and	two	buttons.	One	button	shows	the	first	word	in	our	data	(the
list),	and	the	other	button	will	list	all	words.	Both	buttons	call	onClickDisplayEntries()	when	they	are	clicked.	For	now,	this
method	will	use	a	switch	statement	to	just	display	a	statement	that	a	particular	button	was	clicked.	Use	the	table	below	as	a
guideline	for	setting	up	your	project.

App	name MinimalistContentProvider

One	Activity

Empty	Activity	template

Name:	MainActivity

private	static	final	String	TAG	=	MainActivity.class.getSimpleName();

public	void	onClickDisplayEntries	(View	view){Log.d	(TAG,	"Yay,	I	was	clicked!");}

TextView
@+id/textview

android:text="response"

Button

@+id/button_display_all

android:text="List	all	words"

android:onClick="onClickDisplayEntries"

Button

@+id/button_display_first

android:text="List	first	word"

android:onClick="onClickDisplayEntries"

1.2.	Complete	the	basic	setup

Complete	the	basic	setup	of	the	user	interface:

1.	 In	the	MainActivity,	create	a	member	variable	for	the	text	view	and	initialize	it	in	onCreate().
2.	 In	onClickDisplayEntries(),	use	a	switch	statement	to	check	which	button	was	pressed.	Use	the	view	id	to	distinguish

the	buttons.	Print	a	log	statement	for	each	case.
3.	 In	onClickDisplayEntries(),	at	the	end	append	some	text	to	the	textview.
4.	 As	always,	extract	the	string	resources.
5.	 Run	the	app.

Your	MainActivity	should	be	similar	to	this	solution.

Solution:

Introduction

461

package	android.example.com.minimalistcontentprovider;

[...	imports]

public	class	MainActivity	extends	AppCompatActivity	{

			private	static	final	String	TAG	=	MainActivity.class.getSimpleName();

			TextView	mTextView;

			@Override

			protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_main);

							mTextView	=	(TextView)	findViewById(R.id.textview);

			}

			public	void	onClickDisplayEntries(View	view)	{

							Log.d	(TAG,	"Yay,	I	was	clicked!");

							switch	(view.getId())	{

											case	R.id.button_display_all:

															Log.d	(TAG,	"Yay,	"	+	R.id.button_display_all	+	"	was	clicked!");

															break;

											case	R.id.button_display_first:

															Log.d	(TAG,	"Yay,	"	+	R.id.button_display_first	+	"	was	clicked!");

															break;

											default:

															Log.d	(TAG,	"Error.	This	should	never	happen.");

							}

							mTextView.append("Thus	we	go!	\n");

			}

}

Task	2.	Create	a	Contract	class,	a	URI,	and	mock	data
The	contract	contains	information	about	the	data	that	apps	need	to	build	queries.

Contract	is	a	public	class	and	includes	important	information	for	other	apps	that	want	to	connect	to	this	content
provider	and	access	your	data.
The	URI	shows	how	to	build	URIs	to	access	the	data.	The	URI	scheme	behaves	as	an	API	to	access	the	data.	It's	very
similar	to	designing	REST	calls	for	CRUD.	Other	applications	will	use	these	Content	URIs.

2.1.	Create	the	Contract	class

1.	 Create	a	new	public	Java	class	Contract	with	the	following	signature.	It	must	be	final.

public	final	class	Contract	{}

2.	 To	prevent	someone	from	accidentally	instantiating	the	Contract	class,	give	it	an	empty	private	constructor.

private	Contract()	{}

2.2.	Create	the	URI

A	content	URI	for	content	providers	has	this	general	form:

scheme://authority/path/id

scheme	is	always	content://	for	content	URIs.
authority	represents	the	domain,	and	for	content	providers	customarily	ends	in		.provider	

Introduction

462

path	is	the	path	to	the	data
id	uniquely	identifies	the	data	set	to	search

The	following	URI	could	be	used	to	request	all	the	entries	in	the	"words"	table:

content://com.android.example.wordcontentprovider.provider/words

The	URI	for	accessing	the	content	provider	is	defined	in	the	Contract	so	that	it	is	available	to	any	app	that	wants	to	query
this	content	provider.	Customarily,	this	is	done	by	defining	constants	for	AUTHORITY,	CONTENT_PATH,	and
CONTENT_URI.

1.	 In	the	Contract	class,	create	a	constant	for	AUTHORITY.	To	make	Authority	unique,	use	the	package	name	extended
with	"provider."		public	static	final	String	AUTHORITY	=	"com.android.example.minimalistcontentprovider.provider";	

2.	 Create	a	constant	for	the	CONTENT_PATH.	The	content	path	identifies	the	data.	You	should	use	something
descriptive,	for	example,	the	name	of	a	table	or	file,	or	the	kind	of	data,	such	as	"words".
	public	static	final	String	CONTENT_PATH	=	"words";	

3.	 Create	a	constant	for	the	CONTENT_URI.	This	is	a	content://	style	URI	that	points	to	one	set	of	data.	If	you	have
multiple	"data	containers"	in	the	backend,	you	would	create	a	content	URI	for	each.

Uri	is	a	helper	class	for	building	and	manipulating	URIs.	Since	it	is	a	never	changing	string	for	all	instances	of	the
Contract	class,	you	can	initialize	it	statically.		public	static	final	Uri	CONTENT_URI	=	Uri.parse("content://"	+	AUTHORITY
+	"/"	+	CONTENT_PATH);	

4.	 Create	a	convenience	constant	for	ALL_ITEMS.	This	is	the	dataset	name	you	will	use	when	retrieving	all	the	words.
The	value	is	-2	because	that's	the	first	lowest	value	not	returned	by	a	method	call.		static	final	int	ALL_ITEMS	=	-2;	

5.	 Create	a	convenience	constant	for	WORD_ID.	This	is	the	id	you	will	use	when	retrieving	a	single	word.		static	final
String	WORD_ID	=	"id";	

2.3.	Add	the	MIME	Type

Content	providers	provide	content,	and	you	need	to	specify	what	type	of	content	they	provide.	Apps	need	to	know	the
structure	and	format	of	the	returned	data,	so	that	they	can	properly	handle	it.

MIME	types	are	of	the	form	type/subtype,	such	as		text/html		for	HTML	pages.	For	your	content	provider,	you	need	to
define	a	vendor-specific	MIME	type	for	the	kind	of	data	your	content	provider	returns.	The	type	of	vendor-specific	Android
MIME	types	is	always:

	vnd.android.cursor.item		for	one	data	item	(a	record)
	vnd.android.cursor.dir		for	s	set	of	data	(multiple	records).

The	subtype	can	be	anything,	but	it	is	a	good	practice	to	make	it	informative.	For	example:

vnd—a	vendor	MIME	type
com.example—the	domain
provider—it's	for	a	content	provider
words—the	name	of	the	table

Read	Implementing	ContentProvider	MIME	types	for	details.

1.	 Declare	the	MIME	time	for	one	data	item.

static	final	String	SINGLE_RECORD_MIME_TYPE	=	"vnd.android.cursor.item/vnd.com.example.provider.words";

2.	 Declare	the	MIME	type	for	multiple	records.

static	final	String	MULTIPLE_RECORD_MIME_TYPE	=	"vnd.android.cursor.dir/vnd.com.example.provider.words";

2.4.	Create	the	mock	data

Introduction

463

https://developer.android.com/reference/android/net/Uri.html
https://developer.android.com/guide/topics/providers/content-provider-creating.html#MIMETypes

The	content	provider	always	presents	the	results	as	a	Cursor	in	a	table	format	that	resembles	a	SQL	database.	This	is
independent	of	how	the	data	is	actually	stored.	This	app	uses	a	string	array	of	words.

In	strings.xml,	add	a	short	list	of	words:

<string-array	name="words">

			<item>Android</item>

			<item>Activity</item>

			<item>ContentProvider</item>

			<item>ContentResolver</item>

</string-array>

Task	3.	Implement	the	MiniContentProvider	class

3.1.	Create	the	MiniContentProvider	class

1.	 Create	a	Java	class	MiniContentProvider	extending	ContentProvider.	(For	this	practical,	to	not	use	the	Create	Class	>
Other	>	Content	Provider	menu	option.)

2.	 Implement	the	methods	(Code	>	Implement	methods).
3.	 Add	a	log	tag.
4.	 Add	a	member	variable	for	the	mock	data.

public	String[]	mData;

5.	 In	onCreate(),	initialize		mData		from	the	array	of	words,	and	return	true.

@Override

public	boolean	onCreate()	{

			Context	context	=	getContext();

			mData	=	context.getResources().getStringArray(R.array.words);

			return	true;

}

6.	 Add	an	appropriate	logging	message	to	the	insert,	delete,	and	update	methods.	You	will	not	implement	these	methods
for	this	practical.

Log.e(TAG,	"Not	implemented:	update	uri:	"	+	uri.toString());

3.2.	Publish	the	content	provider	by	adding	it	to	the	Android	manifest

In	order	to	access	the	content	provider,	your	app	and	other	apps	need	to	know	that	it	exists.	Add	a	declaration	for	the
content	provider	to	the	Android	manifest	inside	a	<provider>	tag.

The	declaration	contains	the	name	of	the	content	provider	and	the	authorities	(its	unique	identifier).

1.	 In	the	AndroidManifest,	inside	the	application	tag,	after	the	activity	closing	tag,	add:

<provider

				android:name=".MiniContentProvider"

android:authorities="com.android.example.minimalistcontentprovider.provider"	/>

2.	 Run	your	code	to	make	sure	it	compiles.

3.3.	Set	up	URI	matching

A	ContentProvider	needs	to	respond	to	data	requests	from	apps	using	a	number	of	different	URIs.	To	take	appropriate
action	depending	on	a	particular	request	URI,	the	content	provider	needs	to	analyze	the	URI	to	see	if	it	matches.
UriMatcher	is	a	helper	class	that	you	can	use	for	processing	the	accepted	URI	schemes	for	a	given	content	provider.

Introduction

464

https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/reference/android/content/UriMatcher.html

Basic	steps	to	use	UriMatcher:

Create	an	instance	of	UriMatcher.
Add	each	URI	that	your	content	provider	recognizes	to	the	UriMatcher.
Assign	each	URI	a	numeric	constant.	Having	a	numeric	constant	for	each	URI	is	convenient	when	you	are	processing
incoming	URIs	because	you	can	use	a	switch/case	statement	on	the	numeric	values	to	work	through	the	URIs.

Make	the	following	changes	in	the	MiniContentProvider	class.

1.	 In	the	MiniContentProvider	class,	create	a	private	static	variable	for	a	new	UriMatcher.

The	argument	to	the	constructor	specifies	the	value	to	return	if	there	is	no	match.	As	a	best	practice,	use
UriMatcher.NO_MATCH.

private	static	UriMatcher	sUriMatcher	=	new	UriMatcher(UriMatcher.NO_MATCH);

2.	 Create	your	own	method	for	initializing	the	URI	matcher.

private	void	initializeUriMatching(){}

3.	 Call	initializeUriMatching	in	onCreate()	of	the	MiniContentProvider	class.
4.	 In	the	initializeUriMatching()	method,	add	the	URIs	that	your	content	provider	accepts	to	the	matcher	and	assign	them

an	integer	code.	These	are	the	URIs	based	on	the	authority	and	content	paths	specified	in	the	contract.

The	#	symbol	matches	a	string	of	numeric	characters	of	any	length.	In	this	app,	it	refers	to	the	index	of	the	word	in	the
string	array.	In	a	production	app,	this	could	be	the	id	of	an	entry	in	a	database.	Assign	this	URI	a	numeric	value	of	1.

sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH	+	"/#",	1);

5.	 The	second	URI	is	the	one	you	specified	in	the	contract	for	returning	all	items.	Assign	it	a	numeric	value	of	0.
	sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH,	0);	

Note	that	if	your	app	is	more	complex	and	uses	more	URIs,	use	named	constants	for	the	codes,	as	shown	in	the
UriMatcher	documentation.

Solution:

private	void	initializeUriMatching(){

			sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH	+	"/#",	1);

			sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH,	0);

}

3.4.	Implement	the	getType()	method

The	getType()	method	of	the	content	provider	returns	the	MIME	type	for	each	of	the	specified	URIs.

Unless	you	are	doing	something	special	in	your	code,	this	method	implementation	is	going	to	be	very	similar	for	any
content	provider.	It	does	the	following:

1.	 Match	the	URI.
2.	 Switch	on	the	returned	code.
3.	 Return	the	appropriate	MIME	type.

Learn	more	in	the	UriMatcher	documentation.

Solution:

Introduction

465

https://developer.android.com/reference/android/content/UriMatcher.html
https://developer.android.com/reference/android/content/UriMatcher.html

public	String	getType(Uri	uri)	{

								switch	(sUriMatcher.match(uri))	{

												case	0:

																return	Contract.MULTIPLE_RECORD_MIME_TYPE;

												case	1:

																return	Contract.SINGLE_RECORD_MIME_TYPE;

												default:

																//	Alternatively,	throw	an	exception.

																return	null;

								}

				}

3.5	Implement	the	query()	method
The	purpose	of	the	query()	method	is	to	match	the	URI,	convert	it	to	a	your	internal	data	access	mechanism	(for	example	a
SQlite	query),	execute	your	internal	data	access	code,	and	return	the	result	in	a	Cursor	object.

The	query()	method
The	query	method	has	the	following	signature:

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,String[]	selectionArgs,	String	sortOrder){}

The	arguments	to	this	method	represent	the	parts	of	a	SQL	query.	Even	if	you	are	using	another	kind	of	data	storage
mechanism,	you	must	still	accept	a	query	in	this	style	and	handle	the	arguments	appropriately.	(In	the	next	task	you	will
build	a	query	in	the	MainActivity	to	see	how	the	arguments	are	used.)	The	method	returns	a	Cursor	of	any	kind.

uri The	complete	URI.	This	cannot	be	null.

projection Indicates	which	columns/attributes	to	access.

selection Indicates	which	rows/records	of	the	objects	to	access.

selectionArgs
The	binding	parameters	to	the	previous	selection	argument.

For	security	reasons,	the	arguments	are	processed	separately.

sortOrder
Whether	to	sort,	and	if	so,	whether	ascending,	descending	or	by	.

If	this	is	null,	the	default	sort	or	no	sort	is	applied.

Analyze	the	query()	method
1.	 Identify	the	following	processing	steps	in	the	query()	method	code	shown	below	in	the	solutions	section.

Query	processing	always	consists	of	these	steps:

i.	 Match	the	URI.

ii.	 Switch	on	the	returned	code.

iii.	 Process	the	arguments	and	build	a	query	appropriate	for	the	backend.

iv.	 Get	the	data	and	(if	necessary)	drop	it	into	a	Cursor.

v.	 Return	the	cursor.

2.	 Identify	portions	of	the	code	that	need	to	be	different	in	a	real-world	application.

The	query	implementation	for	this	basic	app	takes	some	shortcuts.

Introduction

466

https://developer.android.com/reference/android/database/Cursor.html

Error	handling	is	minimal.
Because	the	app	is	using	mock	data,	the	Cursor	can	be	directly	populated.
Because	the	URI	scheme	is	simple,	this	method	is	rather	short.

3.	 Identify	at	least	one	design	decision	that	makes	it	easier	to	understand	and	maintain	the	code.
Analyzing	the	query	and	executing	it	to	populate	a	cursor	are	separated	into	two	methods.
The	code	contains	more	comments	than	executable	code.

4.	 Add	the	code	to	your	app.

Note:	You	will	get	an	error	for	the	populateCursor()	method,	and	will	address	this	in	the	next	step.

Annotated	Solution	Code	for	the	query()	method	in	MiniContentProvider.java

@Nullable

@Override

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,	String[]	selectionArgs,	String	sortOrder)	{

			int	id	=	-1;

			switch	(sUriMatcher.match(uri))	{

							case	0:

											//	Matches	URI	to	get	all	of	the	entries.

											id	=	Contract.ALL_ITEMS;

											//	Look	at	the	remaining	arguments

											//	to	see	whether	there	are	constraints.

											//	In	this	example,	we	only	support	getting

											//a	specific	entry	by	id.	Not	full	search.

											//	For	a	real-life	app,	you	need	error-catching	code;

											//	here	we	assume	that	the

											//	value	we	need	is	actually	in	selectionArgs	and	valid.

											if	(selection	!=	null){

															id	=	parseInt(selectionArgs[0]);

											}

											break;

							case	1:

											//	The	URI	ends	in	a	numeric	value,	which	represents	an	id.

											//	Parse	the	URI	to	extract	the	value	of	the	last,

											//	numeric	part	of	the	path,

											//	and	set	the	id	to	that	value.

											id	=	parseInt(uri.getLastPathSegment());

											//	With	a	database,	you	would	then	use	this	value	and

											//	the	path	to	build	a	query.

											break;

							case	UriMatcher.NO_MATCH:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"NO	MATCH	FOR	THIS	URI	IN	SCHEME.");

											id	=	-1;

											break;

							default:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"INVALID	URI	-	URI	NOT	RECOGNIZED.");

											id	=	-1;

			}

			Log.d(TAG,	"query:	"	+	id);

			return	populateCursor(id);

}

3.6.	Implement	the	populateCursor()	method
Once	the	query()	method	has	identified	the	URI,	it	calls	your	populateCursor()	with	the	last	segment	of	the	path,	which	is
the	id	(index)	of	the	word	to	retrieve.	The	populateCursor()	method	separates	the	query	matching	from	getting	the	data	and
creating	the	result	cursor.	This	is	a	good	practice	as	in	a	real	app,	the	query()	method	can	become	very	large.

The	query	method	must	return	a	Cursor	type,	so	the	populateCursor()	method	has	to	create,	fill	in,	and	return	a	cursor.

If	your	data	were	stored	in	a	SQLite	database,	executing	the	query	would	return	a	Cursor.
If	you	are	not	using	a	data	storage	method	that	returns	a	cursor,	such	as	files	or	the	mock	data,	you	can	use	a

Introduction

467

MatrixCursor	to	hold	the	data	to	return.	A	MatrixCursor	is	a	general	purpose	cursor	into	an	array	of	objects	that	grows
as	needed.	To	create	a	MatrixCursor,	you	supply	it	with	a	string	array	of	column	names.

The	populateCursor()	method	does	the	following:

1.	 Receives	the	id	extracted	from	the	URI.
2.	 Creates	a	MatrixCursor	to	store	received	data	(because	the	mock	data	received	is	not	a	cursor).
3.	 Creates	and	executes	a	query.	For	this	app,	this	gets	the	string	at	the	index		id		from	the	string	array.	In	a	more

realistic	app,	this	could	execute	a	query	to	a	database.
4.	 Adds	the	result	to	the	cursor.
5.	 Returns	the	cursor.

private	Cursor	populateCursor(int	id)	{

			MatrixCursor	cursor	=	new	MatrixCursor(new	String[]	{	Contract.CONTENT_PATH	});

			//	If	there	is	a	valid	query,	execute	it	and	add	the	result	to	the	cursor.

			if	(id	==	Contract.ALL_ITEMS)	{

							for	(int	i	=	0;	i	<	mData.length;	i++)	{

											String	word	=	mData[i];

											cursor.addRow(new	Object[]{word});

							}

			}	else	if	(id	>=	0)	{

							//	Execute	the	query	to	get	the	requested	word.

							String	word	=	mData[id];

							//	Add	the	result	to	the	cursor.

							cursor.addRow(new	Object[]{word});

			}

			return	cursor;

}

Task	4.	Use	a	ContentResolver	to	get	data
With	the	content	provider	in	place,	the	onClickDisplayEntries()	method	in	the	MainActivity	can	be	expanded	to	query	and
display	data	to	the	UI.	This	requires	the	following	steps:

1.	 Create	the	SQL-style	query,	depending	on	which	button	was	pressed.
2.	 Use	a	content	resolver	to	interact	with	the	content	provider	to	execute	the	query	and	return	a	Cursor.
3.	 Process	the	results	in	the	Cursor.

4.1.	Get	the	content	resolver
The	content	resolver	interacts	with	the	content	provider	on	your	behalf.

The	content	resolver	expects	a	parsed	Content	URI	along	with	query	parameters	that	assist	in	retrieving	the	data.

You	don't	have	to	create	your	own	content	resolver.	You	can	use	the	one	provided	in	your	application	context	by	the
Android	framework	by	calling	getContentResolver().

1.	 In	MainActivity,	remove	all	code	from	inside	onClickDisplayEntries().
2.	 Add	this	code	to	onClickDisplayEntries()	in	MainActivity.

Cursor	cursor	=	getContentResolver().query(Uri.parse(queryUri),	projection,	selectionClause,	selectionArgs,	sort

Order);

Note:	the	arguments	to	getContentResolver.query()	are	identical	to	the	parameters	of	ContentProvider.query().

Next	you	must	define	the	arguments	to	getContentResolver.query().

4.2.	Define	the	query	arguments
In	order	for	getContentResolver.query()	to	work,	you	need	to	declare	and	assign	values	to	all	its	arguments.

Introduction

468

https://developer.android.com/reference/android/database/MatrixCursor.html

1.	 URI:	Declare	the	ContentURI	that	identifies	the	content	provider	and	the	table.	Get	the	information	for	the	correct	URI
from	the	contract.

String	queryUri	=	Contract.CONTENT_URI.toString();

2.	 Projection:	A	string	array	with	the	names	of	the	columns	to	return.	Setting	this	to	null	returns	all	columns.	When	there
is	only	one	column,	as	in	the	case	of	this	example,	setting	this	explicitly	is	optional,	but	can	be	helpful	for
documentation	purposes.		//	Only	get	words.	String[]	projection	=	new	String[]	{Contract.CONTENT_PATH};	

3.	 selectionClause:	Argument	clause	for	the	selection	criteria,	that	is,	which	rows	to	return.	Formatted	as	an	SQL
WHERE	clause	(excluding	the"WHERE"	keyword).	Passing	null	returns	all	rows	for	the	given	URI.	Since	this	will	vary
depending	on	which	button	was	pressed,	declare	it	now	and	set	it	later.

String	selectionClause;

4.	 selectionArgs:	Argument	values	for	the	selection	criteria.	If	you	include	?s	in	the	selection	String,	they	are	replaced	by
values	from	selectionArgs,	in	the	order	that	they	appear.
IMPORTANT:	It	is	security	best	practices	to	always	separate	selection	and	selectionArgs.
	String	selectionArgs[];	

5.	 sortOrder:	The	order	in	which	to	sort	the	results.	Formatted	as	a	SQL	ORDER	BY	clause	(excluding	the	ORDER	BY
keyword).	Usually	ASC	or	DESC;	null	requests	the	default	sort	order,	which	could	be	unordered.

//	For	this	example,	accept	the	order	returned	by	the	response.

String	sortOrder	=	null;

4.3.	Decide	on	selection	criteria

The	selectionClause	and	selectionArgs	values	depend	on	which	button	was	pressed	in	our	UI.

To	display	all	the	words,	set	both	arguments	to	null.
To	get	the	first	word,	query	for	the	word	with	the	ID	of	0.	(This	assumes	that	word	IDs	start	at	0	and	are	created	in
order.	You	know	this,	because	the	information	is	exposed	in	the	contract.	For	a	different	content	provider,	you	may	not
know	the	ids,	and	may	have	to	search	in	a	different	way.)

1.	 Replace	the	existing	switch	block	with	the	following	code	in	onClickDisplayEntries,	before	you	get	the	content	resolver.

switch	(view.getId())	{

			case	R.id.button_display_all:

							selectionClause	=	null;

							selectionArgs	=	null;

							break;

			case	R.id.button_display_first:

							selectionClause	=	Contract.WORD_ID	+	"	=	?";

							selectionArgs	=	new	String[]	{"0"};

							break;

			default:

							selectionClause	=	null;

							selectionArgs	=	null;

}

4.4.	Process	the	Cursor
After	getting	the	content	resolver,	you	have	to	process	the	result	from	the	Cursor.

If	there	is	data,	display	it	in	the	text	view.
If	there	is	no	data,	report	errors.

1.	 Examine	the	following	code	and	make	sure	you	understand	everything.

Introduction

469

			if	(cursor	!=	null)	{

			if	(cursor.getCount()	>	0)	{

							cursor.moveToFirst();

							int	columnIndex	=	cursor.getColumnIndex(projection[0]);

							do	{

											String	word	=	cursor.getString(columnIndex);

											mTextView.append(word	+	"\n");

							}	while	(cursor.moveToNext());

			}	else	{

							Log.d(TAG,	"onClickDisplayEntries	"	+	"No	data	returned.");

							mTextView.append("No	data	returned."	+	"\n");

			}

			cursor.close();

}	else	{

			Log.d(TAG,	"onClickDisplayEntries	"	+	"Cursor	is	null.");

			mTextView.append("Cursor	is	null."	+	"\n");

}

2.	 Insert	this	code	at	the	end	of	onClickDisplayEntry().
3.	 Run	your	app.
4.	 Click	the	buttons	to	see	the	retrieved	data	in	the	text	view.

Solution	code
Android	Studio	project:	MinimalistContentProvider

Coding	challenges
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

Implement	missing	methods

Coding	Challenge	1:	Implement	the	insert,	delete,	and	update	methods	for	the	MinimalistContentProvider	app.	Provide	the
user	with	a	way	to	insert,	delete,	and	update	data.

Hint:	If	you	don't	want	to	build	out	the	user	interface,	create	a	button	for	each	action	and	hardwire	the	data	that	is	inserted,
updated,	and	deleted.	The	point	of	this	exercise	is	to	work	on	the	content	provider,	not	the	user	interface.

Why:	You	will	implement	the	fully	functioning	content	provider	with	UI	in	the	next	practical,	when	you	will	add	a	content
provider	to	the	WordListSQL	app.

Add	Unit	Tests	for	the	content	provider

Coding	Challenge	2:	After	you	implemented	the	content	provider,	there	was	no	way	for	you	to	know	whether	or	not	the
code	would	work.	In	this	sample,	you	built	out	the	front-end	and	by	watching	it	work,	assumed	the	app	worked	correctly.	In
a	real-life	app,	this	is	not	sufficient,	and	you	may	not	even	have	access	to	a	front-end.	The	appropriate	way	for	determining
that	each	method	acts	as	expected,	write	a	set	of	unit	tests	for	MiniContentProvider.

Summary
In	this	chapter,	you	learned

Content	providers	are	high-level	data	abstractions	that	manages	access	to	a	shared	repository
Content	providers	are	primarily	intended	to	be	used	by	apps	other	than	your	own.
Content	providers	(server-side)	are	accessed	by	Content	resolvers	(app-side)

Introduction

470

https://github.com/google-developer-training/android-fundamentals/tree/master/MinimalistContentProvider

A	Contract	is	a	public	class	that	exposes	important	information	about	a	content	provider.
contracts	can	be	useful	beyond	content	providers,
A	content	provider	needs	to	define	a	set	of	content	URIs	so	apps	can	access	data	through	your	content	provider.
The	content	URI	consists	of	several	components:	"content://",	a	unique	content	authoriity	(typically	a	fully-qualified
package	name)	and	the	content-path.
Use	a	content	resolver	to	request	data	from	a	content	provider	and	display	it	to	the	user.
If	your	app	does	not	share	data	with	other	apps,	then	your	app	does	not	require	a	content	provider.
Content	providers	must	implement	the	getType()	method	which	returns	the	MIME	type	for	each	content	type.
Content	Providers	need	to	be	"published"	in	the	Android	manifest	using	the	element	within	the	element
Content	Providers	need	to	inspect	the	incoming	URI	to	determine	URI	pattern	matches	in	order	to	access	any	data
You	must	add	target	URI	patterns	to	your	content	provider.	The	UriMatcher	class	is	a	helpful	class	for	this	purpose.
The	essence	of	a	content	provider	is	implemented	in	its	query()	method.
The	method	signature	of	the	query()	method	in	a	content	resolver	(data	requester)	matches	the	method	signature	of
the	query()	method	in	a	content	provider	(data	source).
The	query()	method	returns	a	database-style	cursor	object	regardless	if	the	data	is	relational	or	not.

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Content	Providers

Learn	more
Developer	Documentation:

Uniform	Resource	Identifiers	or	URIs
MIME	type
MatrixCursor	and	Cursors
Content	Providers

Introduction

471

https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/111_c_share_data_through_content_providers.html
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Media_type
https://developer.android.com/reference/android/database/MatrixCursor.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/guide/topics/providers/content-providers.html

11.1B:	Add	a	content	provider	to	your	database
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	Overview
Task	1.	Download	and	run	the	base	code
Task	2:	Add	a	Contract	class	to	WordListSQLInteractive
Task	3:	Create	a	Content	Provider
Task	4:	Implement	Content	Provider	methods
Coding	challenge
Summary
Related	concept
Learn	more

Content	providers	in	real	apps	are	more	complex	than	the	basic	version	you	built	in	the	previous	practical.

In	the	real	world:

The	backend	is	a	database,	file	system,	or	other	persistent	storage	option.
The	front-end	displays	the	data	in	a	pleasing	UI	and	allows	users	to	manipulate	the	data.

You	will	rarely	build	an	app	from	scratch.	More	often,	you	will	debug,	refactor,	or	extend	an	existing	application.

In	this	practical,	you	will	take	the	WordListSQL	app	and	refactor	and	extend	it	to	use	a	content	provider	as	a	layer	between
the	SQL	database	and	the	RecyclerView.

You	can	go	about	this	in	two	ways.

Refactor	and	extend	the	WordListSQL	app.	This	involves	changing	the	app	architecture	and	refactoring	code.
Start	from	scratch	and	re-use	code	from	WordListSQL	and	MinimalistContentProvider.

The	practical	will	demonstrate	how	to	refactor	the	existing	WordListSQL	app,	because	it's	what	you	are	more	likely	to
encounter	on	the	job.

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with	how	to:

Display	data	in	a	RecyclerView.
Start	and	return	from	an	Activity.
Create,	change,	and	interact	with	a	SQLite	database	using	a	SQLiteOpenHelper.
Understand	the	architecture	the	minimal	content	provider	you	built	in	the	previous	practical.

What	you	will	LEARN
You	will	learn	how	to:

Create	a	fully	developed	content	provider	for	an	existing	application.
Refactor	an	application	to	accommodate	a	content	provider.

What	you	will	DO

Introduction

472

This	practical	requires	setup	that	is	more	typical	for	real-word	app	development.

You	start	with	the	WordListSQLInteractive	app	you	created	in	a	previous	practical,	which	displays	words	from	a	SQLite
database	in	a	RecyclerView,	and	users	can	create,	edit,	and	delete	words.

You	will	extend	and	modify	this	app:

Implement	a	Contract	class	to	expose	your	app's	interface	to	other	apps.
Implement	a	ContentProvider	and	query	it	using	a	ContentResolver.
Refactor	the	MainActivity,	WordListAdapter,	and	WordListOpenHelper	classes	to	work	with	the	content	provider.

App	Overview
The	completed	WordListSQLWithContentProvider	app	will	have	the	following	features:

A	content	provider	that	can	insert,	delete,	update,	and	query	the	database.
A	contract	and	permissions	set	that	allow	other	apps	to	access	this	content	provider.
A	content	resolver	that	interacts	with	the	content	provider	to	insert,	delete,	update,	and	query	data.
Unchanged	user	interface	and	functionality.

Your	app	will	look	that	same	as	at	the	end	of	the	data	storage	practical.

Introduction

473

Introduction

474

App	component	overview

The	following	diagram	shows	an	overview	of	the	components	of	an	app	that	uses	a	SQLiteDatabase	with	a	content
provider.	The	only	difference	from	the	minimal	content	provider	app	is	that	the	content	provider	fetches	the	data	from	a
database	through	an	open	helper.

The	diagram	below	shows	the	architecture	of	the	WorldListSQLInteractive	app	with	a	content	provider	added;	this	is	the
WordListSQLWithContentProvider	app	that	you	will	build	in	this	practical.

See	the	concepts	chapter	for	a	detailed	explanation	of	all	the	components	and	how	they	interact.

Changes	overview
This	is	a	summary	of	the	changes	you	will	make	to	WordListInteractive	to	add	a	content	provider.

New	Classes:	Contract,	ContentProvider,	ContentResolver
Classes	that	change:	WordListOpenHelper,	MainActivity,	WordListAdapter
Classes	that	should	not	change:	WordItem,	MyButtonOnClickListener,	ViewHolder

Introduction

475

Task	1.	Download	and	run	the	base	code
This	practical	builds	on	the	WordListSQLInteractive	and	MinimalistContentProvider	apps	that	you	built	previously.	You	will
extend	a	copy	of	WordListSQLInteractive.	You	can	start	from	your	own	code,	or	download	the	apps.

WordListSQLInteractive
MinimalistContentProvider

Make	a	copy	of	WordListSQLInteractive	and	load	it	into	Android	Studio.

Change	the	package	name	to		wordlistsqlwithcontentprovider	.

Task	2.	Add	a	Contract	class	to	WordListSQLInteractive
You	will	start	by	creating	a	contract	class	that	defines	public	database	constants,	URI	constants,	and	the	MIME	types.	You
will	use	these	constants	in	all	the	other	classes.	

2.1	Add	a	Contract	class
1.	 Study	the	Define	a	Schema	and	Contract	documentation.
2.	 Add	a	new	public	final	class	to	your	project	and	call	it	Contract.

This	Contract	class	contains	all	the	information	that	another	app	needs	to	use	your	app's	content	provider.	You	could
name	the	class	anything,	but	it	is	customarily	called	"Contract".

public	final	class	Contract	{}

3.	 To	prevent	the	Contract	class	from	being	instantiated,	add	a	private,	empty	constructor.

This	is	a	standard	pattern	for	classes	that	are	used	to	hold	meta	information	and	constants	for	an	app.

private	Contract()	{}

Introduction

476

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://github.com/google-developer-training/android-fundamentals/tree/master/MinimalistContentProvider
https://developer.android.com/training/basics/data-storage/databases.html#DefineContract

2.2	Move	database	constants	into	Contract

Move	the	constants	for	the	database	that	another	app	would	need	to	know	out	of	WordListOpenHelper	into	the	contract	and
make	them	public.

1.	 Move	DATABASE_NAME	and	make	it	public.

public	static	final	String	DATABASE_NAME	=	"wordlist";

Create	a	static	abstract	inner	class	for	each	table	with	the	column	names.	This	inner	class	commonly	implements	the
BaseColumns	interface.	By	implementing	the	BaseColumns	interface,	your	class	can	inherit	a	primary	key	field	called
_ID	that	some	Android	classes,	such	as	cursor	adapters,	expect	to	exist.	These	inner	classes	are	not	required,	but	can
help	your	database	work	well	with	the	Android	framework.

2.	 Create	an	inner	class	WordList	that	implements	BaseColumns.

public	static	abstract	class	WordList	implements	BaseColumns	{

}

3.	 Move		WORD_LIST_TABLE		name,	as	well	as		KEY_ID		and		KEY_WORD		column	names	from	WordListOpenHelper	into	the
WordList	class	in	Contract,	and	make	them	public.

4.	 Go	back	to	WorldListOpenHelper	and	wait	for	Android	Studio	to	import	the	constants	from	the	Contract;	or	import	them
manually,	if	you	are	not	set	up	for	auto-imports.

Use	File	>	Settings	>	Editor	>	General	>	Auto	Import	on	Windows/Linux	or	Android	Studio	>	Preferences	>Editor
>General	>	Auto	Import	on	Mac	to	configure	automated	imports.)

2.3	Define	URI	Constants
1.	 Declare	the	URI	scheme	for	your	content	provider.

Using	the	Contract	in	MinimalistContentProvider	as	an	example,	declare	AUTHORITY,	CONTENT_PATH.	Add
CONTENT_PATH_URI	to	return	all	items,	and	ROW_COUNT_URI	that	returns	the	number	of	entries.	In	the
AUTHORITY,	use	your	app's	name.

public	static	final	int	ALL_ITEMS	=	-2;

public	static	final	String	COUNT	=	"count";

public	static	final	String	AUTHORITY	=

							"com.android.example.wordlistsqlwithcontentprovider.provider";

public	static	final	String	CONTENT_PATH	=	"words";

public	static	final	Uri	CONTENT_URI	=

							Uri.parse("content://"	+	AUTHORITY	+	"/"	+	CONTENT_PATH);

public	static	final	Uri	ROW_COUNT_URI	=

							Uri.parse("content://"	+	AUTHORITY	+	"/"	+	CONTENT_PATH	+	"/"	+	COUNT);

2.4	Declare	the	MIME	types

The	MIME	type	describes	the	type	and	format	of	data.	The	MIME	types	is	used	to	process	the	data	appropriately.	Common
MIME	types	include		text/html		for	web	pages,	and		application/json	.	Read	more	about	MIME	types	for	content	providers
in	the	Android	documentation.

1.	 Declare	MIME	types	for	single	and	multiple	record	responses:

static	final	String	SINGLE_RECORD_MIME_TYPE	=

			"vnd.android.cursor.item/vnd.com.example.provider.words";

static	final	String	MULTIPLE_RECORDS_MIME_TYPE	=

			"vnd.android.cursor.item/vnd.com.example.provider.words";

Introduction

477

https://developer.android.com/reference/android/provider/BaseColumns.html
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type
https://developer.android.com/guide/topics/providers/content-provider-creating.html#MIMETypes

2.	 Run	your	app.	It	should	run	and	look	and	act	exactly	as	before	you	changed	it.

Task	3.	Create	a	Content	Provider

In	this	task	you	will	create	a	content	provider,	implement	its	query	method,	and	hook	it	up	with	the	WordListAdapter	and	the
WordListOpenHelper.	Instead	of	querying	the	WordListOpen	Helper,	the	WordListAdapter	will	use	a	content	resolver	to
query	the	content	provider,	which	in	turn	will	query	WordListOpenHelper	which	will	query	the	database.	

3.1	Create	a	WordListContentProvider	class

1.	 Create	a	new	class	that	extends	ContentProvider	and	call	it	WordListContentProvider.
2.	 In	Android	Studio,	click	on	the	red	lightbulb,	select	"Implement	methods",	and	click	OK	to	implement	all	listed	methods.
3.	 Specify	a	log	TAG.
4.	 Declare	a	UriMatcher.

This	content	provider	uses	an	UriMatcher,	a	utility	class	that	maps	URIs	to	numbers,	so	you	can	switch	on	them.

private	static	UriMatcher	sUriMatcher	=	new	UriMatcher(UriMatcher.NO_MATCH);

5.	 Declare	a	WordListOpenHelper	class	variable,	mDB.

private	WordListOpenHelper	mDB;

6.	 Declare	the	codes	for	the	URI	matcher	as	constants.

This	puts	the	codes	in	one	place	and	makes	them	easy	to	change.	Use	tens,	so	that	inserting	additional	codes	is
straightforward.

Introduction

478

https://developer.android.com/reference/android/content/UriMatcher.html

private	static	final	int	URI_ALL_ITEMS_CODE	=	10;

private	static	final	int	URI_ONE_ITEM_CODE	=	20;

private	static	final	int	URI_COUNT_CODE	=	30;

7.	 Change	the	onCreate()	method	to
initialize	mDB	with	a	WordListOpenHelper,
call	the	initializeUriMatching()	method	that	you	will	create	next,
and	return	true.

@Override

public	boolean	onCreate()	{

			mDB	=	new	WordListOpenHelper(getContext());

			initializeUriMatching();

			return	true;

}

8.	 Create	a	private	void	method	initializeUriMatching().
9.	 In	initializeUriMatching(),	add	URIs	to	the	matcher	for	getting	all	items,	one	item,	and	the	count.

Refer	to	the	Contract	and	use	the	initializeUriMatching()	method	in	the	MinimalistContentProver	app	as	a	template.

Solution:

private	void	initializeUriMatching(){

			sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH,	URI_ALL_ITEMS_CODE);

			sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH	+	"/#",	URI_ONE_ITEM_CODE);

			sUriMatcher.addURI(Contract.AUTHORITY,	Contract.CONTENT_PATH	+	"/"	+	Contract.COUNT,	URI_COUNT_CODE);

}

3.2	Implement	WordListContentProvider.query()

Use	the	MiniContentProvider	as	a	template	to	implement	the	query()	method.

1.	 Modify	WordListContentProvider.query().
2.	 Use	a	Switch	statement	for	the	codes	returned	by	sUriMatcher.
3.	 For	URI_ALL_ITEMS_CODE,	URI_ONE_ITEM_CODE,	URI_COUNT_CODE,	call	the	corresponding	in

WordListOpenHelper	(mDB).

Notice	how	assigning	the	results	from	mDB.query()	to	a	cursor,	generates	an	error,	because	WordListOpenHelper.query()
returns	a	WordItem.

Notice	how	assigning	the	results	from	mDB.count()	to	a	cursor	generates	an	error,	because	WordListOpenHelper.count()
returns	a	long.

You	will	fix	both	these	errors	next.

Solution:

Introduction

479

@Nullable

@Override

public	Cursor	query(Uri	uri,	String[]	projection,	String	selection,

																			String[]	selectionArgs,	String	sortOrder)	{

			Cursor	cursor	=	null;

			switch	(sUriMatcher.match(uri))	{

							case	URI_ALL_ITEMS_CODE:

											cursor	=	mDB.query(ALL_ITEMS);

											break;

							case	URI_ONE_ITEM_CODE:

											cursor	=	mDB.query(parseInt(uri.getLastPathSegment()));

											break;

							case	URI_COUNT_CODE:

											cursor	=	mDB.count();

											break;

							case	UriMatcher.NO_MATCH:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"NO	MATCH	FOR	THIS	URI	IN	SCHEME:	"	+	uri);

											break;

							default:

											//	You	should	do	some	error	handling	here.

											Log.d(TAG,	"INVALID	URI	-	URI	NOT	RECOGNIZED:	"		+	uri);

			}

			return	cursor;

}

3.3	Fix	WordListOpenHelper.query()	to	return	a	Cursor	and	handle	returning	all
items

Since	the	content	provider	works	with	cursors,	you	can	simplify	the	WordListOpenHelper.query()	method	to	return	a	cursor.

1.	 Add	code	with	a	query	to	return	all	items	from	the	database	to	handle	the		cursor	=	mDB.query(ALL_ITEMS)		case	from
the	above	switch	statement.

2.	 Simplify	WordListOpenHelper.query()	to	return	a	cursor.

Introduction

480

This	fixes	the	error	in	WordListContentProvider.query().

However,	this	breaks	WordListAdapter.OnBindViewHolder(),	which	expects	a	WordItem	from	WordListOpenHelper.

To	resolve	this,	WordListAdapter.onBindViewHolder()	needs	to	use	a	content	resolver	instead	of	calling	the	database
directly,	which	you	will	do	after	fixing	WordListContentProvider.count().

Note:	This	kind	of	cascading	errors	and	fixes	is	typical	for	working	with	real-life	applications.	If	an	app	you	are	working	with
is	well	architected,	you	can	fix	the	errors	one	by	one.
Solution:

/**

	*	Queries	the	database	for	an	entry	at	a	given	position.

	*

	*	@param	position	The	Nth	row	in	the	table.

	*	@return	a	WordItem	with	the	requested	database	entry.

	*/

public	Cursor	query(int	position)	{

				String	query;

				if	(position	!=	ALL_ITEMS)	{

								position++;	//	Because	database	starts	counting	at	1.

								query	=	"SELECT	"	+	KEY_ID	+	","	+	KEY_WORD	+	"	FROM	"

																	+	WORD_LIST_TABLE

																	+"	WHERE	"	+	KEY_ID	+	"="	+	position	+	";";

				}	else	{

								query	=	"SELECT		*	FROM	"	+	WORD_LIST_TABLE

																	+	"	ORDER	BY	"	+	KEY_WORD	+	"	ASC	";

				}

				Cursor	cursor	=	null;

				try	{

								if	(mReadableDB	==	null)	{

												mReadableDB	=	this.getReadableDatabase();

								}

								cursor	=	mReadableDB.rawQuery(query,	null);

				}	catch	(Exception	e)	{

								Log.d(TAG,	"QUERY	EXCEPTION!	"	+	e);

				}	finally	{

								return	cursor;

				}

}

3.4	Fix	WordListOpenHelper.count()	to	return	a	Cursor

Since	the	content	provider	works	with	cursors,	you	must	also	change	the	WordListOpenHelper.count()	method	to	return	a
cursor.

Use	a	MatrixCursor,	which	is	a	cursor	of	changeable	rows	and	columns.

1.	 Create	a	MatrixCursor	using	Contract.CONTENT_PATH.
2.	 Inside	a	try	block,	get	the	count	and	add	it	as	a	row	to	the	cursor.
3.	 Return	the	cursor.

Solution:

Introduction

481

https://developer.android.com/reference/android/database/MatrixCursor.html

public	Cursor	count(){

			MatrixCursor	cursor	=	new	MatrixCursor(new	String[]	{Contract.CONTENT_PATH});

			try	{

							if	(mReadableDB	==	null)	{

											mReadableDB	=	getReadableDatabase();

			}

							int	count	=		(int)	DatabaseUtils.queryNumEntries(mReadableDB,	WORD_LIST_TABLE);

							cursor.addRow(new	Object[]{count});

			}	catch	(Exception	e)	{

							Log.d(TAG,	"EXCEPTION	"	+	e);

			}

			return	cursor;

}

This	fixes	the	error	in	WordListContentProvider.count(),	but	breaks	WordListAdapter.getItemCount(),	which	expects	a	long
from	WordListOpenHelper.

In	WordListAdapter.onBindViewHolder(),	instead	of	calling	the	database	directly,	you	will	have	to	use	content	resolvers,
which	you	will	do	next.

3.5	Fix	WordListAdapter.onBindViewHolder()	to	use	a	content	resolver
Next,	you	will	fix	WordListAdapter.onBindViewHolder()	to	use	a	content	resolver	instead	of	calling	the	WordListOpenHelper
directly.	

1.	 In	WordListAdapter,	delete	the	mDB	variable,	since	you	are	not	directly	referencing	the	database	anymore.	This	shows
errors	in	Android	Studio	that	will	guide	your	subsequent	changes.

2.	 In	the	constructor,	delete	the	assignment	to	mDB.
3.	 Refactor	>	Change	the	signature	of	the	constructor	and	remove	the	db	parameter.
4.	 Add	instance	variables	for	the	query	parameters	since	they	will	be	used	more	than	once.

The	content	resolver	takes	a	query	parameter,	which	you	must	build.	The	query	is	similarly	structured	to	a	SQL	query,
but	instead	of	a	selection	statement,	it	uses	a	URI.	Query	parameters	are	very	similar	to	SQL	queries.

Introduction

482

private	String	queryUri	=	Contract.CONTENT_URI.toString();	//	base	uri

private	static	final	String[]	projection	=	new	String[]	{Contract.CONTENT_PATH};	//table

private	String	selectionClause	=	null;

private	String	selectionArgs[]	=	null;

private	String	sortOrder	=	"ASC";

5.	 In	onBindViewholder(),	delete	the	first	two	lines	of	code.
WordItem	current	-	mDB.query(position);
holder.wordItemView.setText(current.getWord());

6.	 Define	an	empty	String	variable	named	word.
7.	 Define	an	integer	variable	called	id	and	set	it	to	-1.
8.	 Create	a	content	resolver	with	the	specified	query	parameters	and	store	the	results	in	a	Cursor	called	cursor.	(See

MainActivity	of	MinimalistContentProvider	app	for	an	example.)

String	word	=	"";

int	id	=	-1;

Cursor	cursor	=	mContext.getContentResolver().query(Uri.parse(

																				queryUri),	null,	null,	null,	sortOrder);

9.	 Instead	of	just	getting	a	WordItem	delivered,	WordListAdapter.onBindViewHolder()	has	to	do	the	extra	work	of
extracting	the	word	from	the	cursor	returned	by	the	content	resolver.

If	the	returned	cursor	contains	data,	extract	the	word	and	set	the	text	of	the	view	holder.
Extract	the	id,	because	you'll	need	it	for	the	click	listeners.
Close	the	cursor.	Remember	that	you	did	not	close	the	cursor	in	WordListOpenHelper.query(),	because	you
returned	it.
Handle	the	case	of	no	data	in	the	cursor.
Implement	any	referenced	string	resources.

if	(cursor	!=	null)	{

						if	(cursor.moveToPosition(position))	{

												int	indexWord	=	cursor.getColumnIndex(Contract.WordList.KEY_WORD);

												word	=	cursor.getString(indexWord);

												holder.wordItemView.setText(word);

												int	indexId	=	cursor.getColumnIndex(Contract.WordList.KEY_ID);

												id	=	cursor.getInt(indexId);

							}	else	{

												holder.wordItemView.setText(R.string.error_no_word);

							}

							cursor.close();

}	else	{

							Log.e	(TAG,	"onBindViewHolder:	Cursor	is	null.");

}

1.	 Fix	the	parameters	for	the	click	listeners	for	the	two	buttons:

current.getId()	⇒	id
current.getWord()	⇒	word

The	updated	click	listener	for	the	DELETE	button	looks	like	this:

Introduction

483

@Override

public	void	onClick(View	v)	{

selectionArgs	=	new	String[]{Integer.toString(id)};

int	deleted	=	mContext.getContentResolver().delete(

				Contract.CONTENT_URI,	Contract.CONTENT_PATH,selectionArgs);

	if	(deleted	>	0)	{

					//	Need	both	calls

					notifyItemRemoved(h.getAdapterPosition());

					notifyItemRangeChanged(

													h.getAdapterPosition(),	getItemCount());

	}	else	{

						Log.d	(TAG,	mContext.getString(R.string.not_deleted)	+	deleted);

	}

}

2.	 Replace	the	call	to	mDB.delete(id)	in	the	DELETE	button	callback	with	a	content	resolver	call	to	delete.

selectionArgs	=	new	String[]{Integer.toString(id)};

int	deleted	=	mContext.getContentResolver().delete(

															Contract.CONTENT_URI,	Contract.CONTENT_PATH,	selectionArgs);

3.6	Change	WordListAdapter.getItemCount()	to	use	a	content	resolver
Instead	of	requesting	the	count	from	the	database,	getItemCount()	has	to	connect	to	the	content	resolver	and	request	the
count.	In	the	Contract,	you	defined	a	URI	for	getting	that	count:

public	static	final	String	COUNT	=	"count";

public	static	final	Uri	ROW_COUNT_URI	=

							Uri.parse("content://"	+	AUTHORITY	+	"/"	+	CONTENT_PATH	+	"/"	+	COUNT

Change	WordListAdaptergetItemCount()	to:

Use	a	content	resolver	query	to	get	the	item	count
Use	the	ROW_COUNT_URI	in	your	query
The	count	is	an	integer	type	and	is	the	first	element	of	the	returned	Cursor
Extract		count		from	the	cursor	and	return	it
Return	-1	otherwise
Close	the	cursor

Use	the	code	you	just	wrote	for	onBindViewHolder	as	a	guideline.

Solution:

@Override

public	int	getItemCount()	{

				Cursor	cursor	=	mContext.getContentResolver().query(

																					Contract.ROW_COUNT_URI,	new	String[]	{"count(*)	AS	count"},

																					selectionClause,	selectionArgs,	sortOrder);

					try	{

									cursor.moveToFirst();

									int	count	=	cursor.getInt(0);

									cursor.close();

									return	count;

					}	catch	(Exception	e){

									Log.d(TAG,	"EXCEPTION	getItemCount:	"	+	e);

									return	-1;

					}

		}

3.7	Add	the	content	provider	to	the	Android	Manifest
1.	 Run	your	app.

Introduction

484

2.	 Examine	logcat	for	the	(very	common)	cause	of	the	error.
3.	 Add	the	content	provider	to	the	Android	Manifest	inside	the		<application>		tag.

<provider

			android:name=".WordListContentProvider"		android:authorities="com.android.example.wordlistsqlwithcontentprovi

der.provider">

</provider>

4.	 Run	your	app.

Your	app	should	run	and	be	fully	functional.	If	it	is	not,	compare	your	code	to	the	supplied	solution	code,	and	use	the
debugger	and	logging	to	find	the	problem.

3.8	What's	next?
You	have	implemented	a	content	provider	and	its	query()	method.

You	followed	the	errors	to	update	methods	in	the	WordListOpenHelper	and	WordListAdapter	classes	to	work	with	the
content	provider.

When	you	run	your	app,	for	queries,	the	method	calls	go	through	the	content	provider.

For	the	insert,	delete,	and	update	operations,	your	app	is	still	calling	WordListOpenHelper.

With	the	infrastructure	you	have	built,	implementing	the	remaining	methods	will	be	a	lot	less	work.

Task	4.	Implement	Content	Provider	methods

4.1	getType()
The	getType()	method	is	called	by	other	apps	that	want	to	use	this	content	provider,	to	discover	what	kind	of	data	your	app
returns.

Use	a	switch	statement	to	return	the	appropriate	MIME	types.

The	MIME	types	are	listed	in	the	contract.
SINGLE_RECORD_MIME_TYPE	is	for	URI_ALL_ITEMS_CODE
MULTIPLE_RECORDS_MIME_TYPE	is	for	URI_ONE_ITEM_CODE

Solution:

@Nullable

@Override

public	String	getType(Uri	uri)	{

			switch	(sUriMatcher.match(uri))	{

							case	URI_ALL_ITEMS_CODE:

											return	MULTIPLE_RECORDS_MIME_TYPE;

							case	URI_ONE_ITEM_CODE:

											return	SINGLE_RECORD_MIME_TYPE;

							default:

											return	null;

			}

}

Challenge:	How	can	you	test	this	method,	as	it	is	not	called	by	your	app.	Can	you	think	of	three	different	ways	of	testing
that	this	method	works	correctly?

4.2	Call	the	content	provider	to	insert	and	update	words	in	MainActivity
To	fix	insert	operations	MainActivity().onActivityResult	needs	to	call	the	content	provider	instead	of	the	database	for
inserting	and	updating	words.

Introduction

485

1.	 In	MainActivity,	delete	the	declaration	of	mDB	and	its	instantiation.

In	OnActivityResult()

Inserting:

1.	 If	the	word	length	is	not	zero,	create	a	ContentValues	variable	named	"values"	and	add	the	user-inputted	word	to	it
using	the	string	"word"	as	a	key.

2.	 Replace	mDB.insert(word);	with	an	insert	request	to	a	to	a	content	resolver.

Updating:

1.	 Replace	mDB.update(id,	word);	with	an	update	request	to	a	to	a	content	resolver.

Solution	snippet:

//	Update	the	database

if	(word.length()	!=	0)	{

			ContentValues	values	=	new	ContentValues();

			values.put(Contract.WordList.KEY_WORD,	word);

			int	id	=	data.getIntExtra(WordListAdapter.EXTRA_ID,	-99);

			if	(id	==	WORD_ADD)	{

						getContentResolver().insert(Contract.CONTENT_URI,	values);

			}	else	if	(id	>=0)	{

							String[]	selectionArgs	=	{Integer.toString(id)};

							getContentResolver().update(Contract.CONTENT_URI,	values,	Contract.WordList.KEY_ID,	selectionArgs

);

			}

			//	Update	the	UI

			mAdapter.notifyDataSetChanged();

4.3	Implement	insert()	in	the	content	provider

The	insert()	method	in	the	content	provider	is	a	pass-through.	So	you

1.	 call	the	OpenHelper	insert()	method,
2.	 convert	the	returned	long	id	to	a	content	URI	to	the	inserted	item,
3.	 and	return	that	URI.

Android	Studio	reports	an	error	for	the	values	parameter,	which	you	will	fix	in	the	next	steps.

Solution:

public	Uri	insert(Uri	uri,	ContentValues	values)	{

			long	id	=	mDB.insert(values);

			return	Uri.parse(CONTENT_URI	+	"/"	+	id);

}

4.4	Fix	insert()	in	WordListOpenHelper
Android	Studio	reports	an	error	for	the	values	parameter.

1.	 Open	WordListOpenHelper.	The	insert()	method	is	written	to	take	a	String	parameter.
2.	 Change	the	parameter	to	be	of	type	ContentValues.
3.	 Delete	the	declaration	and	assignment	of	values	in	the	body	of	the	method.

4.5	Implement	update()	in	the	content	provider

Fix	the	update	methods	in	the	same	way	as	you	fixed	the	insert	methods.

1.	 In	WordListContentProvider,	Implement	update(),	which	is	one	line	of	code	that	passes	the	id	and	the	word	as
arguments.

Introduction

486

return	mDB.update(parseInt(selectionArgs[0]),

values.getAsString(Contract.WordList.KEY_WORD));

2.	 You	don't	need	to	make	any	changes	to	update	in	WordListOpenHelper.

4.6	Implement	delete()	in	the	content	provider

In	WordListContentProvider,	Implement	the	delete()	method	by	calling	the	delete()	method	in	WordListOpenHelper	with	the
id	of	the	word	to	delete.

return	mDB.delete(parseInt(selectionArgs[0]));

4.7	Run	your	app

Yup.	That's	it.	Run	your	app	and	make	sure	everything	works.

And	if	your	app	still	doesn't	work,	you	should	correct	any	issues.	You	will	need	the	working	code	in	a	later	practical.	In	that
lesson	you	will	write	an	app	that	uses	this	content	provider	to	load	word	list	data	into	its	user	interface.

Solution	code
Android	Studio	project:	word_list_sql_with_content_provider

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.	

The	wordlist	is	just	a	list	of	single	words,	which	isn't	terribly	useful.	Extent	the	app	to	display	definitions,	as	well	as	a
link	to	useful	information,	such	as	developer.android.com,	stackoverflow,	or	wikipedia.
Add	an	activity	that	allows	users	to	search	for	words.
Add	basic	tests	for	all	the	functions	in	WordListContentProvider.

Summary
In	production,	most	application	developers	will	typically	refactor	apps	to	accommodate	a	content	provider.
During	refactoring,	developers	will	typically	experience	cascading	changes	and	errors
You	need	to	separate	the	UI	from	the	database	using	a	content	provider	and	a	content	resolver
The	UI	should	not	change	during	the	refactor	from	an	embedded	database	to	an	external	data	source.
The	Contract	class	defines	the	common	constants	for	all	the	components	in	the	refactored	application.
The	Contract	class	localizes	all	the	common	constants	for	ease	of	maintenance.
When	refactoring,	it	is	very	useful	to	have	diagrams	of	the	database	access	classes
Careful	thought	should	be	given	to	designing	the	database	access	URIs	that	other	applications	need	to	access	the
data.
All	access	to	your	database	must	be	changed	to	use	a	Content	Resolver	instead	of	directly	accessing	a	helper	class
(for	example:	WordListOpenHelper)
If	the	underlying	data	has	changed,	it	is	important	to	signal	the	UI	to	refresh	using	notifyDataSetChanged().

Related	concepts
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Introduction

487

https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details

Content	Providers

Learn	more
Developer	Documentation:

Uniform	Resource	Identifiers	or	URIs
MIME	type
MatrixCursor	and	Cursors
Content	Providers

Videos:

Android	Application	Architecture
Android	Application	Architecture:	The	Next	Billion	Users

Introduction

488

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/111_c_share_data_through_content_providers.html
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Media_type
https://developer.android.com/reference/android/database/MatrixCursor.html
https://developer.android.com/reference/android/database/Cursor.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://www.youtube.com/watch?v=BlkJzgjzL0c
https://www.youtube.com/watch?v=70WqJxymPr8

11.1C:	Sharing	content	with	other	apps
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Make	your	content	provider	available	to	other	apps
Summary
Related	concept
Learn	more

To	protect	app	and	user	data,	apps	cannot	share	data	with	other	apps	directly.	However,	apps	can	make	data	available	to
other	apps	by	using	a	content	provider.	Client	apps	can	then	use	a	content	resolver	to	access	the	data	via	the	content
provider's	public	interface.

The	following	diagram	shows	how	a	hat	wholesaler	might	use	a	content	provider	to	share	information	about	its	inventory	to
apps	that	sell	hats.	

In	this	practical	you	will	modify	WordListSQLWithContentProvider	to	allow	other	apps	to	access	the	data	in	its	content
provider.	Then	you	will	create	a	second	app,	WordListClient,	that	has	no	data	of	its	own,	but	instead,	fetches	data	from
WordListSQLWithContentProvider's	content	provider.

What	you	should	already	KNOW
For	this	practical	you	should	be	familiar	with:

Content	providers	and	resolvers
How	to	rename	packages
The	WordListSQLWithContentProvider	app	from	the	previous	practical

What	you	will	LEARN
You	will	learn	how	to:

Introduction

489

Set	permissions,	so	other	apps	can	use	your	app's	content	provider.
Build	a	client	app	that	fetches	data	from	your	app's	content	provider.

What	you	will	DO
You	will:

Enable	WordListSQLWithContentProvider	to	share	its	data.
Create	a	client	app	that	gets	data	from	the	content	provider	of	WordListSQLWithContentProvider.

Apps	Overview
You	will	use	two	apps	in	this	practical.

The	existing	WordListSQLWithContentProvider	app	that	you	built	in	the	previous	practical.
A	new	WordListClient	app	that	will	query	the	content	provider	of	WordListSQLWithContentProvider.	The	UI	for	this	app
is	the	same	as	WordListInteractive.

Introduction

490

Introduction

491

Task	1.	Make	your	content	provider	available	to	other	apps
By	default,	apps	cannot	access	the	data	of	other	apps.

To	make	your	content	provider	available	to	other	apps,	you	must	specify	permissions	in	the	AndroidManifest	of	your	app.
This	is	true	for	any	app	that	has	a	content	provider.	Each	content	provider	needs	permissions	specified	in	its
AndroidManifest.

Permissions	are	not	covered	in	detail	in	these	practicals.	You	can	learn	more	in	Implementing	Content	Provider
Permissions.

1.1.	Modify	WordListWithContentProvider	to	allow	apps	access
1.	 Open	WordListSQLWithContentProvider	in	Android	Studio.
2.	 Open	the	AndroidManifest.xml	file.
3.	 Add	an	export	statement	inside	the		<provider>	.

android:exported="true"

4.	 At	the	top	level,	inside	the		<manifest>		tag	add	a	permission	for	the	content	provider.

It	is	good	practice	to	use	your	unique	package	name	in	order	to	keep	the	permission	unique.

<permission

android:name="com.android.example.wordlistsqlwithcontentprovider.PERMISSION"	/>

5.	 Run	the	app	to	make	sure	there	are	no	errors,	and	leave	it	installed	on	the	device.

In	order	for	another	app	to	access	WordListWithContentProvider's	content	provider,	the	app	with	the	content	provider
has	to	be	installed	on	the	device.	It	is	not	necessary	for	it	to	be	running.

You	now	have	a	content	provider	on	your	device	that	another	app	can	access.	Next,	you	are	going	to	build	an	app,
WordListClient,	that	gets	words	from	the	content	provider	and	displays	them.

1.2.	Create	the	WordListClient	app

Instead	of	building	a	client	app	from	scratch,	you	will	create	WordListClient	from	a	copy	of
WordListSQLWithContentProvider.	You	will	keep	the	user	interface	and	the	adapter	to	display	the	data.	You	will	remove	the
content	provider	and	the	database,	and	instead	get	data	from	the	content	provider	of	WordListSQLWithContentProvider.

1.	 Create	a	copy	of	the	WordListSQLWithContentProvider	folder	and	call	it	WordListClient.
2.	 Open	the	copied	app	in	the	WordListClient	folder	in	Android	Studio.
3.	 Rename	the	package	(Refactor	>	Rename)	to	wordlistclient.
4.	 Open	build.gradle(Module:app)	and	change	the	app	id	to	wordlistclient.
5.	 In	strings.xml,	change	the	app	name	to	WordListClient.
6.	 In	the	Android	Manifest	of	WordListClient,	remove	the		<provider>		declaration	as	there	won't	be	a	provider	in

WordListClient.
7.	 At	the	top	level,	inside	the		<manifest>		tag,	add	a		<uses-permission>	permission	to	use	the	content	provider	of

WordListSQLWithContentProvider.

<uses-permission	android:name	=	"com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>

8.	 Delete	the	WordListContentProvider	class,	because	the	app	will	access	the	content	provider	of
WordListSQLWithContentProvider.

9.	 Delete	the	WordListOpenHelper	class,	because	your	app	does	not	need	a	database	or	an	open	helper	of	its	own.
10.	 Look	at	MainActivity	and	WordListAdapter.	Note	that	the	code	for	inserting,	deleting,	and	updating	words	remains

Introduction

492

https://developer.android.com/guide/topics/providers/content-provider-creating.html#Permissions
https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider
https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider
https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider

unchanged,	calling	the	content	provider	of	WordListSQLWithContentProvider	using	the	URIs	specified	in	the	Contract
class.

11.	 Run	WordListClient.
In	spite	of	not	having	data	of	its	own,	WordListClient	displays	data,	which	is	the	data	it	fetches	from	the
WordListSQLWithContentProvider	app's	content	provider.

12.	 Insert	a	few	words	on	WordListClient.
13.	 Start	WordListSQLWithContentProvider.

Notice	that	the	word	you	inserted	with	WordListClient,	displays	also	in	WordListSQLWithContentProvider,	because
they	share	one	data	source.
Delete	the	word	in	WordListSQLWithContentProvider	and	notice	the	word	also	being	deleted	from	the	display	of
WordListClient.	(You	may	need	to	scroll	to	make	the	change	appear.)

14.	 As	you	interact	with	other	the	other	app,	changes	made	by	one	app	are	reflected	in	the	other	app.

In	the	previous	hat	store	example,	the	warehouse	owner	can	update	the	hat	inventory	with	new	red	or	fancy	hats,	and	the
store	apps	will	immediately	be	able	to	show	these	new	hats	to	their	customers.	And	if	the	red	hat	store	sells	all	the	red
fancy	hats,	the	fancy	hat	store	will	know	that	the	inventory	of	fancy	red	hats	is	sold	out.

Solution	code
Android	Studio	project:	WordListClient

Summary
Your	app	can	permit	other	apps	to	interact	with	its	content	provider	and	get	or	edit	data.
You	can	build	a	client	app	that	instead	of	providing	it's	own	data,	fetches	data	from	another	app's	content	provider.
You	can	separate	management	of	the	data	from	displaying	the	data.	That	is,	you	can	have	one	app	that	manages	the
content	provider,	and	many	client	apps	that	use	the	data	provided	by	the	content	provider.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Content	Providers

Learn	more
Developer	Documentation:

Working	with	System	Permissions
Implementing	Content	Provider	Permissions

Introduction

493

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListClient
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/111_c_share_data_through_content_providers.html
https://developer.android.com/training/permissions/index.html
https://developer.android.com/guide/topics/providers/content-provider-creating.html#Permissions

12.1:	Load	and	display	data	fetched	from	a	content
provider
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	the	base	app	for	WordListLoader
Task	2:	MainActivity:	Adding	a	LoaderManager	and	LoaderCallbacks
Task	3:	WordListAdapter:	Implement	setData(),	getItemCount(),	and	onBindViewHolder()
Summary
Related	concept
Learn	more

In	this	practical	you	will	learn	how	to	load	data	provided	by	another	app's	content	provider	in	the	background	and	display	it
to	the	user,	when	it	is	ready.

Asking	a	ContentProvider	for	data	you	want	to	display	may	take	time.	If	you	request	data	from	the	content	provider	from	an
Activity	(and	run	it	on	the	UI	thread),	the	app	may	get	blocked	long	enough	to	cause	a	visible	delay	for	the	user,	and	the
system	may	even	issue	an	"Application	Not	Responding"	message.	Therefore,	you	should	load	data	on	a	separate	thread,
in	the	background,	and	display	the	results	after	loading	is	finished.

To	run	a	query	on	a	separate	thread,	you	use	loader	that	runs	asynchronously	in	the	background	and	reconnects	to	the
Activity	when	finished.	Specifically,	CursorLoader	runs	a	query	in	the	background,	and	automatically	re-runs	it	when	data
associated	with	the	query	changes.

You	have	used	an	AsyncTaskLoader	in	a	previous	practical.	CursorLoader	extends	AsyncTaskLoader	to	work	with	content
providers.

At	a	high	level,	you	need	the	following	pieces	to	use	a	loader	to	display	data	from	a	content	provider:

An	Activity	or	fragment.
An	instance	of	the	LoaderManager	in	the	Activity.
A	CursorLoader	to	load	data	backed	by	a	ContentProvider.
An	implementation	for	LoaderManager.LoaderCallbacks,	an	abstract	callback	interface	for	the	client	to	interact	with	the
LoaderManager.
A	way	of	displaying	the	loader's	data,	commonly	using	an	adapter.	For	example,	you	could	display	the	data	in	a
RecyclerView.

The	following	diagram	shows	a	complete	app	architecture	with	a	loader.

The	loader	performs	querying	for	items	in	the	background.	If	the	data	changes,	it	automatically	gets	a	new	set	of	data
for	the	adapter.
The	insert,	delete,	and	update	operations	do	not	use	the	loader.	However,	after	the	data	changes	because	of	an	insert,
delete,	or	update	operation,	the	loader	fetches	the	updated	data	and	notifies	the	adapter.	

Introduction

494

https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/support/v4/content/CursorLoader.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/LoaderManager.html
https://developer.android.com/reference/android/content/CursorLoader.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.html

What	you	should	already	KNOW
For	this	practical	you	should	be	able	to:

Display	data	in	a	RecyclerView.
Work	with	simple	Adapters.
Understand	Cursors	(see	previous	practical	and	concepts).
Work	with	AsyncTaskLoader.
Understand	how	to	work	with	a	Content	Providers.

What	you	will	LEARN
You	will	learn	to:

Load	data	from	a	content	provider	using	a	CursorLoader.
Use	code	from	a	finished	app	to	quickly	build	a	new	app	with	related	functionality.

What	you	will	DO
You	will	create	a	basic	app	that	uses	a	CursorLoader	to	query	the	content	provider	of
WordListSQLWithContentProvider	and	display	the	data	in	a	RecyclerView.
Use	WordListClient	as	a	reference	for	some	of	the	code.	In	particular,	you	can	reuse	the	Contract	and	WordItem
Classes,	as	well	as	parts	of	the	MainActivity	and	WordListAdapter	classes.
The	app	you	will	create	will	have	a	very	basic	UI.	Unlike	WordListClient,	it	will	not	have	insert,	delete,	or	update
functionality.

Introduction

495

App	Overview
Using	WordListClient	from	the	previous	practical	as	a	source	for	some	of	the	code,	you	will	create	a	new	app,
WordListLoader	that	loads	and	displays	data	from	the	content	provider	for	WordListSQLWithContentProvider.	The	following
screenshot	shows	how	the	finished	app	will	display	the	words.

Introduction

496

Introduction

497

IMPORTANT:
You	must	install	a	WordListWithContentProvider	app	that	shares	its	content	provider	so	that	there	is	a	content	provider
available	for	WordListLoader.
Use	the	WordListClient	app	that	you	built	in	the	previous	practical	as	a	reference	and	to	reuse	code.

Task	1.	Create	the	base	app	for	WordListLoader
In	this	task	you	will	create	a	project	and	parts	of	the	app	that	are	not	specific	to	loaders.	You	need	the	WordListClient	app
loaded	in	Android	Studio,	so	you	can	copy	code	from	it.

1.1	Create	a	project	with	Contract	and	WordListItem	classes	and	layout	files

1.	 Start	Android	Studio	and	load	the	finished	WordListClient	app	from	the	previous	practical.
2.	 Create	a	new	project	with	the	Empty	Activity	template	and	call	it	WordListLoader.
3.	 Add	the	permission	for	WordListSQLWithContentProvider's	content	provider	to	the	Android	Manifest.

<uses-permission	android:name	=

	"com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>

4.	 Create	a	new	Java	class	and	call	it	Contract.
5.	 Copy	the	Contract	class	from	WordListClient	into	the	new	Contract	class	of	WordListLoader.	Make	sure	not	to	copy	the

package	name.
6.	 In	WordListLoader,	create	a	new	Java	class	and	call	it	WordListItem.
7.	 Copy	the	WordItem	class	from	WordListClient	into	the	new	WordItem	class	of	WordListLoader.
8.	 Copy	the	layout	for	the	recycler	view	from	actity_main.xml	from	WordListClient	to	WordListLoader.	Remove	the	floating

action	button.
9.	 Create	a	new	layout	for	WordListItem,	wordlist_item.xml.
10.	 Using	wordlist_item.xml	from	WordListClient	as	your	reference,	create	a	LinearLayout	with	a	single	TextView.

The	id	of	the	TextView	must	be		android:id="@+id/word".	
Resolve	strings,	dimensions,	and	styles	that	you	are	reusing.	Note	that	you	can	copy/paste	files	between	projects.
Overwrite	the	existing	XML	files	in	WordListLoader.
Change	the	app_name	to	WordListLoader	in	strings.xml.

11.	 At	this	point,	you	should	see	no	errors	in	Android	Studio.

1.2	Add	a	RecyclerView	to	MainActivity
To	display	the	data,	add	a	RecyclerView	to	your	MainActivity.	You	can	do	this	on	your	own,	or	reuse	code	from
WordListClient.

1.	 Add	the	RecyclerView	and	Coordinator	Layout	from	the	support	library	to	your	build.gradle	file.

compile	'com.android.support:recyclerview-v7:24.1.1'

compile	'com.android.support:design:24.1.1'

2.	 Import	the	support	library	versions	of	RecyclerView	and	LinearLayoutManager	into	your	MainActivity.

import	android.support.v7.widget.LinearLayoutManager;

import	android.support.v7.widget.RecyclerView;

3.	 Create	a	TAG	for	MainActivity.
4.	 Create	a	private	variable	mRecyclerView	for	the	RecyclerView.
5.	 Create	a	private	variable	mWordListAdapter	for	the	adapter.	This	will	remain	red,	until	you	create	the	adapter	class.
6.	 In	onCreate()	of	MainActivity,	create	a	RecyclerView,	create	a	WordListAdapter,	set	the	adapter	on	the	Recyclerview,

and	attach	a	LinearLayoutManger.	See	WordListClient	for	sample	code.

Introduction

498

https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider
https://github.com/google-developer-training/android-fundamentals/tree/master/WordListClient

//	Create	recycler	view.

mRecyclerView	=	(RecyclerView)	findViewById(R.id.recyclerview);

//	Create	an	adapter	and	supply	the	data	to	be	displayed.

mAdapter	=	new	WordListAdapter(this);

//	Connect	the	adapter	with	the	recycler	view.

mRecyclerView.setAdapter(mAdapter);

//	Give	the	recycler	view	a	default	layout	manager.

mRecyclerView.setLayoutManager(new	LinearLayoutManager(this));

7.	 If	you	build	your	app	now,	only	WordListAdapter	should	be	red.	The	app	does	not	run	yet.

1.3	Create	WordListAdapter

Use	WorldListAdapter	from	WordListClient	and	the	snippets	below	as	a	reference	for	creating	this	adapter.	If	you	need	a
refresher,	revisit	the	RecyclerView	chapter	of	this	course.

1.	 Create	a	new	Java	class	WordListAdapter	that	extends	Recyclerview.Adapter.

public	class	WordListAdapter

extends	RecyclerView.Adapter<WordListAdapter.WordViewHolder>			{}

Using	WordListAdapter	as	a	reference,	add	the	following:

2.	 Add	an	inner	ViewHolder	class	with	one	TextView,	called	wordItemView	and	inflate	it	from	the	text	view	with	the	id
"word".

class	WordViewHolder	extends	RecyclerView.ViewHolder	{

			public	final	TextView	wordItemView;

			public	WordViewHolder(View	itemView)	{

							super(itemView);

							wordItemView	=	(TextView)	itemView.findViewById(word);

			}

}

3.	 Add	a	TAG	for	log	messages.

private	static	final	String	TAG	=	WordListAdapter.class.getSimpleName();

4.	 Add	member	variables	for	the	LayoutInflator	and	the	context.

private	final	LayoutInflater	mInflater;

private	Context	mContext;

5.	 Implement	the	constructor	for	WordListAdapter.

public	WordListAdapter(Context	context)	{

			mInflater	=	LayoutInflater.from(context);

			this.mContext	=	context;

}

6.	 Implement	(or	copy)	the	onCreateViewHolder	method	to	inflate	a	wordlist_item	view.

@Override

public	WordViewHolder	onCreateViewHolder(

			ViewGroup	parent,	int	viewType)	{

			View	mItemView	=	mInflater.inflate(

							R.layout.wordlist_item,	parent,	false);

			return	new	WordViewHolder(mItemView);

}

7.	 Press	Alt-Enter	on	the	adapter's	class	header	and	"choose	implement	methods"	to	create	method	stubs	for	the

Introduction

499

	getItemCount()		and		onBindViewHolder()		methods.
8.	 At	this	point,	there	should	be	no	red	underlines	or	words	in	your	code.
9.	 Run	your	app,	and	it	should	show	a	blank	activity	as	shown	in	the	following	screenshot,	since	you	haven't	loaded	any

data	yet.	You	will	add	data	in	the	next	task.

Introduction

500

Introduction

501

Task	2.	MainActivity:	Adding	a	LoaderManager	and
LoaderCallbacks
When	you	use	a	loader	to	load	your	data	for	you,	you	use	a	loader	manager	to	take	care	of	the	details	of	running	the
loader.

The	LoaderManager	is	a	convenience	class	that	manages	all	your	loaders.	You	only	need	one	loader	manager	per	activity.
For	example,	the	loader	manager	takes	care	of	registering	an	observer	with	the	content	provider,	which	receives	callbacks
when	data	in	the	content	provider	changes.

2.1	Add	the	Loader	Manager

1.	 Open	MainActivity.java
2.	 Extend	the	class	signature	to	implement	LoaderManager.LoaderCallbacks.	Import	the	support	library	version.

public	class	MainActivity	extends	AppCompatActivity	implements	LoaderManager.LoaderCallbacks<Cursor>

3.	 Implement	method	stubs	for		onCreateLoader()	,		onLoadFinished()	,	and		onLoaderReset()	.
4.	 In	onCreate(),	create	a	LoaderManager	from	the	support	library	and	register	a	loader	with	it.

The	first	argument	is	a	numeric	tag;	since	you	only	have	one	loader,	it	doesn't	matter	what	number	you	choose.
You	are	not	passing	in	any	data,	so	the	second	argument	is	null.
And	you	bind	the	loader	to	the	current	MainActivity	(this).

getSupportLoaderManager().initLoader(0,	null,	this);

2.2	Implement	onCreateLoader()

The	LoaderManager	calls	the	onCreateLoader()	method	to	create	the	loader,	if	it	does	not	already	exist.

You	create	a	loader	by	supplying	it	with	a	context,	and	the	URI	from	which	to	load	data—in	this	case,	for	content	provider	of
WordListSQLWithContentProvider,	the	URI	specified	in	the	Contract.

1.	 In	onCreateLoader(),	create	a	queryUri	and	projection.	Use	the	same	URI	that	the	content	resolver	is	using	to	query
the	content	provider.	You	can	find	it	in	the	Contract	and	it	is	used	in	WordListClient.

2.	 Create	and	return	a	new	CursorLoader	from	these	arguments.	Import	the	CursorLoader	from	the	support	library.

@Override

public	Loader<Cursor>	onCreateLoader(int	id,	Bundle	args)	{

			String	queryUri	=	Contract.CONTENT_URI.toString();

			String[]	projection	=	new	String[]	{Contract.CONTENT_PATH};

			return	new	CursorLoader(this,	Uri.parse(queryUri),	projection,	null,	null,	null);

}

2.3	Implement	onLoadFinished()
When	loading	has	finished,	you	need	to	send	the	data	to	the	adapter.

1.	 Call	setData()	in	onLoadFinished().	The	code	will	turn	red,	and	you	will	implement	it	in	the	next	task.	The	argument	for
setData()	is	the	cursor	with	"data"	returned	by	the	loader	when	it	is	finished	loading.

@Override

public	void	onLoadFinished(Loader<Cursor>	loader,	Cursor	data)	{

			mAdapter.setData(data);

}

2.4	Implement	onLoaderReset()

Introduction

502

On	resetting	the	loader,	let	the	adapter	know	that	the	data	has	become	unavailable	by	passing	null	to	setData().

@Override

public	void	onLoaderReset(Loader<Cursor>	loader)	{

			mAdapter.setData(null);

}

Task	3.	WordListAdapter:	Implement	setData(),
getItemCount(),	and	onBindViewHolder()
As	your	final	tasks,	you	need	to	implement	the	setData()	method	referenced	above,	and	implement	onBindViewHolder()	to
work	with	the	loader	to	display	the	data.	Here	is	how	this	happens:

When	the	loader	finishes	loading	new	or	changed	data	in	the	background,	the	onLoadFinished()	method	that	you
implemented	in	the	MainActivity	is	executed.
onLoadFinished()	calls	WordListAdapter.setData(),	which	updates	the	mCursor	variable	in	the	adapter	with	the	loader's
latest	data	and	notifies	the	adapter	that	the	data	has	changed.
The	adapter	updates	the	UI	with	the	new	data,	by	binding	views	to	the	data	in	onBindViewHolder().

3.1.	Implement	setData()

You	need	a	way	to	set	and	store	the	latest	loaded	version	of	the	data	with	the	adapter.	For	this	app,	the	loader	returns	data
as	a	cursor,	so	you	need	to	create	a	Cursor	member	variable	mCursor	that	will	always	hold	the	latest	data	set.

The	setData()	method	is	called	by	the	loader	when	it	finished	loading	or	is	reset,	and	it	needs	to	update	mCursor.

1.	 Create	a	private	member	variable	of	type	Cursor.	Call	it	"mCursor"	and	initialize	it	to	null.
2.	 Implement	the	public	method	setData().	It	takes	a	Cursor	argument	and	returns	nothing.
3.	 In	the	body,	set	mCursor	to	the	passed	in	Cursor	argument	and	call	notifyDataSetChanged(),	so	that	the	adapter

updates	the	display.

public	void	setData(Cursor	cursor)	{

			mCursor	=	cursor;

			notifyDataSetChanged();

}

3.2.	Implement	getItemCount()

Instead	of	0,	getItemCount()	needs	to	return	the	number	of	items	in	mCursor.	If	mCursor	is	null,	return	-1.

@Override

public	int	getItemCount()	{

			if	(mCursor	!=	null)	{

							return	mCursor.getCount();

			}	else	{

							return	-1;

			}

}

3.3	Implement	onBindViewHolder()

In	WordListClient,	the	onBindViewHolder()	method	uses	a	content	resolver	to	fetch	data	from
WordListSQLWithContentProvider's	content	provider.	In	this	app,	onBindViewHolder()	uses	the	data	provided	by	the	loader
and	stored	in	mCursor.

In	onBindViewHolder,	handle	the	following	situations.

1.	 If	mCursor	is	null,	do	nothing,	but	display	a	log	message.	In	a	real	application,	you	would	need	to	also	notify	the	user	in

Introduction

503

a	meaningful	way.
2.	 If	mCursor	is	not	null	but	contains	no	word,	set	the	text	of	the	TextView	to	ERROR:	NO	WORD.	Again,	in	a	real

application,	you	would	handle	this	depending	on	the	type	of	app	you	have.
3.	 Otherwise,	get	the	column	index	for	the	"word"	column	(you	cannot	assume	the	column	is	in	a	fixed	location	in	the

cursor's	row),	and	using	the	index,	retrieve	the	word.	Set	the	text	of	the	text	view	to	the	word.

@Override

public	void	onBindViewHolder(WordViewHolder	holder,	int	position)	{

			String	word	=	"";

			if	(mCursor	!=	null)	{

							if	(mCursor.moveToPosition(position))	{

											int	indexWord	=	mCursor.getColumnIndex(Contract.WordList.KEY_WORD);

											word	=	mCursor.getString(indexWord);

											holder.wordItemView.setText(word);

							}	else	{

											holder.wordItemView.setText(R.string.error_no_word);

							}

			}	else	{

							Log.e	(TAG,	"onBindViewHolder:	Cursor	is	null.");

			}

}

3.4	Run	and	test	your	app

Your	WordListLoader	app	should	exactly	work	the	same	as	the	WordListClient	app	for	displaying	a	list	of	words.	To	test
your	app,	do	the	following.

1.	 Make	sure	WordListSQLWithContentProvder	is	installed	on	the	device,	so	that	your	app	has	a	content	provider	to	load
from.	Otherwise,	your	app	will	display	a	blank	text	view.

2.	 Run	WordListLoader.	You	should	see	the	same	list	of	words	as	in	WordListSQLWithContentProvider.

Solution	code
Android	Studio	project:	WordListLoader

Summary
In	this	chapter,	you	learned	how	to	use	a	loader	to	load	data	from	a	content	provider	that	is	not	part	of	your	app.

Related	concept
The	related	concept	documentation	is	in	Android	Developer	Fundamentals:	Concepts.

Loaders

Learn	more
Loaders
Running	a	query	with	a	CursorLoader
CursorLoader

Introduction

504

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListLoader
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%204/121_c_loaders.html
https://developer.android.com/guide/components/loaders.html
https://developer.android.com/training/load-data-background/setup-loader.html
https://developer.android.com/reference/android/content/CursorLoader.html

Introduction

505

Appendix:	Homework	Assignments
This	appendix	lists	possible	homework	assignments	that	students	can	complete	at	the	end	of	each	practical.	It	is	the
instructor's	responsibility	to:

assign	homework	if	required
communicate	to	students	how	to	submit	the	homework	assignments
grade	the	homework	assignments

Instructors	can	use	these	suggestions	as	little	or	as	much	as	they	want,	and	should	feel	free	to	assign	any	other	homework
they	feel	is	appropriate.

Appendix:	Homework

506

Homework	Assignments:	Lesson	1
Contents:

1.1:	Install	Android	Studio	and	Run	Hello	World
1.2	A,	B:	Make	Your	First	Interactive	UI	/	Using	Layouts
1.3:	Text	and	Scrolling	Views
1.4:	Resources

1.1:	Install	Android	Studio	and	Run	Hello	World

Build	and	run	an	app

1.	 Create	a	new	Android	project	from	the	Empty	Template.
2.	 Add	logging	statements	for	various	log	levels	in		onCreate()		in	the	main	activity.
3.	 Create	an	emulator	for	a	device,	targeting	any	version	of	Android	you	like,	and	run	the	app.
4.	 Use	filtering	in	logcat	to	find	the	your	log	statements	and	adjust	the	levels	to	only	display	debug	or	error	logging

statements.

Answer	these	questions

Question	1
What	is	the	name	of	the	layout	file	for	the	main	activity?

Question	2
What	is	the	name	of	the	string	resource	that	specifies	the	application's	name?

Question	3
Which	tool	do	you	use	to	create	a	new	emulator?

Android	Device	Monitor
AVD	Manager
SDK	Manager
Theme	Editor

Question	4

Which	devices	have	the	following	specifications?	You	can	see	the	different	device	specifications	while	creating	a	new
device	emulator.

What	is	device	1?

Size	=	4.7	inches
Resolution	=	768	x	1280

What	is	device	2?

Size	=	8.86	inches
Resolution	=	2048	x	1536

Question	5

Homework	Lesson	1

507

Assume	that	your	app	includes	this	logging	statement:

	Log.i("MainActivity",	"MainActivity	layout	is	complete");

You	see	the	statement	"MainActivity	layout	is	complete"	in	the	logcat	console	if	the	Log	level	menu	is	set	to	which	of	the
following?	(Hint:	multiple	answers	are	OK.)

Verbose
Debug
Info
Warn
Error
Assert	

Question	6

If	your	app	logs	the	message	"XX	Activity	layout	is	complete"	each	time	a	new	activity	is	displayed,	how	can	you	make	the
logcat	console	display	ONLY	statements	that	include	"layout	is	complete?"	

Submit	your	app	for	grading

No	app	to	submit	for	this	homework	assignment.

1.2	A,	B:	Make	Your	First	Interactive	UI	/	Using	Layouts

Build	and	run	an	app
Open	the	HelloConstraint	app	that	you	created	in	the	Using	Layouts	lesson.

1.	 Modify	the	activity_main.xml	layout	to	include	a	third	button	called	Zero	that	appears	between	the	"Toast"	and	"Count"
buttons.

2.	 Initially	the	Zero	button	has	a	gray	background.
3.	 Display	all	three	buttons	on	the	left	of	the	show_count	TextView.	Distribute	the	buttons	vertically	between	the	top	and

bottom	of	the	show_count	TextView.
4.	 Make	sure	that	you	include	the	Zero	button	for	the	landscape	orientation	in	activity_main.xml	(land),	and	also	for	a

tablet-sized	screen	in	activity_main	(xlarge).
5.	 Make	the	Zero	button	change	the	value	in	the	show_count	TextView	to	0.
6.	 Update	the	click	handler	for	the	Count	button	so	that	it	changes	its	own	background	color,	depending	on	whether	the

new	count	is	odd	or	even.
Hint:	Don't	use		findViewById		to	find	the	Count	button.	Is	there	something	else	you	can	use?
Feel	free	to	to	use	constants	on	the		Color		class	for	the	two	different	background	colors.

7.	 Also	update	the	click	handler	for	the	Count	button	to	set	the	background	color	for	the	Zero	button	to	something	other

Homework	Lesson	1

508

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloConstraint
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/12b_p_using_layouts.html
https://developer.android.com/reference/android/graphics/Color.html

than	gray	to	show	it	is	now	active.	Hint:	You	can	use		findViewById		in	this	case.
8.	 Update	the	click	handler	for	the	Zero	button	to	reset	the	color	to	gray	(so	that	it	is	gray	when	the	count	is	zero).	

Answer	these	questions

Question	1
What	are	the	layout	constraint	attributes	on	the	Zero	button	to	position	it	vertically	equal	distance	between	the	other	two
buttons?

Question	2
What	is	the	layout	constraint	attribute	on	the	Zero	button	to	position	it	horizontally	in	alignment	with	the	other	two	buttons?

Question	3
Which	of	the	following	operations	can	you	perform	to	include	the	Zero	button	in	the	xlarge	(tablet)	and	land	(landscape)
layouts	that	have	already	been	created?

Repeat	the	procedure	used	in	the	first	layout:	Open	the	second	layout,	click	the	Design	tab,	drag	the	button	from	the
Palette	pane,	set	its	constraints	in	the	design	pane,	and	set	its	ID,	width,	height,	color,	and	text	in	the	Properties	pane.
In	the	first	layout	click	the	Text	tab,	select	and	Copy	the	XML	code	for	the	Zero	button,	open	the	second	layout,	and
Paste	the	XML	code	for	the	button.
Either	operation	works.

Question	4

What	is	the	correct	signature	for	a	method	used	as	the	value	of	the		android:onClick		XML	attribute?

	public	void	callMethod()	

	public	void	callMethod(View	view)	

	private	void	callMethod(View	view)	

	public	boolean	callMethod(View	view)	

Homework	Lesson	1

509

Question	5

The	click	handler	for	the	Count	button	starts	with	the	following	method	signature:

public	void	countUp(View	view)

Which	of	the	following	techniques	is	more	efficient	to	use	within	this	handler	to	change	the	button's	background	color?
Choose	one:

Use		findViewById		to	find	the	Count	button	view.	Assign	the	result	to	a		View		variable,	and	then	use
setBackgroundColor().
Use	the		view		parameter	that	is	passed	to	the	click	handler	with	setBackgroundColor().

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

It	displays	the	Zero	button.
The	Zero	button	uses	layout	constraints	to	position	itself	between	the	Toast	and	Count	buttons.
It	includes	an	implementation	of	activity_main.xml,	activity_main.xml	(land),	and	activity_main.xml	(xlarge),	including	an
adjustment	to	the	toast	button	in	activity_main.xml	(land).
It	includes	an	implementation	of	the	click	handler	method	for	the	Zero	button	to	reset	the	count	to	0.	The	method	must
show	the	zero	count	in	the		show_count		view.	The	click	handler	must	also	reset	the	Zero	button's	own	background
color	to	gray.
The	click	handler	method	for	the	Count	button	has	been	updated	to	change	its	own	background	color	depending	on
whether	the	new	count	is	odd	or	even.	This	method	must	use	the		view		parameter	to	access	the	button.	This	method
must	also	change	the	background	of	the	Zero	button	to	a	color	other	than	gray.

1.3:	Text	and	Scrolling	Views

Build	and	run	an	app

Open	the	ScrollingText2	app	that	you	created	in	the	Working	with	TextView	Elements	lesson.

1.	 Change	the	subheading	so	that	it	wraps	within	a	column	on	the	left	that	is	100dp	wide,	as	shown	below.
2.	 Place	the	text	of	the	article	to	the	right	of	the	subheading	as	shown	below.

Homework	Lesson	1

510

https://developer.android.com/reference/android/view/View.html#setBackgroundColor(int)
https://developer.android.com/reference/android/view/View.html#setBackgroundColor(int)
https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText2
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/13_p_working_with_textview_elements.html

Homework	Lesson	1

511

Answer	these	questions

Question	1
How	many	Views	can	a	ScrollView	contain?	Choose	one:

One	View	only
One	View	or	one	ViewGroup
As	many	as	you	need

Question	2

Which	XML	attribute	do	you	use	in	a	LinearLayout	to	show	views	side-by-side?	Choose	one:

	android:orientation="horizontal"	

	android:orientation="vertical"	

	android:layout_width="wrap_content"	

Question	3

Which	XML	attribute	do	you	use	to	define	the	width	of	the	LinearLayout	inside	the	scrolling	view?	Choose	one:

	android:layout_width="wrap_content"	

	android:layout_width="match_parent"	

	android:layout_width="200dp"	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	layout	shows	the	subheading	in	the	left	column	and	the	article	text	in	the	right	column,	as	shown	in	the	above
figure.
The	ScrollView	includes	a	LinearLayout	with	two	TextViews.
The	LinearLayout	orientation	is	set	to	horizontal.

1.4:	Resources

Load	and	run	an	existing	app,	explore	resources

1.	 Load	one	of	the	sample	apps	into	Android	Studio.
2.	 Open	one	of	the	Java	activity	files	in	the	app.	Look	for	a	class,	type,	or	procedure	that	you're	not	familiar	with	and	look

it	up	in	the	Android	Developer	documentation.
3.	 Go	to	Stackoverflow	and	search	for	questions	and	answers	to	the	same	topic.
4.	 Find	the	Google	Developers	channel	on	YouTube.	Find	a	playlist	or	video	about	Android	Studio	and	watch	one	of	the

videos.

Answer	these	questions

Question	1

Homework	Lesson	1

512

In	Android	Studio,	what	is	menu	command	to	open	the	list	of	sample	apps?

Question	2

What	did	you	look	up,	and	what	are	the	URLs	to	the	documentation	you	found?

Question	3

What	are	2	differences	between	the	kind	of	information	you	find	in	the	Android	Developer	documentation	and	on
Stackoverflow?	When	would	you	use	the	Android	Developer	documentation?	When	would	you	use	Stackoverflow?

Question	4

What	is	the	URL	to	the	Android	Studio	Playlist	or	video	that	you	watched?	What	did	you	learn?

Submit	your	app	for	grading

Guidance	for	graders
No	app	to	submit	for	this	homework	assignment.

Homework	Lesson	1

513

Homework	Assignments:	Lesson	2
Contents:

2.1:	Create	and	Start	Activities
2.2:	The	Activity	Lifecycle	and	Managing	State
2.3:	Start	Activities	with	Implicit	Intents

2.1:	Create	and	Start	Activities

Build	and	run	an	app

Open	the	HelloToast	app	that	you	created	in	the	Make	Your	First	Interactive	UI	lesson.

1.	 Modify	the	toast	button	so	that	it	launches	a	new	activity	to	display	the	word	"Hello!"	and	the	current	count,	as	shown
below.

2.	 Change	the	text	on	the	toast	button.	

Answer	these	questions

Question	1

Homework	Lesson	2

514

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloToast
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/12_p_make_your_first_interactive_ui.html

What	menu	command	do	you	use	to	add	a	new	activity	to	your	app?

Question	2

What	files	are	added	when	you	add	a	new	activity	called	HelloActivity	to	your	app?	What	changes	are	made	to	existing
files?

Question	3

Which	constructor	method	do	you	use	to	create	a	new	explicit	intent?

	new	Intent()	

	new	Intent(Context	context,	Class<?>	class)	

	new	Intent(String	action,	Uri	uri)	

	new	Intent(String	action)	

Question	4

How	do	you	add	the	current	value	of	the	count	to	the	intent?

As	the	intent	data
As	an	intent	action
As	an	intent	extra

Question	5
How	do	you	update	the	count	in	HelloActivity	to	display	the	current	count?

Get	the	intent	the	activity	was	launched	with.
Get	the	current	count	value	out	of	the	intent.
Update	the	text	view	for	the	count.
All	of	the	above.

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

It	displays	the	Hello	button	instead	of	the	Hello	Toast	button.
The	HelloActivity	starts	when	the	Hello	button	is	pressed,	and	the	new	activity	displays	the	message	"Hello!"	and	the
current	count	from	the	main	activity.
The	HelloActivity.java	and	activity_hello.xml	files	have	been	added	to	the	project.
The	activity_hello.xml	file	contains	two	text	view	objects,	one	with	the	string	Hello!	and	the	second	with	the	count.
It	includes	an	implementation	of	a	click	handler	method	for	the	Hello	button	(in	MainActivity).
It	includes	an	implementation	of	the		onCreate()		method	for	the	HelloActivity	and	updates	the	count	TextView	with	the
count	from	MainActivity.

2.2:	The	Activity	Lifecycle	and	Managing	State

Build	and	run	an	app
1.	 Create	an	app	with	a	layout	that	holds	a	counter,	a	button	to	increment	the	counter,	and	an	edit	text.	See	the

screenshot	below	as	a	sample.	You	don't	have	to	precisely	duplicate	the	layout.

Homework	Lesson	2

515

2.	 Add	a	click	handler	for	the	button	that	increments	the	counter.
3.	 Run	the	app	and	increment	the	counter.	Enter	some	text	into	the	edit	text.
4.	 Rotate	the	device.	Note	that	the	counter	is	reset,	but	the	contents	of	the	edit	text	is	not.
5.	 Implement		onSaveInstanceState()		to	save	the	current	state	of	the	app.
6.	 Update		onCreate()		to	restore	the	state	of	the	app.
7.	 Rotate	the	device	and	ensure	that	the	app	state	is	preserved.

Homework	Lesson	2

516

Homework	Lesson	2

517

Answer	these	questions

Question	1
When	you	rotate	the	device	(before	you	implement		onSaveInstanceState()),	the	counter	is	reset	to	0	but	the	contents	of	the
edit	text	is	preserved.	Why?

Question	2
What	Activity	lifecycle	methods	are	called	when	a	device-configuration	change	(such	as	rotation)	occurs?

Question	3
When	in	the	Activity	lifecycle	is		onSaveInstanceState()		called?

Question	4
Which	is	the	correct	method	signature	for		onSaveInstanceState()	:

	void	onSaveInstanceState(Bundle	outState)	

	void	onSaveInstanceState()	

	void	onSaveInstanceState(Bundle	outState,	PersistableBundle	outPersistentState)	

Question	5

What	is	the	difference	between	restoring	your	activity	state	in		onCreate()		versus	in		onRestoreInstanceState()	?

Question	6

If	you	quit	and	restart	your	app,	what	happens	to	the	Activity	state?

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

It	displays	a	counter,	a	button	to	increment	that	counter,	and	an	edit	text.
Clicking	the	button	increments	the	counter	by	1.
When	the	device	is	rotated,	both	the	counter	and	edit	text	state	are	retained.
The	implementation	of	MainActivity.java	uses	the		onSaveInstanceState()		method	to	store	the	counter	value.
The	implementation	of		onCreate()		tests	for	the	existence	of	the		outState		bundle.	If	that	bundle	exists,	the	counter
value	is	restored	and	saved	to	the	text	view.

2.3:	Start	Activities	with	Implicit	Intents

Build	and	run	an	app
Open	the	ImplicitIntents	app	that	you	created	in	the	Start	Activities	with	Implicit	Intents	lesson.

1.	 Add	another	button	at	the	bottom	of	the	screen.
2.	 When	the	button	is	clicked,	launch	a	camera	app	to	take	a	picture.	(You	don't	need	to	return	the	picture	to	the	original

Homework	Lesson	2

518

https://github.com/google-developer-training/android-fundamentals/tree/master/ImplicitIntents
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/23_p_activities_and_implicit_intents.html

app.)
Note:	If	you	use	the	Android	emulator	to	test	the	camera,	open	the	emulator	configuration	in	the	Android	AVD
manager,	choose	Advanced	Settings,	and	then	choose	"Emulated"	for	both	front	and	back	cameras.	Restart	your
emulator	if	necessary.

Homework	Lesson	2

519

Homework	Lesson	2

520

Answer	these	questions

Question	1
Which	constructor	method	do	you	use	to	create	an	implicit	intent	to	launch	a	camera	app?

	new	Intent()	

	new	Intent(Context	context,	Class<?>	class)	

	new	Intent(String	action,	Uri	uri)	

	new	Intent(String	action)	

Question	2

Which	intent	action	do	you	use	to	request	a	camera	app?

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

It	displays	a	"Take	a	Picture"	button	at	the	bottom	of	the	app.
When	clicked,	the	button	launches	a	camera	app	on	the	device.
The	on	click	method	for	the	Take	a	Picture	button	ensures	there	is	an	available	app	on	the	device	(with	the
resolveActivity()	and	getPackageManager()	methods)	before	sending	the	intent.

Homework	Lesson	2

521

Homework	Assignments:	Lesson	3	&	4
Contents:

3.1:	Debugging
3.2:	Testing
3.3:	Support	Libraries	and	Backwards	Compatibility
4.1:	User	Input	Controls
4.2:	Menus
4.3:	Screen	Navigation
4.4:	RecyclerView

3.1:	Debugging

Build	and	run	an	app

Open	the	SimpleCalc	app	from	the	Using	the	Debugger	lesson.

1.	 In	MainActivity,	place	a	breakpoint	on	the	first	line	of	the		onAdd()		method.
2.	 Run	the	app	in	the	debugger.	Perform	an	add	operation	in	the	app.	The	execution	stops	at	the	breakpoint.
3.	 Use	the	Step	Into	button	to	follow	the	execution	of	the	app	step	by	step.	Note	that	Step	Into	opens	and	executes	files

from	the	Android	framework,	enabling	you	to	see	how	Android	itself	operates	on	your	code.
4.	 Examine	how	the	debugger	windows	change	as	you	step	through	the	code	for	the	current	stack	frame	and	local

variables.
5.	 Examine	how	the	code	itself	in	the	editor	windows	is	annotated	as	each	line	is	executed.
6.	 Use	the	Step	Out	button	to	return	back	to	your	app	if	the	execution	stack	gets	too	deep	to	understand.

Answer	these	questions

Question	1

What	is	the	difference	between	Step	Over	and	Step	Into?

Question	2

How	does	each	part	of	the	debugger	view	change	when	you	step	into	a	new	method?

Submit	your	app	for	grading

Guidance	for	graders
No	app	to	submit	for	this	homework	assignment.

3.2:	Testing

Build	and	run	an	app

Open	the	SimpleCalcTest	app	that	you	created	in	the	Testing	Apps	with	Unit	Tests	lesson.	You're	going	to	add	an	POW
button	to	the	layout.	This	button	calculates	the	first	operand	raised	to	the	power	of	the	second	operand.	For	example,	given
operands	of	5	and	4,	the	app	calculates	5	raised	to	the	power	of	4,	or	625.

Homework	Lessons	3,	4

522

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalc
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/31_p_using_the_debugger.html
https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleCalcTest
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/32_p_testing_your_app.html

BEFORE	you	write	the	implementation	of	your	power	button,	consider	the	kind	of	tests	you	might	want	to	perform	with	this
calculation.	What	unusual	values	may	occur	in	this	calculation?

1.	 Update	the	Calculator	class	in	the	app	to	include	a		pow()		method.	(Hint:	Consult	the	documentation	for	the
java.lang.Math	class.)

2.	 Update	the	MainActivity	class	to	connect	the	POW	button	to	the	calculation.
3.	 Write	each	of	the	following	tests	for	your		pow()		method.	Run	your	test	suite	each	time	you	write	a	test,	and	fix	the

original	calculation	in	your	app	if	necessary.
A	test	with	positive	integer	operands.
A	test	with	a	negative	integer	as	the	first	operand.
A	test	with	a	negative	integer	as	the	second	operand.
A	test	with	0	as	the	first	operand	and	a	positive	integer	as	the	second	operand.
A	test	with	0	as	the	second	operand.
A	test	with	0	as	the	first	operand	and	-1	as	the	second	operand.	(Hint:	consult	the	documentation	for
	Double.POSITIVE_INFINITY	.)
A	test	with	-0	as	the	first	operand	and	any	negative	number	as	the	second	operand.

Answer	these	questions

No	questions.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

It	displays	a	POW	button	that	provides	an	exponential	("power	of")	calculation.
The	implementation	of	MainActivity	includes	an	on	click	method	for	the	POW	button.
The	implementation	of	Calculator	includes	a		pow()		method	that	performs	the	calculation.
The		CalculatorTest		method	includes	separate	test	methods	for	the		pow()		method	in	the	Calculator	class	that
perform	tests	for	negative	and	0	operands,	and	for	the	case	of	0	and	-1	as	the	operands.

3.3:	Support	Libraries	and	Backwards	Compatibility

Run	an	app
Open	the	HelloCompat	app	created	in	the	Using	the	Android	Support	Libraries	lesson.

1.	 Set	a	debugger	breakpoint	on	the	line	in	the		changeColor()		method	that	actually	changes	the	color:

int	colorRes	=	ContextCompat.getColor(this,	colorResourceName);

2.	 Run	the	app	in	debug	mode	on	a	device	or	emulator	that's	running	an	API	version	23	or	higher.	Step	into	the
	getColor()		method,	following	the	method	calls	deeper	into	the	stack.	Examine	how	the	ContextCompat	class
determines	how	to	get	the	color	from	the	resources,	and	which	other	framework	classes	it	uses.

Note:	Some	classes	may	produce	a	warning	that	the	"source	code	does	not	match	the	bytecode."	Click	Step	Out	to
return	to	a	known	source	file,	or	keep	clicking	Step	Into	until	the	debugger	returns	on	its	own.

3.	 Repeat	the	previous	step	for	a	device	or	emulator	running	an	API	version	lower	than	23.	Note	the	different	paths	that
the	framework	takes	to	accomplish	getting	the	color.

Answer	these	questions

Homework	Lessons	3,	4

523

https://github.com/google-developer-training/android-fundamentals/tree/master/HelloCompat
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/33_p_using_support_libraries.html

Question	1

Based	on	your	exploration	in	the	debugger,	how	does	the	Android	platform	decide	which	implementation	to	use	in	the
Compat	classes?

Question	2

Besides	the	differences	in	the	method	signatures,	what	is	the	difference	between	the	implementations?	Why	is	a
compatibility	class	required	at	all?

Submit	your	app	for	grading

Guidance	for	graders

No	app	to	submit	for	this	homework	assignment.

4.1:	User	Input	Controls

Build	and	run	an	app

1.	 Create	an	app	with	5	checkboxes	and	a	Show	Toast	button,	as	shown	below.
2.	 When	the	user	clicks	a	single	checkbox	and	then	Show	Toast,	display	a	toast	message	showing	the	checkbox

selected.
3.	 If	the	user	selects	more	than	one	checkbox	and	then	Show	Toast,	show	a	toast	that	includes	the	messages	for	all

selected	checkboxes,	as	shown	in	the	figure	below.

Homework	Lessons	3,	4

524

Homework	Lessons	3,	4

525

Answer	these	questions

Question	1
What's	the	most	important	difference	between	checkboxes	and	a	RadioGroup	of	radio	buttons?	Choose	one:

The	only	differences	is	how	they	appear:	checkboxes	show	a	checkmark	when	selected,	while	circular	"radio"	buttons
appear	filled	when	selected.
	CheckBox		elements	in	the	layout	can	use	the		android:onClick		attribute	to	call	a	handler	when	selected.
The	major	difference	is	that	checkboxes	enable	multiple	selections,	while	a	RadioGroup	allows	only	one	selection.

Question	2

Which	layout	group	is	the	preferred	way	to	align	a	set	of		CheckBox		elements	vertically?	Choose	one:

RelativeLayout
LinearLayout
ScrollView

Question	3

What	method	of	the	Checkable	interface	do	you	use	to	check	the	state	of	a	checkbox	(that	is,	whether	it	has	been	checked
or	not)?

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	layout	includes	five	CheckBox	views	vertically	aligned	on	the	screen,	and	a	Show	Toast	button.
The		onSubmit()		method	determines	which	checkbox	is	checked	by	using		findViewById()		with		isChecked()	.
The	strings	describing	toppings	are	concatenated	into	a	toast	message.

4.2:	Menus

Build	and	run	an	app

Open	the	ScrollingText	app	that	you	created	in	the	Working	with	TextView	Elements	lesson.

1.	 Add	a	floating	context	menu	to	show	three	menu	options:	Edit,	Share,	and	Delete,	as	shown	in	the	figure	below.	The
menu	appears	when	the	user	performs	a	long	click	on	the	TextView.

2.	 Add	log	messages	to	show	which	menu	item	was	clicked.

Homework	Lessons	3,	4

526

https://developer.android.com/reference/android/widget/Checkable.html
https://github.com/google-developer-training/android-fundamentals/tree/master/ScrollingText
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/13_p_working_with_textview_elements.html

Homework	Lessons	3,	4

527

Answer	these	questions

Question	1
What	is	the	name	and	location	of	the	file	in	which	you	create	context	menu	items?

Question	2
What	happens	when	a	long	tap	(also	known	as	a	long	click)	occurs?	Choose	one:

When	a	view	receives	a	long-click	event,	the	system	calls	the	onCreateContextMenu()	method,	which	you	can't
change.
When	a	registered	view	receives	a	long-click	event,	the	system	calls	the	onCreateContextMenu()	method,	which	you
can	override	in	your	activity	or	fragment.
When	a	registered	view	receives	a	long-click	event,	the	system	calls	the	onContextItemSelected()	method,	which	you
can	override	in	your	activity	or	fragment.

Question	3

Where	do	you	register	a	context	menu	for	a	view?	Choose	one:

Use		registerForContextMenu()		in	the		onCreate()		method.
Use		registerForContextMenu()		in	the		onCreateContextMenu()		method.
Use		getMenuInflater()		in	the		onCreateContextMenu()		method.

Question	4

Where	do	you	inflate	the	context	menu	using	MenuInflater?	Choose	one:

In	the		onCreate()		method.
In	the		onCreateContextMenu()		method.
In	the		onContextItemSelected()		method.

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

The		onCreateContextMenu()		method	is	implemented	in	the	MainActivity	class	and	uses	a	MenuInflater	to	inflate	the
context	menu.
The	menu_context.xml	file	contains	three	options:	Edit,	Share,	and	Delete.
The		onContextItemSelected()		method	is	implemented	and	uses		getItemId()		to	determine	which	menu	item	is
selected.

4.3:	Screen	Navigation

Build	and	run	an	app

Create	an	app	with	a	main	activity	and	at	least	three	other	activities.	All	activities	have	a	basic	Options	menu	and	use	the
v7	appcompat	support	library	Toolbar	as	the	app	bar,	as	shown	below.

1.	 In	the	main	activity,	build	a	grid	layout	with	images	of	your	own	choosing	(or	use	the	images	in

Homework	Lessons	3,	4

528

https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/app/Activity.html#onContextItemSelected(android.view.MenuItem)
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

4_1_P_starter_images.zip).	Resize	the	images	so	that	three	of	them	fit	horizontally	on	the	screen	in	the	grid	layout.
2.	 Enable	each	image	to	provide	navigation	to	another	activity.

When	the	user	taps	the	image,	it	starts	the	other	activity.
From	any	of	the	other	activities,	the	user	can	tap	the	Up	button	in	the	app	bar	(highlighted	in	the	figure	below)	to

return	to	the	main	activity.	

Answer	these	questions

Question	1
Which	template	provides	an	activity	with	an	options	menu,	the	Up	button,	and	the	v7	appcompat	support	library	Toolbar	as
the	app	bar?

Question	2
Why	would	you	use	a	GridLayout	compared	to	a	LinearLayout	or	a	RelativeLayout	to	provide	navigation	using	images?

Question	3
Where	do	you	put	the	GridLayout	of	images?	Choose	one:

In	activity_main.xml	for	the	MainActivity.
In	content_main.xml	for	the	MainActivity.
In	the	"main"	XML	layout	files	for	each	other	activity.
In	the	"content"	XML	layout	files	for	each	other	activity.

Question	4

Where	do	you	define	the	app's	activities	and	parent	activity	to	provide	Up	navigation?	Choose	one:

To	provide	the	Up	button	for	a	child	screen	activity,	declare	the	child	activity's	parent	in	the	activity_main.xml	file.
To	provide	the	Up	button	for	a	child	screen	activity,	declare	the	activity's	parent	in	the	AndroidManifest.xml	file.
To	provide	the	Up	button	for	a	child	screen	activity,	declare	the	child	activity's	parent	in	the	"main"	XML	layout	file	for
the	child	screen	activity.

Question	5

Which	technique	do	you	use	to	launch	another	activity	from	a	navigation	image?	Choose	one:

Use	the		android:onClick		attribute	with	the	ImageView	in	the	XML	layout	to	call	a	public	method	in	the	activity
associated	with	the	layout.
Use	the	following	code	in	a	public	method	(assuming	the	other	activity	is	called	OtherActivity):		Intent	intent	=	new
Intent(this,	OtherActivity.class);	startActivity(intent);	

Both	of	the	above.

Submit	your	app	for	grading

Guidance	for	graders

Homework	Lessons	3,	4

529

https://github.com/google-developer-training/android-fundamentals-starter-apps/blob/master/4_1_P_starter_images.zip
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/reference/android/widget/GridLayout.html

Check	that	the	app	has	the	following	features:

A	GridLayout	in	the	content_main.xml	file.
A	new		Intent		and		startActivity()		method	for	each	navigation	element	in	the	grid.
A	separate	activity	class	for	each	navigation	element	in	the	grid.

4.4:	RecyclerView

Build	and	run	an	app
1.	 Create	an	app	that	uses	a	RecyclerView	to	display	a	list	of	recipes.

Each	list	item	shows	the	name	of	the	recipe	with	a	short	description.	Use	separate	TextView	views	and	styling	for
the	recipe	name	and	description.

2.	 When	the	user	taps	a	recipe	(an	item	in	the	list),	start	an	activity	that	shows	the	full	recipe	text.
You	may	use	placeholder	text	for	the	full	recipes.
Optionally,	add	an	image	for	the	finished	dish	to	each	recipe.
Clicking	the	up	button	takes	the	user	back	to	the	list	of	recipes.

The	screenshot	below	shows	an	example	for	a	simple	implementation.	Your	app	can	look	very	different,	as	long	as	it	has
the	required	functionality.	

Answer	these	questions

Homework	Lessons	3,	4

530

Question	1

What	are	the	primary	components	you	need	to	display	the	recipes	list?	Check	all	that	apply.

	RecyclerView	

	RecyclerView.Adapter	

	RecyclerView.ViewHolder	

	AppCompatActivity	

Question	2
What	class	do	you	need	to	implement	in	order	to	listen	and	respond	to	user	clicks?

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

Implements	a	RecyclerView	that	shows	a	scrollable	list	of	recipe	titles	and	short	descriptions.
The	code	extends	or	implements	RecyclerView,	RecyclerView.Adapter,	RecyclerView.ViewHolder,	and
View.OnClickListener.
Clicking	on	a	list	item	starts	an	activity	that	shows	the	full	recipe.
The	manifest	file	defines	a	parent	relationship	so	that	clicking	the	Up	button	in	a	recipe	view	goes	back	to	the	list	of
recipes.
ViewHolder	contains	a	layout	with	two	TextViews;	for	example,	a	LinearLayout	with	two	TextViews.

Homework	Lessons	3,	4

531

Homework	Assignments:	Lesson	5	&	6
Contents:

5.1:	Drawables,	Themes,	Styles
5.2:	Material	Design
5.3:	Providing	Resources	for	Adaptive	Layouts
6.1:	Testing	the	User	Interface

5.1:	Drawables,	Themes,	Styles

Build	and	run	an	app

Create	an	app	that	displays	an	ImageView	and	plus	and	minus	buttons,	as	shown	below.	The	ImageView	contains	a	level
list	drawable	that	is	a	battery	level	indicator.	Pressing	the	plus	or	minus	button	changes	the	level	of	the	indicator.	Use	the
battery	icons	from	the	Vector	Asset	Studio	to	represent	7	different	values	for	the	battery	level.

The	app	has	the	following	properties:

The	plus	button	increments	the	level,	causing	the	battery	indicator	to	appear	more	full.
The	minus	button	decrements	the	level,	causing	the	indicator	to	empty	one	level.

Homework	Lessons	5,	6

532

https://developer.android.com/reference/android/graphics/drawable/LevelListDrawable.html

Homework	Lessons	5,	6

533

Answer	these	questions

Question	1
What	two	types	of	drawables	do	you	use	to	create	a	button	that	displays	text,	where	the	button	has	one	background	when	it
is	active	and	a	different	background	when	it	is	disabled,	and	both	backgrounds	are	stretched	when	the	size	of	the	button	is
larger	than	the	text	it	contains?

	LevelListDrawable	

	TransitionDrawable	

	StateListDrawable	

	NinePatchDrawable	

Question	2

Suppose	you	create	an	app	that	has	a	dark	background	and	light	text,	and	the	app	doesn't	need	an	ActionBar.	Which	base
style	does	your	application	style	inherit	from?

	Theme.AppCompat.Light	

	Theme.AppCompat.Dark.NoActionBar	

	Theme.AppCompat.NoActionBar	

	Theme.NoActionBar	

Submit	your	app	for	grading

Guidance	for	graders

The	buttons	increment	a	count	variable	which	is	used	to	set	the	level	on	the	ImageView	using	the		setImageLevel()	
method.
The	levels	in	the	LevelList	drawable	go	from	0	to	6.
The	buttons'		onClick		methods	check	to	see	if	the	count	variable	is	within	the	range	of	the	level	list	drawable	(0	-	6)
before	incrementing	or	decrementing	the	image	level,	so	that	you	can't	set	a	level	that	doesn't	exist.

5.2:	Material	Design

Build	and	run	an	app
Open	the	MaterialMe	app	that	you	created	in	the	LessonSupporting	Landscape,	Multiple	Screen	Sizes	and	Localization
lesson.

1.	 Create	a	shared	element	transition	between	the	MainActivity	and	the	DetailActivity,	with	the	banner	image	for	the	sport
as	the	shared	element.

2.	 Clicking	on	a	list	item	in	the	MaterialMe	app	triggers	the	transition.	The	banner	image	from	the	card	moves	to	the	top	of
the	screen	in	the	Detail	view.

Answer	these	questions

Question	1
Which	color	attribute	in	your	style	defines	the	color	of	the	status	bar?

	colorPrimary	

Homework	Lessons	5,	6

534

https://github.com/google-developer-training/android-fundamentals/tree/master/MaterialMe
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/53_p_support_landscape.html
https://developer.android.com/training/material/animations.html#Transitions

	colorPrimaryDark	

	colorAccent	

	colorAccentDark	

Question	2

Which	support	library	does	the	Floating	Action	Button	belong	to?

	v4	Support	Library	

	v7	Support	Library	

	Design	Support	Library	

	Custom	Button	Support	Library	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

Window-content	transitions	are	enabled	in	the	app	theme.
A	shared	element	transition	is	specified	in	the	app	style.
The	transition	is	defined	as	an	XML	resource.
A	common	name	is	assigned	to	the	shared	elements	in	both	layouts	with	the		android:transitionName		attribute.
The	code	uses	the	ActivityOptions.makeSceneTransitionAnimation()	method.

5.3:	Providing	Resources	for	Adaptive	Layouts

Build	and	run	an	app
Open	the	RecyclerView	app	that	you	created	in	the	Create	a	Recycler	View	lesson.	Modify	the	app	to	use	a
GridLayoutManager	with	the	following	column	counts:

1.	 For	a	phone:

i.	 1	column	in	portrait

ii.	 2	columns	in	landscape

2.	 For	a	tablet:

i.	 2	columns	in	portrait

ii.	 3	columns	in	landscape

Homework	Lessons	5,	6

535

https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/44_p_create_a_recycler_view.html#appintro

Homework	Lessons	5,	6

536

Answer	these	questions

Question	1
What	resource	qualifier	is	used	to	specify	resources	to	be	used	when	your	app	is	in	night	mode?

Submit	your	app	for	grading

Guidance	for	graders

Homework	Lessons	5,	6

537

Check	that	the	app	has	the	following	features:

For	phones	and	tablets	in	both	landscape	and	portrait	modes,	the	code	includes	resource-qualified	values	files	that
contain	the	integer	for	the	column	count.
The	app	uses	uses		getResources().getInteger()		to	retrieve	a	value	from	a	resource	file,	then	uses	the	value	as	the
column	count	for	grid	layout.

6.1:	Testing	the	User	Interface
Write	an	Espresso	test	for	the	DroidCafe	app	(created	in	Chapter	4.3P)	that	tests	the	images	in	the	main	activity	to	make
sure	that	they	take	the	user	to	the	second	activity.

Build	and	run	an	app

Open	the	DroidCafe	app	that	you	created	in	previous	lessons.

1.	 Create	an	Espresso	test	as	a	Java	class	in	the	com.example.android.droidcafe	(androidTest)	folder	(shown	in
Project:	Android	view	in	the	java	folder).

2.	 Create	a	test	for	each	image	in	the	MainActivity	that:

i.	 Clicks	the	image.

ii.	 Checks	to	see	if	the	Order	Activity	appears.

Answer	these	questions

Question	1

Which	steps	do	you	perform	to	test	an	interaction,	and	in	what	order?	Enter	a	number	for	each	step,	from	1	to	3,	to	specify
the	order:

Match	a	view:	Find	a	view	to	run	the	test.
Assert	and	verify	the	result:	Check	the	view's	state	to	see	if	it	reflects	the	expected	state	or	behavior	defined	by	the
assertion.
Perform	an	action:	Perform	a	click	or	other	action	that	triggers	an	event	with	the	view.

Question	2
Which	of	the	following	annotations	enables	an	instrumented	JUnit	4	test	class?	Choose	one:

	@RunWith	

	@Rule	

	@Test	

Question	3

Which	of	the	following	annotations	establishes	the	context	for	the	testing	code?	Choose	one:

	@RunWith	

	@Rule	

	@Test	

Question	4

Homework	Lessons	5,	6

538

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafe

In	this	assignment,	you	need	to	test	each	image	view	used	for	navigation	on	the	DroidCafe	app	main	screen	by	clicking	it.
Would	you	use		onView()		to	find	each	image	view,	or		onData()	,	and	why?	Choose	one:

I	would	use		onData()		because	the	view	I	want	to	find	is	an	image	view.
I	would	use		onView()		because	the	view	I	want	to	find	is	in	the	current	view	hierarchy	and	appears	on	the	screen.	The
	onData()		method	is	for	finding	a	child	view	in	an	AdapterView	by	first	loading	the	view's	adapter	and	then	enabling	the
child	view	to	appear	on	the	screen.
I	would	use	neither	because	the	view	is	already	in	the	current	view	hierarchy.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

Includes	a	test	class	in	the	com.example.android.droidcafe	(androidTest)	folder	with	the
	@RunWith(AndroidJUnit4.class)		annotation.
Includes	a	separate	test	(annotated	with		@Test)	for	each	image.
Uses	the		onView()	,		check()	,	and		perform()		methods.
Passes	all	tests.

Homework	Lessons	5,	6

539

Homework	Assignments:	Lesson	7	&	8
Contents:

7.1:	Create	an	AsyncTask
7.2:	Connect	to	the	Internet
7.3:	Broadcast	Receivers
8.1:	Notifications
8.2:	Alarm	Manager
8.3:	JobScheduler

7.1:	Create	an	AsyncTask

Build	and	run	an	app

Open	the	SimpleAsyncTask	app	that	you	created	in	the	Create	an	AsyncTask	lesson.	Add	a	ProgressBar	that	displays	the
percentage	of	sleep	time	completed.	The	progress	bar	fills	up	as	the	AsyncTask	thread	sleeps	from	a	value	of	0	to	100
(percent).

Hint:	Break	up	the	sleep	time	into	chunks.

Homework	Lessons	7,	8

540

https://github.com/google-developer-training/android-fundamentals/tree/master/SimpleAsyncTask
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/71_p_create_an_asynctask.html
https://developer.android.com/reference/android/widget/ProgressBar.html

AsyncTask	reference:	developer.android.com/reference/android/os/AsyncTask.html	

Answer	these	questions

Question	1
For	a		ProgressBar	:

1.	 How	do	you	determine	the	range	of	values	that	a		ProgressBar		can	show?
2.	 How	do	you	change	how	much	of	the	progress	bar	is	filled	in?

Question	2

If	an	AsyncTask	is	defined	as	follows:

	private	class	DownloadFilesTask	extends	AsyncTask<URL,	Integer,	Long>

1.	 What	is	the	type	of	the	value	that	is	passed	to		doInBackground()		in	the	AsyncTask?
2.	 What	is	the	type	of	the	value	that	is	passed	to	the	callback	that	reports	the	progress	of	the	task?
3.	 What	is	the	type	of	the	value	that	is	passed	to	the	callback	that	is	executed	when	the	task	completes?

Question	3

Homework	Lessons	7,	8

541

https://developer.android.com/reference/android/os/AsyncTask.html

To	report	progress	of	the	work	executed	by	an	AsyncTask,	what	callback	method	do	you	implement,	and	what	method	do
you	call	in	your	AsyncTask	subclass?

Implement		publishProgress()	.	Call		publishProgress()	.
Implement		publishProgress()	.	Call		onProgressUpdate()	.
Implement		onProgressUpdate()	.	Call		publishProgress()	.
Implement		onProgressUpdate()	.	Call		onProgressUpdate()	.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	layout	includes	a	ProgressBar	that	sets	the	appropriate	attributes	to	determine	the	range	of	values.
The	AsyncTask	breaks	the	total	sleep	time	into	chunks	and	updates	the	progress	bar	after	each	chunk.
The	AsyncTask	calls	the	appropriate	method	and	implements	the	appropriate	callback	to	update	the	progress	bar.
The	AsyncTask	needs	to	know	which	views	to	update.	Depending	on	whether	the	AsyncTask	is	implemented	as	an
inner	class	or	not,	the	views	can	either	be	passed	to	the	constructor	of	the	AsyncTask	or	defined	as	member	variables
on	the	Activity.

7.2:	Connect	to	the	Internet

Build	and	run	an	app
Create	an	app	that	retrieves	and	displays	the	contents	of	a	web	page	at	a	URL.	The	app	displays:

A	field	where	the	user	enters	a	URL
A	field	such	as	a	menu	or	spinner	that	allows	the	user	to	choose	the	protocol	(HTTP	or	HTTPS)
A	button	that	executes	the	task	when	clicked
A	scrolling	display	of	the	source	code	of	the	web	page	at	the	URL

Use	an	AsyncTaskLoader	to	retrieve	the	source	code	of	the	web	page	at	the	URL.	You	need	to	implement	a	subclass	of
AsyncTaskLoader.

If	connection	to	the	Internet	is	not	available	when	the	user	clicks	the	button,	the	app	must	show	the	user	an	appropriate
response.	For	example,	it	might	display	a	message	such	as	"Check	your	Internet	connection	and	try	again."

The	display	must	contain	a	TextView	in	a	ScrollView	that	displays	the	source	code,	but	the	exact	appearance	of	the
interface	is	up	to	you.	Your	screen	can	look	different	from	the	screenshots	below.	You	can	use	a	pop-up	menu,	spinner,	or
checkboxes	to	allow	the	user	to	select	HTTP	or	HTTPS.

Homework	Lessons	7,	8

542

The	image	on	the	left	shows	the	starting	screen,	with	a	pop-up	menu	for	the	protocol.	The	image	on	the	right	shows	an
example	of	the	results	of	retrieving	the	page	source	for	given	URL.	

Answer	these	questions

Question	1
What	permissions	does	your	app	need	to	connect	to	the	Internet?

	android.permission.CONNECTIVITY	

	android.permission.INTERNET	

It	doesn't	need	any	special	permissions;	all	apps	are	allowed	to	connect	to	the	Internet.

Question	2

How	does	your	app	check	that	Internet	connectivity	is	available?

In	the	manifest:

request		ACCESS_NETWORK_STATE		permission
request		ALL_NETWORK_STATE		permission
request		NETWORK_CONNECT		permission

In	the	code:

Wrap	the	code	to	connect	to	the	Internet	in	a	try/catch	block,	and	catch		NO_NETWORK		errors.

Homework	Lessons	7,	8

543

Use	ConnectivityManager	to	check	for	an	active	network	before	connecting	to	the	network.
Present	a	dialog	to	the	user	reminding	them	to	make	sure	that	Internet	connectivity	is	available	before	attempting	to
connect	to	the	Internet.

Question	3

Where	do	you	implement	the	loader	callback	method	that's	triggered	when	the	loader	finishes	executing	its	task?

In	the	AsyncTaskLoader	subclass.	The	AsyncTaskLoader	must	implement	LoaderManager.LoaderCallbacks.
In	the	Activity	that	displays	the	results	of	the	task.	The	Activity	must	implement	LoaderManager.LoaderCallbacks.
In	a	Utility	class	that	extends	Object	and	implements	LoaderManager.LoaderCallbacks.

Question	4

When	the	user	rotates	the	device,	how	do	AsyncTask	and	AsyncTaskLoader	behave	differently	if	they	are	in	the	process	of
running	a	task	in	the	background?

Option	1
A	running	AsyncTask	becomes	disconnected	from	the	Activity	even	though	it	keeps	executing.
A	running	AsyncTaskLoader	becomes	disconnected	from	the	Activity	but	stops	running,	preserving	system
resources.

Option	2
A	running	AsyncTask	becomes	disconnected	from	the	Activity	but	stops	running,	preserving	system	resources.
A	running	AsyncTaskLoader	automatically	restarts	execution	of	its	task	from	the	beginning.	The	Activity	displays
the	results.

Option	3
A	running	AsyncTask	becomes	disconnected	from	the	Activity	even	though	it	keeps	executing.
A	running	AsyncTaskLoader	automatically	reconnects	to	the	Activity	after	the	device	rotation.	The	Activity	displays
the	results.

Question	5
How	do	you	initialize	an	AsyncTaskLoader	to	perform	the	steps,	such	as	initializing	variables,	that	must	be	done	before	the
loader	starts	performing	its	background	task?

In		onCreateLoader()		in	the	Activity,	create	an	instance	of	the	AsyncTaskLoader	subclass.	In	the	loader's	constructor
perform	initialization	tasks.
In		onCreateLoader()		in	the	Activity,	create	an	instance	of	the	AsyncTaskLoader	subclass.	In	the	loader's		init()	
method,	perform	initialization	tasks.
In	the	Activity,	implement		initLoader()		to	initialize	the	loader.
Perform	initialization	tasks	for	the	loader	at	the	start	of		loadInBackgroud()		in	the	Loader.

Question	6

What	methods	must	an	AsyncTaskLoader	implement?

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

The	manifest	includes	requests	for	the	appropriate	permissions.
Uses	a	subclass	of	AsyncTaskLoader.
Responds	appropriately	if	the	device	can't	connect	to	the	Internet.
Combines	the	protocol	and	the	web	page	to	create	a	valid	URL	that	the	app	uses	to	connect	to	the	Internet.

Homework	Lessons	7,	8

544

Implements	the	required	Loader	callback	methods.
Displays	the	results	of	retrieving	the	source	of	the	web	page	in	TextView	in	a	ScrollView.	(It's	OK	to	do	it	in	the	same
Activity,	or	to	start	a	new	Activity.)

7.3:	Broadcast	Receivers

Build	and	run	an	app

1.	 Create	an	app	called	BroadcastCounter	using	the	Empty	Activity	template.
2.	 Use	a	BroadcastReceiver	to	count	how	many	times	the		ACTION_POWER_CONNECTED		broadcast	was	received.	Hint:	Define

your	BroadcastReceiver	as	an	inner	class	and	register	it	dynamically.
3.	 Display	the	count	in	a	TextView	view.

Homework	Lessons	7,	8

545

Homework	Lessons	7,	8

546

Answer	these	questions

Question	1
What	are	the	differences	between	registering	a	broadcast	receiver	statically	or	dynamically?

Registering	a	broadcast	receiver	dynamically	ties	its	operation	to	the	lifecycle	of	your	activity.
If	you	register	your	receiver	to	receive	only	local	broadcasts,	you	must	register	it	dynamically;	static	registration	isn't	an
option.
Registering	a	broadcast	receiver	statically	creates	a	new	process	to	run	your	broadcast	receiver	if	no	processes
associated	with	your	application	are	running.
All	of	the	above.

Question	2

True	or	false?	If	a	broadcast	receiver	is	registered	statically,	it	responds	to	broadcast	events	even	if	your	app	is	not	running.

Question	3

Which	class	is	used	to	mitigate	the	security	risks	of	BroadcastReceivers	when	the	broadcasts	are	not	cross-application
(that	is,	they	are	sent	and	received	by	the	same	app)?

SecureBroadcast
LocalBroadcastManager
OrderedBroadcast
SecureBroadcastManager

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	broadcast	receiver	registers	and	unregisters	dynamically	in	one	of	the	following	lifecycle	method	pairs:
OnResume/OnPause,	OnCreate/OnDestroy,	or	OnStart/OnStop.
The	counter	is	displayed	and	is	incremented	when	the	phone	is	plugged	in.

8.1:	Notifications

Build	and	run	an	app

Open	the	NotifyMe	app	that	you	created	in	the	Notifications	lesson.	Change	the	updated	notification	in	the	app	to	use	the
InboxStyle	expanded	layout	instead	of	BigPictureStyle.	Use	fake	string	data	for	each	line	and	summary	text.

Homework	Lessons	7,	8

547

https://github.com/google-developer-training/android-fundamentals/tree/master/NotifyMe
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%203/81_p_notifications.html
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.InboxStyle.html

Homework	Lessons	7,	8

548

Note:	The	notification	might	look	a	little	different,	depending	on	the	API	level	of	the	device.

Answer	these	questions

Question	1

Suppose	you	create	an	application	that	downloads	a	work	of	art	every	day.	Once	the	artwork	is	available,	the	app	shows	a
notification	to	the	user,	and	the	user	can	either	download	or	skip	the	day's	work	of	art.	What	PendingIntent	method	would
you	use	to	start	a	service	to	download	the	image?

	Activity.startService()	

	PendingIntent.getBroadcast()	

	PendingIntent.getActivity()	

	PendingIntent.getService()	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

When	the	user	taps	the	update	button,	the	notification	becomes	an	InboxStyle	notification	with	several	rows	of	text
representing	line	items.
The	screen	has	a	summary	and	title	text	line,	which	changes	its	position	depending	on	the	API	level.	(See	Notifications
in	the	material	design	guidelines.)
Uses	the	NotificationCompat.InboxStyle	class	so	that	it's	backwards	compatible.

8.2:	Alarm	Manager

Build	and	run	an	app
Make	an	app	that	delivers	a	notification	when	the	time	is	11:11	(AM).	The	screen	displays	a	toggle	switch	that	turns	the
alarm	on	and	off.

Homework	Lessons	7,	8

549

https://material.io/guidelines/patterns/notifications.html

Homework	Lessons	7,	8

550

Note:	The	notification	might	look	a	little	different,	depending	on	the	API	level	of	the	device.

Answer	these	questions

Question	1

In	which	API	level	did	inexact	timing	become	the	default	for	AlarmManager?	(All		set()		methods	use	inexact	timing,	unless
explicitly	stated.)

API	level	16
API	level	18
API	level	19
API	level	17

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	alarm	uses	exact	timing.	This	means	that	the	code	includes	a	statement	checking	that	the	devices	API	level	is	>
19,	and	using	the	setExact()	method	if	it	is.
App	shows	a	notification	when	the	time	is	11:11	AM.

8.3:	JobScheduler

Build	and	run	an	app
Create	an	app	that	simulates	a	large	download	scheduled	with	battery	and	data	consumption	in	mind.	It	contains	a	button
that	says	"Download	Now"	and	has	the	following	features:

It	delivers	a	notification	in	place	of	performing	an	actual	download.
The	"download"	is	performed	once	a	day,	when	the	phone	is	idle	but	connected	to	power	and	to	WiFi,	or	when	the
button	is	pressed.
When	the	user	taps	the	Download	Now	button,	it	triggers	a	"downloading"	notification.
Hint	:Define	the	JobService	class	as	an	inner	class.	That	way,	the	Download	Now	button	and	the	JobService	can	call
the	same	method	to	deliver	the	notification.

Homework	Lessons	7,	8

551

Homework	Lessons	7,	8

552

Note:	The	notification	might	look	a	little	different,	depending	on	the	API	level	of	the	device.

Answer	these	questions

Question	1

What	class	do	you	use	if	you	want	features	like	the	ones	provided	by	JobScheduler,	but	you	want	the	features	to	work	for
devices	running	API	level	20	and	below?

JobSchedulerCompat
FirebaseJobDispatcher
AlarmManager

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	JobInfo	object	has	4	criteria	set:		setRequiresCharging()	,		setPeriodic()	,		setRequiresDeviceIdle()	,
	setRequiredNetworkType()	

The	app	crashes	if	the	JobService	class	does	not	have	an	empty	constructor.

Homework	Lessons	7,	8

553

Homework	Assignments:	Lesson	9	&	10	&	11
Contents:

9.1:	Shared	Preferences
9.2:	App	Setting
10.1:	SQLite	Database
11.1:	Content	Providers
11.2:	Loaders

9.1:	Shared	Preferences

Build	and	run	an	app

Open	the	ScoreKeeper	app	that	you	created	in	the	Drawables,	Styles,	and	Themes	lesson.

1.	 Replace	the	saved	instance	state	with	shared	preferences	for	each	of	the	scores.
2.	 Test	the	app:

Rotate	the	device	to	ensure	that	configuration	changes	read	the	saved	preferences	and	update	the	user	interface.
Stop	the	app	and	restart	it	to	ensure	that	the	preferences	are	saved.

3.	 Add	a	Reset	button	that	resets	the	score	values	to	0	and	clears	the	shared	preferences.

Answer	these	questions

Question	1

In	which	lifecycle	method	do	you	save	the	app	state	to	shared	preferences?

Question	2

In	which	lifecycle	method	do	you	restore	the	app	state?

Question	3

Can	you	think	of	a	case	where	it	makes	sense	to	have	both	shared	preferences	and	instance	state?

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

The	app	retains	the	scores	on	rotation.
The	app	retains	the	current	scores	after	being	stopped	and	restarted.
The	app	saves	the	current	scores	to	the	shared	preferences	in	the		onPause()		method.
The	app	restores	shared	preferences	in	the		onCreate()		method.
The	app	displays	a	Reset	button	that	resets	the	scores	to	0.
The	implementation	of	the	on	click	handler	method	for	the	reset	button:

Resets	both	score	variables	to	0.
Updates	both	text	views
Clears	the	shared	preferences.

Homework	Lessons	9,	10,	11

554

https://github.com/google-developer-training/android-fundamentals/tree/master/Scorekeeper
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%202/51_p_themes,_custom_styles,_drawables.html#summary

9.2:	App	Settings

Build	and	run	an	app

Open	the	DroidCafeWithSettings	app	that	you	created	in	the	Adding	Settings	to	an	App	lesson.

1.	 Add	a	ListPreference	(a	dialog	with	radio	buttons)	to	the	"General"	group	of	settings.	Put	it	in	the	"General	settings"
screen	layout,	below	the	"Add	friends	to	order	messages"	ListPreference.

2.	 Edit	the	string	arrays	used	for	the	ListPreference	to	include	the	ListPreference	title	"Choose	a	delivery	method."	Use
the	same	delivery	choices	that	are	used	in	the	radio	buttons	in	the	OrderActivity.

3.	 Make	the	user's	chosen	Delivery	setting	appear	in	the	same	toast	message	as	the	chosen	Market	and
Recommendations	settings.

4.	 Extra	credit:	Show	the	selected	delivery	method	as	the	setting	summary	text	that	appears	underneath	the
ListPreference	title.	Enable	this	text	to	change	with	each	update.	

Answer	these	questions

Question	1

In	which	file	do	you	define	the	array	of	entries	and	the	array	of	values	for	the	ListPreference?	Choose	one:

pref_general.xml
strings.xml
menu_main.xml
content_main.xml

Homework	Lessons	9,	10,	11

555

https://github.com/google-developer-training/android-fundamentals/tree/master/DroidCafeWithSettings
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/92_p_adding_settings_to_an_app.html

Question	2

In	which	file	do	you	use	the	array	of	entries	and	the	array	of	values	in	setting	up	the	ListPreference,	and	also	set	the
ListPreference	key	and	default	value?	Choose	one:

pref_general.xml
strings.xml
menu_main.xml
SettingsActivity.java

Question	3
How	do	you	set	the	default	values	for	settings	the	first	time	an	activity	runs?

Assign	the	default	value	using	the		android:defaultValue		attribute	for	each	setting	preference	in	the	preferences	XML
file.
Set	the	default	value	in	the		onCreate()		method	for	the	activity	using		PreferenceManager.setDefaultValues()	.
Both	of	the	above.

Question	4

For	an	app	that	supports	Android	3.0	and	newer	versions,	the	best	practice	for	settings	is	to	use	a	Settings	Activity	that
extends	Activity,	and	a	fragment	for	each	preference	XML	file	that	extends	PreferenceFragment.	But	how	do	you	remain
compatible	with	the	v7	appcompat	library	when	extending	an	Activity	with	AppCompatActivity?

Question	5

When	using	the	SharedPreferences	interface	for	accessing	and	modifying	preference	data	such	as	settings,	the	following
statement	reads	the	setting	preference	defined	by	the		delivery		key:

String	deliveryPref	=	sharedPref.getString("delivery",	"1");

True	or	false?	The	"1"	string	argument	is	the	value	to	return	if	the	setting	preference	does	not	exist.	It	is	usually	a	string
for	the	default	value	of	the	setting,	which	for	this	example	is	"1".

Submit	your	app	for	grading

Guidance	for	graders
Check	that	the	app	has	the	following	features:

The		onCreate()		method	reads	the		deliveryPref		setting	using		sharedPref.getString()	.
The	pref_general.xml	file	includes	a	ListPreference	that	uses	for	its	entries	an	array	of	delivery	choices.
Extra	credit:	The	statement		bindPreferenceSummaryToValue(findPreference("delivery"))		has	been	added	to	the
	onCreate()		method	of	the	GeneralPreferenceFragment	class	in	the	SettingsActivity	in	order	to	show	the	delivery
choice	in	the	preference	summary.

10.1:	SQLite	Database
README:	In	the	next	group	of	homework	assignments	(10.1,	11.1,	11.2),	you	build	2	apps.	They	relate	to	each	other	in	the
same	way	as	the	apps	you	built	in	the	corresponding	practicals,	as	follows:

1.	 The	first	app,	in	10.1,	is	a	TODO	list	that	uses	a	SQLite	database	to	store	items.	The	app	also	includes	a	way	to	add,
display,	and	edit	items.	

Homework	Lessons	9,	10,	11

556

https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html
https://developer.android.com/reference/android/content/SharedPreferences.html

2.	 In	11.1,	you	extend	the	TODO	list	app	to	use	a	content	provider	to	serve	data	from	the	SQLite	database	to	the	user
interface.	

3.	 In	11.2,	you	build	an	app	called	ShowToDoItems	that	accesses	the	TODO	list's	content	provider	and	loads	to-do	items
using	a	loader.	

Build	and	run	an	app	that	uses	a	SQLite	database

Create	an	app	called	TODO	with	a	SQLite	database	where	the	user	can	create	and	edit	to-do	list	items	that	are	stored	in
the	database.

1.	 Extend	the	SQLiteOpenHelper	class	with		query()	,		insert()	,	and		update()		methods	implemented.
2.	 Include	the	app	features	described	below.

Features:

The	user	can	add	new	items	to	the	list.
Each	item	in	the	database	includes	a	task	to	do,	creation	and	completion	dates,	and	whether	or	not	the	task	has	been
completed.
When	the	app	starts,	the	screen	shows	a	list	of	incomplete	to-do	items	sorted	by	creation	date.
The	UI	includes	an	Options	menu	item	to	start	an	activity	that	shows	the	completed	tasks.
The	user	can	change	an	item's	completion	status.	When	the	user	marks	a	task	as	completed,	it	is	marked	complete
and	the	creation	date	is	replaced	with	the	completion	date.
When	the	user	taps	an	incomplete	item,	edit	mode	is	triggered,	and	the	user	can	edit	the	item.
When	the	app	is	restarted,	the	latest	state	of	items	is	visible,	which	demonstrates	that	the	data	was	saved	and
reloaded.

Tips:

One	way	to	implement	the	UI	is	to	use	a	RecyclerView	that	starts	an	edit	activity	when	an	item	is	clicked.
You	will	not	be	graded	on	the	way	in	which	you	implement	the	UI,	or	how	the	UI	looks,	as	long	as	the	UI	demonstrates
the	functionality.
Apps	that	use	RecyclerView	and	the	SQLite	database	follow	a	pattern.	Examine	and	reuse	code	that	you	wrote	for	the
SQLite	Database	lesson	and	the	Searching	a	SQLite	Database	lesson.
Make	sure	you	cleanly	separate	data	from	the	user	interface.	You	will	extend	this	to-do	app	to	complete	future
homework	assignments	about	content	providers	and	loaders.

Homework	Lessons	9,	10,	11

557

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/102a_p_sqlite_data_storage.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/102b_p_searching_an_sqlite_database.html

Answer	these	questions

Question	1
How	much	code	were	you	able	to	reuse	from	other	apps?	How	much	time	do	you	think	that	saved	you?	How	much	did
using	another	app	as	an	example	help	you	structure	your	app?	There	are	no	right	or	wrong	answers.

Question	2
What	are	some	of	the	benefits	of	using	a	SQLiteOpenHelper	class?	Check	all	that	apply.

Provides	utilities	to	simplify	the	tasks	of	creating	and	initializing	the	database.
Provides	the		onUpgrade()		method.	Most	importantly,	if	the	upgrade	fails,	it	does	the	rollback	for	you.
Using	a	recommended	pattern	makes	it	easier	to	understand,	maintain,	and	extend	the	app.

Question	3

Which	of	the	following	are	benefits	of	using	a	SQLite	database	to	store	your	data?	Check	all	that	apply.

Uses	SQL	queries	to	retrieve	data,	allowing	you	to	match	given	constraints	and	conditions.
Data	is	stored	persistently	and	securely,	and	can	be	retrieved	efficiently.
Other	apps	can	use	your	data.

Homework	Lessons	9,	10,	11

558

Submit	your	app	for	grading

Guidance	for	graders

There	are	no	right	or	wrong	answers	to	Question	1.	It's	important	that	students	reflect	and	realize	the	benefits	of	building	on
their	own	and	others'	work.

The	UI	that	the	student	chooses	isn't	a	factor	for	grading,	as	long	as	the	app	demonstrates	database	functionality.	Students
have	a	lot	of	freedom	in	how	to	implement	this	functionality.

Check	that	the	app	has	the	following	features:

Includes	a	SQLiteOpenHelper	class	with		query()	,		insert()	,	and		update()		methods	implemented	to	support	the
required	functionality.
When	the	apps	starts,	the	screen	shows	a	list	of	to-do	items	sorted	by	creation	date.
When	the	user	interacts	with	an	item,	edit	mode	is	triggered,	and	the	user	can	edit	the	item.
The	user	can	change	an	item's	completion	status.
Includes	an	Options	menu	item	that	lets	the	user	see	completed	items.
When	an	item	is	changed,	the	UI	reflects	the	change.
When	the	app	is	restarted,	the	latest	state	of	the	items	is	visible,	which	demonstrates	that	the	data	was	saved	and
reloaded.

11.1:	Content	Providers
Extend	the	TODO	list	app	from	homework	10.1	to	use	a	content	provider.

1.	 Add	a	Contract	class	for	the	common	and	public	constants,	URIs,	and	the	database	schema.
2.	 Add	a	ContentProvider	class	that	handles	URIs	and	implements		query()	,		insert()	,	and		update()		methods.
3.	 Add	the	content	provider	to	the	AndroidManifest.xml	file.

Features:

From	the	user's	perspective,	the	app	should	have	exactly	the	same	functionality	as	the	TODO	app	that	you	built	for	the
10.1	homework	assignment.
All	queries	go	through	the	content	provider,	and	from	there	to	the	SQLite	database.

Tips:

If	you	need	help,	see	the	word_list_sql_with_content_provider	app	from	the	Sharing	Content	with	Other	Apps	lesson.

Answer	these	questions

Question	1
What	are	the	primary	purposes	of	a	content	provider?

Separate	data	from	the	user	interface.
Make	data	available	to	other	apps.
Separate	the	back	end	from	the	user	interface.

Question	2

What	are	some	of	the	benefits	of	using	a	Contract	class?

Contract	can	be	public	so	other	apps	can	find	out	how	to	access	a	content	provider.
You	only	need	to	define	common	constants	once.

Homework	Lessons	9,	10,	11

559

https://github.com/google-developer-training/android-fundamentals/tree/master/word_list_sql_with_content_provider
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%204/111c_p_sharing_content_with_other_apps.html

It	defines	parts	of	an	app	that	cannot	be	changed.
For	larger	and	more	complex	apps,	it	collects	constants	into	one	place	for	easier	maintenance.

Question	3

Why	does	the	content	provider	need	to	be	declared	in	the	Android	Manifest?

To	tell	the	Android	Framework	what	the	unique	ID	of	the	content	provider	is.
To	make	sure	there	is	only	one	content	provider	for	each	app.
To	tell	the	Android	Framework	the	properties,	such	as	permissions	for	this	content	provider.

Submit	your	app	for	grading

Guidance	for	graders

The	UI	that	the	student	chooses	is	not	a	factor	for	grading,	as	long	as	it	demonstrates	app	functionality.

Check	that	the	app	implements	the	following:

Uses	the	Contract	class	for	the	URIs	and	other	constants.
Includes	a	ContentProvider	class	that	handles	URIs	and	implements		query()	,		insert()	,	and		update()		methods	that
interact	with	the	database.
App	is	architected	so	that	activities	use	the	content	provider's	query(),	insert(),	and	update()	methods	to	interact	with
the	database.
When	the	app	is	restarted,	the	latest	state	of	the	items	is	visible,	which	demonstrates	that	the	data	was	saved	and
reloaded.

11.2:	Loaders
Build	and	run	an	app	called	ShowToDoItems	that	uses	a	loader	to	fetch	and	display	data	from	the	content	provider	that	you
used	in	the	TODO	app	from	homework	11.1.

1.	 Create	a	basic	UI	to	display	incomplete	TODO	list	items.
2.	 Implement	a	Contract	class	for	constants	for	the	TODO	app's	content	provider.
3.	 Implement		LoaderManager.LoaderCallbacks<>		to	load	data	from	the	content	provider.
4.	 Add	a	loader	manager	to	manage	your	loader.

Features:

When	the	apps	starts,	the	screen	shows	a	list	of	to-do	items	fetched	from	the	running	content	provider	of	the	TODO
app.
When	the	data	in	the	TODO	app's	database	changes,	it	also	updates	in	the	ShowToDoItems	app.

Tips:

Re-use	UI	elements	from	previous	apps.
Don't	forget	to	add	permissions	to	the	manifest	file.
If	you	need	help,	see	the	WordListClient	and	WordListLoader	apps	on	GitHub.

Answer	these	questions

Question	1

Which	of	the	following	are	benefits	of	using	loaders?

Loaders	are	fast.

Homework	Lessons	9,	10,	11

560

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListClient
https://github.com/google-developer-training/android-fundamentals/tree/master/WordListLoader

Loaders	run	on	separate	threads	to	prevent	janky	or	unresponsive	UI.
Loaders	simplify	thread	management	by	providing	callback	methods	when	events	occur.
Loaders	persist	and	cache	results	across	configuration	changes	to	prevent	duplicate	queries.
Loaders	can	implement	an	observer	to	monitor	for	changes	in	the	underlying	data	source.

Question	2

In	building	the	ShowToDoItems	app,	why	don't	you	have	to	implement	a	content	observer?

The	loader	manager	handles	data	observation	for	you.
CursorLoader	automatically	registers	a	ContentObserver	to	trigger	a	reload	when	data	changes.
The	TODO	list	app	sends	new	data	to	the	ShowToDoItems	app	if	the	items	in	the	database	change.

Submit	your	app	for	grading

Guidance	for	graders

The	UI	that	the	student	chooses	is	not	a	factor	for	grading,	as	long	as	it	demonstrates	app	functionality.

Check	that	the	app	has	the	following	features:

Uses	the	Contract	class.
Implements		LoaderManager.LoaderCallbacks<>		and	uses	a	loader	manager.
When	the	apps	starts,	the	screen	shows	a	list	of	to-do	items	fetched	from	the	running	content	provider	of	the	TODO
app.
When	the	data	in	the	TODO	app's	database	changes,	it	also	updates	in	the	ShowToDoItems	app.

Homework	Lessons	9,	10,	11

561

Appendix:	Utilities

Table	of	Contents:
Copy	and	rename	a	project
Delete	a	project
Extract	Resources
Add	support	libraries
Create	images	in	Asset	Studio
Compare	custom	objects
Save	state	of	custom	objects

This	appendix	is	a	collection	of	tasks	you	may	need	to	do	during	development	of	the	apps	in	the	practicals.	They	are	not
specific	to	one	practical.

Copy	and	rename	a	project
For	some	lessons,	you	will	need	to	make	a	copy	of	a	project	before	making	new	changes.	You	may	also	want	to	copy	a
project	to	use	some	of	its	code	in	a	new	project.	In	either	case	you	can	copy	the	existing	project	(ExistingProject),	and
then	rename	and	refactor	the	new	project's	(NewProject)	components	to	use	the	new	project's	name.	(In	the	instructions
below,	substitute	your	actual	project	names	for	ExistingProject	and	NewProject.

1.	Copy	the	project
1.	 On	your	computer's	file	system	(not	in	Android	Studio),	make	a	copy	of	the	ExistingProject	directory.
2.	 Rename	the	copied	directory	to	NewProject	.

2.	Rename	and	refactor	the	project	components
The	old	name	of	the	project,	ExistingProject,	still	appears	throughout	the	packages	and	files	in	the	new	copy	of	your
project.	Change	the	file	and	the	package	references	in	your	app	to	the	new	name,	as	follows:

1.	 Start	Android	Studio
2.	 Click	Open	an	existing	Android	Studio	project.
3.	 Navigate	to	the	NewProject	directory,	select	it,	and	click	OK.
4.	 Select	Build	>	Clean	Project	to	remove	the	auto-generated	files.
5.	 Click	the	1:Project	side-tab	and	choose	Android	from	the	drop-down	menu	to	see	your	files	in	the	Project	view.
6.	 Expand	app	>	java.
7.	 Right-click	com.example.android.existingproject	and	choose	Refactor	>	Rename.	This	opens	the	Rename	dialog.
8.	 Change	existingproject	to	newproject.
9.	 Check	Search	in	comments	and	strings	and	Search	for	text	occurrences	and	click	Refactor.
10.	 The	Find	Refactoring	Preview	pane	appears,	showing	the	code	to	be	refactored.
11.	 Click	Do	Refactor.
12.	 Expand	res	>	values	and	double-click	the	strings.xml	file.
13.	 Change	the	name="app_name"	string	to	New	Project.

3.	Update	the	build.gradle	and	AndroidManifest.xml	files

Each	app	you	create	must	have	a	unique	application	ID,	as	defined	in	the	app's	build.gradle	file.	Even	though	the	above
steps	should	have	changed	the	build.gradle	file,	you	should	check	it	to	make	sure,	and	also	sync	the	project	with	the	gradle
file:

Appendix:	Utilities

562

1.	 Expand	Gradle	Scripts	and	double-click	build.gradle	(Module:	app).
2.	 Under	defaultConfig,	check	to	make	sure	that	the	value	of	the	applicationID	key	has	been	changed	to

"com.example.android.newproject".	If	it	has	not	changed,	change	it	manuall	now.
3.	 Click	Sync	Now	in	the	top	right	corner	of	the	Android	Studio	window.

Tip:	You	can	also	choose	Tools	>	Android	>	Sync	Project	with	Gradle	File	to	sync	your	gradle	files.

In	addition,	some	apps	include	the	app	name	in	readable	form	(such	as	"New	Project"	rather	than	newproject)	as	a	label	in
the	AndroidManifest.xml	file.

1.	 Expand	app	>	manifests	and	double-click	AndroidManifest.xml.
2.	 Find	the	statement	below,	and	if	necessary,	change	the	label	if	to	the	string	resource	for	the	new	app	name:

android:label="@string/app_name"

Delete	a	project
All	the	files	for	an	Android	project	are	contained	in	the	project's	folder	on	the	computer's	file	system.	To	delete	a	project,
delete	its	folder.

Android	Studio	also	keeps	a	list	of	recent	projects	that	you	have	opened.	You	can	delete	a	project	from	the	list	of	recent
projects	in	Android	Studio.	(Deleting	a	project	from	the	recent	projects	list	does	not	affect	the	actual	project	files.)

To	remove	a	project	from	the	recent	projects	list,	do	one	of	the	following:

On	the	Android	Studios	startup	screen	screen,	click	the	name	of	the	project	and	press	the	delete	key.
Select	File	>	Open	Recent	>	Manage	Projects,	click	the	name	of	the	project	and	press	the	delete	key.

Extract	Strings	and	Dimensions

Extracting	Strings
In	order	for	your	app	to	be	translatable	into	multiple	languages	you	must	keep	all	of	your	string	resources	in	the
res/values/strings.xml	file.

Creating	string	resources
There	are	several	ways	to	create	string	resources:

Add	them	manually	in	the	strings.xml	file	using	the	following	syntax:

<string	name="string_name">String	Value</string>

Wherever	the	string	will	be	used,	such	as	the	text	attribute	of	a	TextView:

1.	 Type	in	the	desired	name	for	a	string	resource	in	the	following	format:		@string/string_name.		It	will	be	highlighted
in	red	since	the	resource	does	not	yet	exist.

2.	 Make	sure	your	cursor	is	in	the	highlighted	text.

3.	 Press	Alt	+	Enter	and	select	Create	string	value	resource.

4.	 Enter	your	desired	string	and	press	OK	and	he	string	gets	added	to	your	strings.xml	file.

You	can	select	any	existing,	hard-coded	string	in	either	XML	or	Java,	press	Alt	+	Enter,	and	select	Extract	string
resource.

Accessing	string	resources:

Appendix:	Utilities

563

In	XML,	references	string	resource	using	the	following	syntax:		@string/string_name	
In	Java,	reference	string	resources	using	the	following	syntax:		getString(R.string.string_name)	

2.	Extract	Dimensions

Dimensions	should	in	general	not	be	hard-coded	but	kept	in	the	dimens.xml	file.	This	allows	for	you	to	specify	different
dimensions	using	resource	qualifiers.

Extract	dimensions	in	the	same	way	as	strings	(Alt-Enter),	and	they	will	be	stored	in	the	dimens.xml.

3.	Extract	Styles

If	you	have	several	elements	that	share	attributes,	you	can	create	a	style	in	the	style.xml	file.	To	learn	more	about	styles,
see	the	Styles	and	Themes	lesson.

To	extract	existing	attributes	into	a	style,	do	the	following:

1.	 Place	your	cursor	in	the	view	whose	attributes	you	want	to	turn	into	a	style.
2.	 Right	click	and	select	Refactor	>	Extract	>	Style.
3.	 Name	the	style	and	select	attributes.	If	Launch	'Use	Style	Where	Possible'	refactoring	after	the	style	is	extracted

is	checked,	Android	Studio	will	search	the	rest	of	the	file	for	the	selected	attributes	and	apply	the	style	to	views	where
the	attributes	match.

4.	 Click	OK.

Add	Android	support	libraries	to	the	build	file
Android	Support	Libraries	provide	backward-compatible	versions	of	Android	framework	APIs,	additional	UI	components	and
a	set	of	useful	utilities.

For	example,	to	use	the	RecyclerView	class,	which	is	located	in	the	Android	Support	package,	you	must	include	two
dependencies	in	your	project's	build.gradle	file.	The	process	is	the	same	for	other	support	library	components.

Follow	these	steps	and	refer	to	the	screenshot	below:

1.	 In	Android	Studio,	in	your	project,	make	sure	you	are	in	the	Project	pane	(1)	and	in	the	Android	view	(2).
2.	 In	the	hierarchy	of	files,	find	the	Gradle	Scripts	folder	(3).
3.	 Expand	Gradle	Scripts,	if	necessary,	and	open	the	build.gradle	(Module:	app)	file	(4).	

4.	 Towards	the	end	of	the	build.gradle	(Module:	app)	file,	find	the	dependencies	section.
5.	 Add	these	two	library	dependencies	as	the	last	two	lines	(inside	the	curly	braces):

compile	'com.android.support:recyclerview-v7:23.1.1'

compile	'com.android.support:design:23.1.1'

There	is	probably	an	existing	line	similar	to	this	one:

compile	'com.android.support:appcompat-v7:23.1.1'

Add	your	lines	below	that	line.
Match	the	version	number	of	your	lines	to	the	version	number	of	that	existing	line.
Make	sure	the	version	numbers	of	all	the	libraries	are	the	same	and	match	up	with	the		compiledSdkVersion		at	the
top	of	the	file.	(If	these	don't	match,	you	will	get	a	build	time	error.)

6.	 If	prompted,	sync	your	app	now.
7.	 Build	and	run	your	app.

The	following	is	an	example	of	the	dependencies	section	of	the	build.gradle	file	with	support	libraries	added.

Appendix:	Utilities

564

https://docs.google.com/a/google.com/document/d/1_q2PvWUkZg8l8w6_2BoUx0X1jcWagZ9cJRwoLJ5qmOo/edit?usp=drive_web
https://drive.google.com/open?id=1ZyhAbUgd6jinc1dSo3aT0fwIA5XNGNBCmTs2VM8W0-Y
http://developer.android.com/tools/support-library/index.html

dependencies	{

			compile	fileTree(dir:	'libs',	include:	['*.jar'])

			testCompile	'junit:junit:4.12'

			compile	'com.android.support:appcompat-v7:23.1.1'

			compile	'com.android.support:recyclerview-v7:23.1.1'

			compile	'com.android.support:design:23.1.1'

}

Create	images	in	Asset	Studio
Use	Image	Asset	Studio	to	create	and	add	a	launcher	icon.

1.	 Open	your	app	in	Android	Studio.
2.	 Right-click	the	res	folder	of	your	project	and	select	New	>	Image	Asset	from	menu.

This	opens	the	Image	Asset	Studio	window,	where	you	can	create	a	text	icon,	choose	from	available	clipart,	or	add
your	own	custom	icon.

Note	that	the	panel	on	the	top-left	is	scrollable;	scroll	to	see	additional	customizations.

To	add	a	custom	text	icon:

1.	 Change	the	Name	of	the	icon	to		ic_launcher_text	,	if	you	don't	want	to	overwrite	the	default	Android	ic_launcher	icon
that	comes	with	your	project.

2.	 In	the	Asset	Type	row,	select	Text.
3.	 Type	"Hello	World!"	into	the	text	box.
4.	 Experiment	with	adjusting	the	font.
5.	 Scroll	down	and	change	font	and	background	colors.
6.	 Click	Next.
7.	 The	Confirm	Icon	Path	window	shows	how	an	icon	with	your	specified	text	will	be	created	for	each	resolution,	as	well

as	the	default	storage	location	and	path	in	your	app.
8.	 Click	Finish.
9.	 Got	the	the	res/mipmap	folder.	If	now	contains	your	new	icon,	with	a	default	version	at	the	top	level,	and	size-adjusted

versions	for	different	resolutions.
10.	 To	use	the	new	icon,	open	the	Android	manifest.	Change	the	android	icon	line	from	referencing	ic_launcher	to

ic_launcher_text.

android:icon="@mipmap/ic_launcher_text"

11.	 Run	your	app.
12.	 After	the	app	has	launched,	go	to	the	home	screen	and	open	the	list	of	apps.
13.	 Scroll	and	you	should	see	your	icon	listed	along	with	the	other	installed	apps.

To	add	a	clipart	icon:

Follow	the	previous	steps	except:

1.	 Change	the	Name	to		ic_launcher_clipart	.
2.	 Choose	Clip	Art	as	the	Asset	Type.
3.	 In	the	Clip	Art	row,	click	the	button	showing	the	current	icon,	the	default	Android.
4.	 Choose	an	icon	from	the	popup	window	of	clip	art.

To	add	a	custom	icon:

Follow	the	previous	steps	except:

1.	 Change	the	Name	to		ic_launcher_image	.
2.	 Choose	Image	as	the	Asset	Type.
3.	 In	the	Path	row,	choose	an	image.	This	can	be	an	image	that	you've	added	to	your	project	or	an	image	on	your

Appendix:	Utilities

565

http://developer.android.com/tools/help/image-asset-studio.html

computer.

Compare	custom	objects
Whenever	your	data	model	calls	for	objects	to	be	sorted,	it	becomes	necessary	to	define	how	these	objects	can	be
compared	to	each	other.

The	Comparable	interface	allows	you	to	specify	how	to	compare	two	objects	and	determine	whether	one	is	biggers,
smaller,	or	the	same	as	the	other.

The	Comparable	interface	requires	that	you	implement	a	single	method:		compareTo(<T>	another)		where	is	the
parameterized	type	you	implemented	Comparable	with,	and	the	type	of	object	you	are	comparing	to	(i.e	if	you	want	to
compare	your	Foobar	instance	to	other	Foobar	instances,	you	would	implement		Comparable<Foobar>		and	your	compareTo
method	would	take	Foobar	as	a	parameter).

The	compare	method	should	do	the	following:

Return	a	negative	integer	if	the	object	is	less	than	the	parameter.
Return	a	positive	integer	if	the	object	is	greater	than	the	parameter.
Return	zero	if	the	objects	are	equal.

For	example,	to	compare	a	list	of	books	by	publication	date:

@Override

public	int	compareTo(Book	book)	{

				if	(this.publication	==	book.publication)	{	return	0;	}

				else	{	return	this.publication	>	book.publication	?	1	:	-1;}

}

Save	state	of	custom	objects
In	Android,	you	will	frequently	create	custom	objects	to	represent	your	particular	data	model.	In	order	to	preserve	the	state
of	these	objects,	you	must	be	able	to	pass	them	into	the	savedInstanceState	bundle.	In	order	to	do	so,	your	custom	class
must	implement	the	Parcelable	interface.	This	allows	for	primitive	types	(int,	string,	byte,	etc)	to	be	saved	in	the
savedInstanceState	callback.

Do	the	following:

1.	 After	setting	up	the	data	in	your	custom	class	(only	the	primitive	data	types	will	be	saved),	add	the	Parcelable
implementation	to	your	class	declaration.

2.	 The	declaration	will	be	underlined	in	red,	since	you	have	to	implement	the	interface	methods.	With	your	cursor	on	the
underlined	text,	press	Alt	+	Enter	and	select	Implement	methods.

3.	 Choose	both		describeContents()		and		writeToParcel(Parcel	dest,	int	flags)	.	Click	OK.
4.	 The	class	name	will	still	be	underlined,	indicating	that	the	interface	is	not	fully	implemented	yet.	Select	the	class	name,

and	again	press	Alt	+	Enter	and	choose	Add	Parcelable	implementation.	Android	studio	will	automatically	add	the
required	code.	Note	the	variables	for	which	you	want	to	preserve	the	state	(primitive	types)	are	written	to	the	Parcel	in
the		writeToParcel		method.

5.	 You	can	now	save	the	state	of	these	objects	using	the	savedInstanceState	bundles	methods:	putParcelable,
putParcelableArray,	and	putParcelableArrayList	and	the	respective	getters.

Appendix:	Utilities

566

https://developer.android.com/reference/java/lang/Comparable.html
https://developer.android.com/reference/android/os/Parcelable.html

	Introduction
	Appendix: Homework
	Homework Lesson 1
	Homework Lesson 2
	Homework Lessons 3, 4
	Homework Lessons 5, 6
	Homework Lessons 7, 8
	Homework Lessons 9, 10, 11

	Appendix: Utilities

